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Derivation of the Necessary Bandwidth (-20 dB Bandwidth) and -40 dB Bandwidth Formulas for Un-Modulated Pulse Waveforms
Background
At the July 2004 meeting of JRG 1A-1C-8B, a contribution was submitted that addressed the derivation of the necessary bandwidth (-20 dB bandwidth)
 and -40 dB bandwidth for un-modulated pulse waveforms.  This document supersedes document JRG-09, and provides a more detailed derivation of the formulas in ITU-R Recommendations SM.853-1 and SM.1541.
In Recommendation ITU-R SM.1541 un-modulated pulses are also referred to as non-FM pulsed emissions.  In these waveforms there is no intentional frequency or phase modulation during the pulse.  Though the following derivation assumes the ideal case, real radar output devices introduce incidental angle modulation and other effects during the pulse.  When establishing bandwidth formulas it is necessary to study the effects of incidental angle modulation of real systems to see whether the spectrum differs significantly from the findings of this paper.

Introduction

The following defines the pulse waveform considered in this derivation:
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Figure 1.  Pulse model
In Figure 1 if t1 > 0, the indicated waveform is called a trapezoidal pulse.  If t1 = 0, the waveform is called a rectangular pulse.  The period of the pulse sequence is T.  1/T is sometimes called the pulse repetition rate (PRR).
We begin the introduction by describing the spectrum of a periodic rectangular pulse waveform.  The equation for the magnitude of the line spectra of a rectangular pulse is derived in Appendix A.  The final form, (A.28), is reproduced as follows:
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where fn = n/T = nPRR, where n is an integer.

The derivations in this paper are not concerned with absolute levels, but relative.  Therefore we consider the following, which has a maximum amplitude of unity.
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In the determination of bandwidth formulas we are interested in the envelope of the spectrum.  We note that the maximum value of the sine function in (2) is 1, and therefore propose an envelope function as follows (substituting fn with the continuous f, and t0 with the pulse width τ):
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(2) and (3) are plotted in Figure 2 after converting to decibels.
, 

The equation for the magnitude of the line spectra of a periodic trapezoidal pulse is derived in Appendix A.  The final form, (A.24), is reproduced as follows:
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Noting that t0 + t1 is the 50% amplitude pulse width (τ), and that t1 represents both rise and fall times measured between 0% and 100% amplitude (δ), we make these substitutions in the following:
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The line spectra are proportional to the following, and reach a maximum value of unity when fn = 0.
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Similar to (3) we can substitute 1 for the sine functions of (6) to arrive at an envelope function as follows:
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Figure 3 is a plot of both (6) and (7):

In both Figure 2 and Figure 3 we note that the spacing between line spectra is the PRR.  We also note that the width of each spectral lobe is 1/τ, which comes from the fact that as fn approaches integer multiples of 1/τ, the sine argument approaches integer multiples of π, which yields the nulls of the sinc function.
  In Figure 3 there is another overarching lobing structure of a greater frequency (1/δ) which comes from the multiplication of the additional sinc function in (6) as compared to (2).  
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Figure 2.  One Side of the Spectrum of a Periodic Rectangular Pulse Plotted with Envelope
[image: image10.emf]PRR = 0.0125 MHz, 50% pulse width = 10 usec, 0% to 100% rise time = 1 usec
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Figure 3.  One Side of the Spectrum of a Periodic Trapezoidal Pulse Plotted with Envelope
There are a couple more things to note about the envelopes in both figures.  The first point is that we can define the frequency values of both envelopes at which their relative attenuation levels are zero decibels.  For the rectangular pulse we set the attenuation to 1 (corresponding to 0 dB) in (3) to get the following:
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The frequency corresponding to 0 dB attenuation for the trapezoidal pulse envelope is determined similarly using (7):
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The second point is to note that both envelopes have constant slopes when plotted on a logarithmic frequency scale, Log(f).  The following shows the definition for the slope of a straight line:
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For the rectangular pulse envelope, applying (10) using (3) for y gives the following:
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For the trapezoidal pulse envelope, applying (10) using (7) gives:
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So we have shown that the envelope of the rectangular pulse starts at a frequency of (8) and slopes off at ‑20 dB/decade, and the envelope of the trapezoidal pulse starts at (9) and slopes downward at ‑40 dB/decade.
A final insight comes from plotting both envelopes against the spectrum of a trapezoidal pulse.
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Figure 4.  Trapezoidal Pulse Power Spectrum Plotted with Trapezoidal and Rectangular Pulse Envelopes.

