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Abstract— The HF band is used for various communications
and radar requirements. Australian users of the band are
required to adhere to spectrum management recommendations
set by the Australian ACMA based on regulations set by the
International Telecommunications Union (ITU). Here we exam-
ine the applicability of the ITU recommendations on Linear
Frequency Modulated Continuous Waveforms (LFMCW) and
amplitude modulated LFMCW waveforms. We find the ITU-R
40 dB bandwidth formula difficult to meet, even for excellent out-
of-band spectral performance, due to the poor carrier frequency
relation. Even though simulations and state-of-art waveform
generators indicate excellent potential performance, the linearity
issue of high power amplifiers still causes recommendation for
no change to the 20 dB/decade roll-off rate.

I. INTRODUCTION

Radio waves in the HF band (3-30MHz) are capable of
spanning large distances on the Earth’s surface due to the
refractive properties of the ionospheric region. The ionospheric
medium typically supports reflection of these radio waves
at heights of 90-350km above the Earth’s surface. HF radar
defence systems have existed since the British Chain Home
line-of-sight air defence system of 1937. Skywave radar op-
erating in the HF band presents a means to survey large
areas of land and sea for air and maritime targets [1], [2].
Surface wave radar also operates in the HF band and makes
use of electromagnetic coupling of the HF waves to the sea
surface. This coupling provides a means to detect targets
over-the-horizon beyond the line-of-sight limit experienced by
microwave radar systems. Other forms of HF radar also exist
including hybrid Skywave-Line-Of-Sight systems (SkyLOS).
Targets of interest include aircraft, ships, missiles, commercial
activities, and illicit incursions and trafficking.

Conventionally these HF radar systems [1] use a form of
LFMCW waveform [3]. The waveform parameter operational
envelope will depend on the particular application. For monos-
tatic configurations the waveform may also include amplitude
pulse modulation, while in bistatic configurations the trans-
mission may be continuous. Radar waveforms are generally
designed to achieve specific functional requirements including
good range and Doppler ambiguity profiles. The LFMCW
provides excellent range resolution for a given transmission
bandwidth, and allows the transmitter power amplifiers to
output at a constant power. Other waveforms are designed
to meet other requirements, such as the ITU-R Out-of-Band
(OoB) emissions [4], for example OoB emission reduction via

time and frequency weightings [5]. Recently greater interest in
multiple-input multiple-output (MIMO) systems where the de-
sign objectives are transmitter element waveform orthogonality
using either temporal, spectral diversity . The implementation
of such designs is of course limited by the performance of the
transmission system.

In this paper we examine several waveforms applicable to
HF radar and compare their waveform spectra to the ITU-R
emission masks [4]. Some of these radar waveforms may fall
into the ITU-R taxonomy of either LFMCW or pulsed FMCW
waveforms. Section II provides a theoretical foundation for
analysis of the LFMCW waveform. Time and frequency
techniques for sidelobe suppression in the OoB domain are
discussed in Section III. The ITU-R OoB emission mask is
given in Section IV. Actual data measured using a Waveform
Generator Test Bed is analysed in Section V, and spectral
measurement of these waveforms is considered in Section VI.
Finally Conclusions and Recommendations are made.

II. LINEAR FMCW WAVEFORM ANALYSIS

In this section we examine the theoretical spectrum pro-
duced by the Linear FMCW waveform.

A. LFMCW Spectrum

Let us define the instantaneous frequencyfI of the LFMCW
waveform, for a single repetition as:

fI(t) =
B

T
t + fc |t| ≤ T/2 (1)

with repetitions obeying:

fI(t) = fI(t− T ) ∀t

wherefc is the waveform centre frequency,B is the waveform
bandwidth,T is the waveform repetition interval, andt is the
time variable. This waveform is shown in Figure 1 for five
waveform repetition intervals.

The phase of the signal with instantaneous frequency (1)
can be calculated as:

φ(t) = 2π

∫ t

0

fI(t′)dt′ |t| ≤ T/2

=
πB

T
t2 + 2πfct |t| ≤ T/2 (2)



where the signal has constant amplitude and using the conve-
nience of complex notation becomes:

v(t) = ejφ(t) (3)

Fig. 1. Example LFMCW waveform for five repetitions.

