Correspondence Group 3K-1
Comparison between diffraction methods under consideration
for the path-specific point-to-area DNR for smooth/sea paths
1 Introduction
This document reports on comparisons between three diffraction methods for smooth paths.  This is a separate type of test, as compared with comparisons with measured data.  Few measurements are available for completely smooth or sea paths, and thus the test of any one method relies on comparisons with other methods.  For smooth or sea paths the spherical-earth diffraction method in P.526 can be viewed as reliable, at least up to about 40 dB diffraction loss.  For smooth paths troposcatter tends to produce lower losses when diffraction loss exceeds about 40 dB.
If a single diffraction method is used for all path types then obviously performance for both smooth and irregular paths is important.  If a blend between edge-based and spherical-earth methods is used, based on path smoothness, the overall method will be more accurate and easier to formulate if the two methods agree fairly well for smooth paths.  Thus smooth-earth performance is important.
2 Implementation of methods
The three diffraction methods for the comparisons reported here were all implemented in MathCad version 13.  

a) The spherical-earth method of P.526 was calculated using the same implementation used to produce 3K/166.  
b) The 3-edge method again used the same implementation as for 3K/166.  The method is described in general terms in P.526-9 §4.4.2, and in a very detailed form in Doc.3/95. 

c) The “Bullington” method is based on 3K/TEMP/91, making assumptions as to the clarifications requested in document “ReqMet.doc” dated 30 April 2007 on the 3K-1 Web site.  As defined in this way the method is not exactly “Bullington”, but this name is used for convenience. 

3 Effect of effective Earth radius

For the comparisons reported in this present document, the 3-edge method finds the principal edge, and if present the auxiliary edges, in the normal way according to the Deygout construction for each value of effective Earth radius.  Interpolation between results for 50% and (% time is not used, since this provides more information about the methods, such as the presence of discontinuities.

4 Details of Bullington implementation
The Bullington construction is somewhat more involved than the Deygout, particularly when its definition is extended to cover LOS paths, as it must be for the DNR.  It may be useful to outline the actual calculation sequence used for these tests.
The terrain profile used for the comparisons consisted of arrays of N members, d giving equally spaced distances (km) from the transmitter, and h giving heights above sea level (m).  All values of h were zero except:

h1 
= 
transmitter height above sea level (m) 

hN 
= 
receiver height above sea level (m).
The steepest slopes upwards from the transmitter and receiver, relative to a line joining sea-level at the positions of the transmitter and receiver, are given by:
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where:

N
=
number of points in the profile including transmitter and receiver



indexed from 1 to N, with N ( 3

hn
=
height of n-th profile point above sea level (m)


ht
=
height of transmitter above sea level (m)
(= h1)


hr
=
height of receiver above sea level (m)
(= hN)

dn
=
distance of n-th profile point from transmitter (m)


d
=
distance from transmitter to receiver (km)
(= dN)

and hb, the upwards bulge of the curved-earth’s surface (above the line joining sea-level at the positions of the transmitter and receiver) at the n-th profile point is given by:
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and
ae
=
effective Earth radius
(km)
The implementations of equations (1) and (2) also assign:

 
nt
=
index of point with highest slope in equation (1) 
 
nr
=
index of point with highest slope in equation (2) 

The ‘max’ functions in equations (1) and (2) include the other terminal.  Thus for a LOS path, nt = N and nr = 1.  Thus a LOS path can be identified by running only equation (1).  If this shows that the path is LOS then it is not necessary to run equation (2).
However, in the implementation used for these comparisons both of equations (1) and (2) were always implemented.  This allows the following three-way classification of the path:


nt
<
nr
NLOS (different transmitter and receiver horizons)

nt
=
nr
NLOS/LOS transition (same transmitter and receiver horizon)