Figure 4 shows that if we base X dB bandwidth formulas for a trapezoidal pulse on (7) alone, we will overestimate the bandwidth for 0 dB bandwidths up to a certain magnitude X dB level.  The frequency at which that level occurs (fi) corresponds to the intersection of envelopes and can be calculated by setting the right-hand sides of (3) and (7) equal to each other:
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Now if we substitute (13) into (3) we see that the attenuation level at the intersection (Ai) of both envelopes depends on the relationship between pulse width and rise time:
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So for attenuation levels larger than Ai we obtain a more accurate bandwidth for the trapezoidal pulse by basing formulas on the rectangular pulse envelope.
Since the appropriate formula to use for both ‑20 dB and ‑40 dB bandwidths could be based on either envelope depending on the relationship between pulse width and rise time, the remainder of the derivation considers both cases.

X dB Bandwidth Formulas Based on Rectangular Envelope

To arrive at bandwidth formulas based on the rectangular pulse envelope we rearrange (3) and note that since f is a one-sided bandwidth, the desired bandwidth will be twice this:
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X dB Bandwidth Formulas Based on Trapezoidal Envelope

To arrive at bandwidth formulas based on the trapezoidal pulse envelope we rearrange (7) similarly:
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Next we note that rise time is normally given as the 10% to 90% rise time (tr), so we use the following to perform the conversion:
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Making this substitution into (16) gives the following:
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Finally, to assist in determining which envelope to use for the proper bandwidth of a given trapezoidal pulse, we need to convert (14) for use with tr.  It is also important to note by inspection of Figure 4, that regardless of what X dB bandwidth is desired, the proper envelope to use is always the one that will produce the smaller bandwidth:
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‑20 dB Bandwidth

Up to this point we have been dealing with the amplitude spectrum, which for real signals is the square root of the power spectrum.  Therefore , the attenuation which is 20 dB below the maximum power is A2 = 1/100.  Thus A = 1/10.  Substituting this into (15) gives the ‑20 dB bandwidth for the rectangular pulse envelope as follows:
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The ‑20 dB bandwidth for the trapezoidal pulse envelope is found by substituting A = 0.1 into (18):
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Thus, B-20 dB for un-modulated pulse is the smaller of (20) and (21).
  Through application of (19) we see that the smaller bandwidth will be (20) when τ/tr ≥ 12.5.  Otherwise, (21) is used.
‑40 dB Bandwidth

The attenuation which is 40 dB below the maximum power is A2 = 1/10000.  Thus A = 1/100.  Substituting this into (15) gives the ‑40 dB bandwidth for the rectangular pulse envelope as follows:
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The ‑40 dB bandwidth for the trapezoidal pulse envelope is found by substituting A = 0.01 into (18):
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Thus, B-40 dB for un-modulated pulse is the smaller of (22) and (23).  Through application of (19) we see that the smaller bandwidth will be (22) when τ/tr ≥ 125.  Otherwise, (23) is used.

The constant of 5.7 in (23) is based on the theoretical emission bounds of an un-modulated pulse waveform.  Since the -40 dB bandwidth is used to define the emission mask for radar systems, it is important to include allowances for incidental angle modulation and other effects during the pulse.  

Thus, the formula for the -40 dB bandwidth for an un-modulated pulse waveform in Recommendation ITU-R SM.1541 replaces the constant 5.7 with a K factor as shown in (24).  The value of K is 6.2 for radars with output power greater than 100 kW, and 7.6 for lower‑power radars and radars operating in the radionavigation service in the 2900-3100 MHz and 9200-9500 MHz bands.

In Recommendation ITU-R SM.1541 (Equation 39), the -40 dB bandwidth is given as the lesser of:
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[image: image29.emf]PRR = 0.0125 MHz, 50% pulse width = 10 usec, 0% to 100% rise time = 0.1 usec
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Figure 5.  Example of Trapezoidal Pulse Spectrum Where Envelopes Intersect at ‑40 dB Bandwidth
Figure 5 shows a more exaggerated view of the benefit of using the rectangular pulse envelope for determining X dB bandwidths out to its intersection with the trapezoidal pulse envelope.  It also shows an interesting case where ideal trapezoidal pulse emissions outside of the ‑40 dB bandwidth attenuate at the rate of ‑40 dB/decade, without filtering.  This will be true as long as: τ/δ ≤ 100, or τ/tr ≤ 125.  At any rate, the ideal spectrum of a trapezoidal pulse always drops off at ‑40 dB/decade, without filtering, outside of the 20Log(δ/τ) dB bandwidth, which is 2/(πδ).

