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Joint Optimization:  The Way 
Forward

• State-of-the-art approaches to improving spectral 
conformity have traditionally included separate 
examination of 
– Circuit design
– Waveform design

• The technology and theory now exist to 
simultaneously optimize both!

• Stages
– Test Bed Development
– Implementation from FPGA cognitive radar 

platform.
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Baylor Waveform and Load 
Optimization Lab Test Hierarchy



Test Bed Configuration



Load Matching Circuit 
Optimization

• Empirical load-pull measurements can 
determine optimum Γs, ΓL.

• Simulations of accurate                       
nonlinear models are                               
useful.

• A network parameter                           
approach similar to                                        
S-parameters would be                                   
very helpful.

GaN HEMT Load-Pull Measurement:
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Fast Load-Impedance 
Optimization Algorithm*

• Traditional:
– 400 Γ states
– Maximum Power = 22.76 

dBm
• Steepest Ascent:

– 17 Γ states
– Maximum Power = 22.72 

dBm
• Accurate results for small 

number of simulations or 
measurements

*C. Baylis, L. Dunleavy, S. Lardizabal, R.J. Marks II, and A. Rodriguez, “Efficient 
Optimization Using Experimental Queries: A Peak-Search Algorithm for Efficient 
Load-Pull Measurements,” Journal of Advanced Computational Intelligence and 
Intelligent Informatics, Vol. 15, No. 1, January 2011.   
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Simulation:  Different Search Starting Points

• All six endpoints 
within 0.02 dBm.

• Resistance
– Mean: 17.537 Ω
– St. Dev.: 0.422 Ω

• Capacitance:
– Mean: -0.3421 pF
– St. Dev.: 3.407 fF

Unbiased search yields low number of simulated points regardless of starting location.

START 1
17 meas.

START 2
14 meas.

START 3
17 meas.

START 4
19 meas.

START 5
17 meas.

START 6
S22*
19 meas.

END



Aiding the Optimization

• Searches are great, but a lot of variables!
– Load reflection coefficient (2 real variables)
– Source reflection coefficient (2 real variables)
– Input waveform harmonics (perhaps 5)

• Data is needed to aid the optimization.
• Wirtinger Calculus for TIPP Systems 

characterizes the harmonic transfer 
characteristics of the system  information to 
optimize both waveform and circuit.  



TIPP Systems
• Assume a time invariant periodicity 

preservation (TIPP) system.  

LTI:  All currents and 
voltages oscillate at the 
same frequency.

TIPP:  All currents and 
voltages are periodic with 
the same period 
(harmonic levels can 
change).
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Affine Approximation

• Consider a nonlinear function f (x):

• Affine approximation around the operating 
point of a nonlinear function

x
dx

)x(df)x(f)xx(f ∆+≈∆+ 0
00
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x0

x
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Fourier Series Linearization:  
TIPP Parameters

x(t) 
= X(t) + ∆x(t)

TIPP y(t) 
= Y(t) + ∆y(t)
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Change in the mth harmonic at the output due to a small
Input perturbation at the nth harmonic 

The phasor at the –nth harmonic 
Is the conjugate of the +nth phasor.

Examples:  X-parameters, S-functions
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Agilent X-Parameters1*
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Each X parameter is a function of |A11|.
11AjeP ∠= provides phase

correction for harmonic
conversion. 

*D. Root, “A New Paradigm for 
Measurement, Modeling, and 
Simulation of Nonlinear 
Microwave and RF Components,” 
Presentation at Berkeley Wireless 
Research Center, 
April 2009. 

1X-parameters is a 
registered trademark 
of Agilent Technologies.  
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**C. Baylis et al., “Going Nonlinear,” IEEE Microwave Magazine, April 2011.   



Conclusions
• Spectral spreading from radar systems must be 

mitigated, but not at the cost of system efficiency.
• Several useful design approaches exist for 

linearity and efficiency improvement.    
• An apparent solution is in joint waveform and 

circuit optimization with the Wirtinger calculus.
• An approach and test platform for real-time load-

pull and waveform optimization is under 
development at Baylor University.
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