nt
<
nr
LOS (each terminal can see the other)
Although it is inefficient to run equation (2) even after equation (1) has shown that a path is LOS, the above scheme has the advantage of being simple to visualise, and permits all necessary classification to be conducted at one point in the calculation.  
In the NLOS case, the distance of the virtual point from the transmitter is given by:
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It is commented here that, since m1 and m2 have the units m/km, the 103 in 3K/TEMP/91 should be deleted.
The height of the virtual point above the line joining sea-level at the positions of the transmitter and receiver is now given by:
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where as in equation (4) the dimensions of the slope m1 makes the expression dimensionally correct as written.
This locates the virtual point and its diffraction parameter ( can be calculated in the normal way, noting that earth-bulge has been accounted for in the calculation of the slopes m1 and m2 .
In the NLOS/LOS transition case, the same profile point is the horizon for both terminals.  This means that it is also the point with the highest value of the diffraction parameter (.  The value of ( can thus be calculated in the normal way, taking earth-bulge into account.
In the LOS case the intermediate profile point having the highest value of ( must be found, taking earth-bulge into account, as in the first stage of the Deygout construction.

Thus for the NLOS/LOS transition and LOS cases the Bullington edge is real, and formed by the same point which will form the principal edge of the Deygout construction.  Thus for these cases the individual knife-edge losses for the Bullington edge and the 3-edge principal edge should be the same.

Having found ( the corresponding diffraction loss is found via the normal J(() function, limiting to zero for ( < -0.78, and the empirical correction in 3K/Temp/91 equation (14).

It is remarked here that to side-step the possibility of errors due to mixing metres and km, the implementation used for these tests used units of km for both distance and heights.  It also remembered to evaluate wavelengths in km.
5 Predicted losses plotted against effective earth-curvature factor
Figure 1 is a useful example illustrating points about the Bullington and 3-edge methods.  The abscissa is effective earth-radius factor, ke, varying in 250 steps from 0.5 to 3.0.  The path profile has a total of 101 points, so the profile point spacing is 300 m.  Results are not changed significantly by using more profile points with a smaller spacing.
The left-hand scale shows the knife-edge losses calculated within the two methods, without at this stage making the empirical corrections.

The right-hand scale gives the values of a path-classification code evaluated in the Bullington method, as described above (between equations (3) and (4)), plotted as a dotted black line.  This shows the ranges of ke values for which the path has two horizon points, a single horizon point, or no horizon point, i.e., LOS.  The dotted trace does not indicate clearly that there are 3 ke values for which the trace has the exact value of 1.0, that is, both terminals see the same profile point.  (For 1001 profile points, i.e. 30-m spacing, there are no such points; the path switches from 2 horizons to LOS between successive ke values.)
[image: image6.png]
Figure 1.  Edge losses for Bullington and 3-edge methods

For the 1 horizon-point and LOS cases the Bullington-edge and 3-edge main-edge losses are identical, as expected.  For 2 horizon points the Bullington-edge losses are higher than the 3-edge main-edge loss, again as expected since the Bullington edge is virtual and above the 3-edge principal edge.  The difference between them increases slowly as ke decreases.
The 3-edge auxiliary-edge losses, for which the profile points are always adjacent to the principal-edge point, are lower than the principal-edge losses for NLOS paths, and higher than the principal-edge losses for LOS paths.  This is intrinsic to the method, which tapers the auxiliary-edge losses zero as the sub-path clearance increases to 0.6 of the Fresnel radius.  It may be noted that there is considerable sub-path obstruction in Figure 1 even for ke = 3.0.

Figure 2 shows the same traces as Figure 1, and also the overall Bullington and 3-edge predicted losses, plus spherical-earth loss calculated according to P.526-9, including LOS interpolation as described in P.526-9 (not log(d) interpolation).  The extra traces require a change in the left-hand scale.
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Figure 2.  Edge losses and overall results for Bullington and 3-edge methods

Figure 2 shows anomalous results from the spherical-earth method in P.526.  Over a range of ke the predicted loss increases with ke.  This behaviour occurs in the basic spherical-earth method, and is not a function of the interpolation method.  It occurs over restricted ranges of the relevant parameters, but should receive further investigation before an integrated spherical-earth/edge-based method is adopted.