Appendix A 
Periodic Pulse Amplitude Spectrum Derivation

Trapezoidal Pulse

The graphic in Figure 1 depicts the pulse under consideration in this derivation:

Following is the definition of a single trapezoidal pulse h(t):
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	(A.1)


Following is the definition for the Fourier Series:
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	(A.2)


where fn = n/T, where n is an integer.
Following is the corresponding definition of the Fourier coefficients Cn for this pulse:
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	(A.3)


Since there are three portions of h(t), the following 3 integrals apply, where I1 + I2 + I3 = I:
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	(A.4)
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	(A.5)
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	(A.6)


In an attempt to make I1 more manageable, use the change of variables x = t + t1 + t0/2.  Then t = x – t1 – t0/2, and dt = dx.  When t = –t0/2, x = t1.  When t = -t1 - t0/2, x = 0
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	(A.7)


In an attempt to make I3 more manageable, use the change of variables x = t1 + t0/2 - t.  Then t = ‑x + t1 + t0/2, and dt = -dx.  When t = t0/2, x = t1.  When t = t0/2 + t1, x = 0

	
[image: image37.wmf]1

1010

1

0

2(/2)2(/2)2

3

0

11

nnn

t

jfxttjfttjfx

t

xx

Iedxeedx

tt

ppp

--++-+

=-=

òò


	(A.8)


The following integral solutions and identity are used in the remainder of this derivation:
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	(A.9)
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	(A.10)
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In order to make the derivation more manageable, substitute “a” for j2πfn.  I1 + I2 + I3 becomes:
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	(A.12)


Substituting integral solutions gives:
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	(A.13)


The following equations step through the remainder of the derivation:
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	(A.14)
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Rectangular Pulse

The rectangular pulse is also depicted by Figure 1 except that t1 = 0.  Thus, following is the definition of a single rectangular pulse h(t):

	
[image: image54.wmf]0

00

0

0/2

()/2/2

0/2

tt

htEttt

tt

<-

ì

ï

=-££

í

ï

>

î


	(A.25)
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Using (A.9) this becomes:
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As a test of the validity of the final forms of Cn for both trapezoidal and rectangular pulse, we note the expected result that substituting t1 = 0 into (A.24) yields (A.28).





















� Recommendation ITU-R SM.853-1 defines the necessary bandwidth for un-modulated pulsed emissions as 20 dB below the peak envelope value.


� A voltage (V) is converted to decibels (VdB) by applying the following:  VdB = 20Log(V)


� All logarithms in this paper are base 10.


� The sinc function is defined as sinc(x) = sin(πx)/(πx), thus � REF _Ref98220442 �(2)� could be rewritten as sinc(fnτ)


� The actual calculation in � REF _Ref98574345 �(20)� should be 6.37/t, but the published formula is 6.36/t.  The difference is insignificant, and probably due to a rounding error.


� The actual calculation in � REF _Ref98574417 �(21)� should be 1.80/sqrt(ttr), but the published formula is 1.79/sqrt(ttr).  The difference is insignificant, and probably due to a rounding error.


� All practical pulses have non-zero rise times, and can thus be approximated as trapezoidal





3

_1171958042.unknown

_1171973017.unknown

_1172309382.unknown

_1172662531.unknown

_1172663494.unknown

_1172663511.unknown

_1172906558.unknown

_1172662570.unknown

_1172315598.unknown

_1172308684.unknown

_1172308732.unknown

_1172306155.unknown

_1172306219.unknown

_1171962140.unknown

_1171972187.unknown

_1171972393.unknown

_1171962407.unknown

_1171958572.unknown

_1171961777.unknown

_1171958609.unknown

_1171958070.unknown

_1171699131.unknown

_1171699550.unknown

_1171716894.unknown

_1171892211.unknown

_1171892376.unknown

_1171700689.unknown

_1171700690.unknown

_1171699635.unknown

_1171699507.unknown

_1171699525.unknown

_1171699369.unknown

_1171699484.unknown

_1171699368.unknown

_1171451755.unknown

_1171698500.unknown

_1171698604.unknown

_1171698851.unknown

_1171698639.unknown

_1171698564.unknown

_1171457852.unknown

_1171698197.unknown

_1171695470.unknown

_1171696188.unknown

_1171452658.unknown

_1171452710.unknown

_1171452457.unknown

_1171353709.unknown

_1171353752.unknown

_1171353822.unknown

_1171353695.unknown