Figures 3 to 6 show the same traces as Figure 2 with h1 increased to 30 m, which puts most of the graph into the LOS region.  The graphs are for 100 MHz, 300 MHz, 1 GHz and 3 GHz, which has the effect of increasing the sub-path clearance for successive figures..
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Figure 3.  Spherical, Bullington and 3-edge compared, 100 GHz
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Figure 4.  Spherical, Bullington and 3-edge compared, 300 MHz
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Figure 5.  Spherical, Bullington and 3-edge compared, 1 GHz
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Figure 6.  Spherical, Bullington and 3-edge compared, 3 GHz
In the LOS regions of Figures 3 to 6 the predicted losses decrease as frequency increases, as expected.  However, at the highest frequency the Bullington method crosses the other two methods, due to the 10 + 0.02d empirical correction.  It is clear that the Bullington correction needs to be tapered to zero for LOS with full Fresnel clearance, but this has not been specified at the time of writing.
With a suitable reduction of loss predicted by the Bullington method as Fresnel clearance is approached, the three methods could be made to converge at 3 GHz.  At the lower frequencies the 3-edge method is closer to the spherical-earth method in the interpolation region.  The 3-edge method, and to a larger extent the Bullington method, should predict higher losses in these cases.
Figures 7 to 10 show the same traces for a 50 km path and the same antenna heights.  This puts most of the graphs into the NLOS region.  As before the graphs are for 100 MHz, 300 MHz, 1 GHz and 3 GHz
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Figure 7.  Spherical, Bullington and 3-edge compared, 100 MHz
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Figure 8.  Spherical, Bullington and 3-edge compared, 300 MHz
[image: image14.png]
Figure 9.  Spherical, Bullington and 3-edge compared, 1 GHz
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Figure 10.  Spherical, Bullington and 3-edge compared, 3 GHz
As expected, predicted diffraction losses increase with frequency for paths well inside the NLOS region.  Variations are less consistent in the NLOS/LOS transition region.  The same left-hand scale is used for Figures 7 to 10, with losses shown only up to 50 dB.  Higher diffraction losses are of little practical significance, and the spherical-earth method is not considered valid in the deep-shadow region.
In most cases the 3-edge method is closer to the spherical-earth method than the Bullington method.  This is reversed at the higher frequencies and closer to the NLOS/LOS transition.
In all cases it is worth noting that the differences between the Bullington knife-edge-loss and the main-edge knife-edge loss of the Deygout construction is small compared to the discrepancies between the overall methods.  Thus the important differences between the Bullington and 3-edge methods are the number of edges used, and the empirical corrections.
6 Predicted losses plotted against path length

This section presents predicted diffraction losses plotted against path length, the form in which they are more conventionally viewed.  All calculations were for an effective earth radius of 8,500 km, typical of median conditions.
Figures 11 to 15 show diffraction losses plotted against distance covering from complete Fresnel clearance to deep-shadow NLOS paths for 30 MHz, 100 MHz, 300 MHz, 1 GHz, and 3 GHz.
In all of these graphs the Bullington method always predicts less loss than the spherical-earth method in the shadow region, and systematically has less increase in loss with distance than the spherical-earth method.  In general the 3-edge method is a better approximation to the spherical-earth method.
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Figure 11.  Losses plotted against distance, 30 MHz
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Figure 12.  Losses plotted against distance, 100 MHz
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Figure 13.  Losses plotted against distance, 300 MHz
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Figure 14.  Losses plotted against distance, 1000 MHz
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Figure 15.  Losses plotted against distance, 3000 MHz

7 Conclusions
The Bullington method has not yet been formulated as a complete algorithm, suitable for all types of path and for use from complete Fresnel clearance to the shadow region.  This is particularly visible in Figures 11 to 15 where the residual 10 dB empirical correction should clearly be reduced to zero.

Inasmuch as this permits a comparison, the 3-edge method is generally a better approximation to the spherical-earth method defined in P.526-9, including the interpolation method for LOS with sub-path diffraction.  However, it must be accepted that both the 3-edge and Bullington methods can be expected only to approximate to spherical-earth diffraction.
It is hoped that the Bullington method will soon be fully defined, and it is suggested that, when it is, extensive testing against measured data should be conducted by several independent implementations.

D F Bacon
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