The spectrum of this signal can be obtained from its Fourier
transform:

v(f) =
∫ ∞

−∞
v(t)e−j2πftdt (4)

Upon substitution of (3) and lettingα = πB
T andβ = 2π(fc−

f):

v(f) =
∫ ∞

−∞
ej(αt2+2βt)dt (5)

Using the integral relationships [6]:∫
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where
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√
2

πα
(αt + β)

and C(x) and S(x) are known as Fresnel Integrals defined as
(shown in Figure 2):

C(x) =
∫ x

0
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(

πt2

2

)
dt
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0
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2

)
dt

The spectrum (5) of a single waveform repetition is then
derived as:

v(f) =
√

π

2α
e−j β2

α [C(x) + jS(x)]x( T
2 )

x(−T
2 )

(6)

and hence the squared magnitude of the spectrum is:

|v(f)|2 =
T

2B

{
[C(x2)− C(x1)]

2 + [S(x2)− S(x1)]
2
}

(7)

Fig. 2. Fresnel Integrals.

An example of the LFMCW spectrum magnitude is shown
in Figure 3 for the case ofB = 10 kHz, T = 1/250 secs
and a single waveform repetition. Without loss of generality,
the radar frequencyfc has been set to zero, for all subsequent
analysis. The spectral oscillations are known as Fresnel ripples.

Fig. 3. Example LFMCW spectrum for a single repetition.

B. Numerical Analysis

For waveforms more general than the rectangular LFMCW
numerical analysis may be performed. Figure 4 shows the half
spectrum for a single sweep rectangular LFMCW waveform.
Overlayed is the detected envelope spectrum. The waveform
signal was also synthesised using (3) by discrete sampling at
fs = 100 × B with fc = 0. For the significant portion of
the plot the spectrum for the numerical technique is identical
and obscured by the overplotted theoretical spectrum. At high
frequency the numerical spectrum sidelobes degrade as a
result of aliasing caused by sampling below the true Nyquist
frequency, which could be regarded as infinite.

C. Out-of-Band Roll-Off Rate

From (7) the spectrum sidelobe roll-off rate may be approx-
imated in the sidelobe region using the largex > 5 Fresnel
Integral approximations, based on [6]:

C(x) ≈ 1
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)



Fig. 4. Spectrum for a single repetition rectangular LFMCW waveform.

and

S(x) ≈ 1
2
− 1

πx
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πx2
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)
− 1

π2x3
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2

)
It may be seen that the dominant frequency relationship is an
inversex2 term, sincex ∝ f throughβ, thus the roll-off rate,
δ, becomes:

δ = 10 log10

(
f2

(10f)2

)
= −20 dB/decade (8)

This value becomes significant when specifying OoB emis-
sion mask formula for LFMCW or similar discontinuous
waveforms.

D. Time-Bandwidth Product

The LFMCW waveform spectrum may also be analysed
by examining the spectral envelope. Maxima of the|v(f)|2
function may be calculated [6] or alternatively a simple
algorithm may be developed to select the spectral maxima.
We chose the second option. In Figure 5(a) the single-sided
(half spectrum) envelope spectrum is plotted in log-log scale
for a waveform bandwidth ofB =10 kHz and various time-
bandwidth products (TBP). The diagram shows the in-band
dependance on TBP, and conversely independence in the OoB
zone. The sidelobe roll-off rate asymptotes to -20 dB/decade
at high frequencies. Figure 5(b) shows the derivative of the
envelope functions for each TBP.

The spectral shape dependence on TBP value and its relation
to the OoB sidelobe roll-off zone should clearly be factors
that influence specification of OoB emission mask formula
for LFMCW waveforms.

In Figure 6 the bandwidth parameter has been reduced
to B = 1 kHz with the same TBP values. As expected
the spectral envelopes show reduced bandwidth, and scaling
governed by theT/(2B) relation as defined in (7). The
sidelobe roll-off rate remains identical.

Figures 5 & 6 show that the spectral shape is a function of
the TBP only, the bandwidth parameter scales with frequency,
and magnitude scales as

√
T/(2B).

Fig. 5. Spectral envelope and sidelobe roll-off of LFMCW waveforms with
bandwidth of 10 kHz as a function of TBP.

E. Observation Time / # chirps

The preceding analysis has been performed by considering
only a single waveform repetition (or sweep). The actual
spectrum observed will depend on the measurement duration.
Firstly let us consider the spectrum of a rectangular LFMCW
waveform for an integer number of repetitions. The repetitive
form of the waveform (1) means the multiple sweep spectrum
(4) may be calculated as the sum of single sweep spectra:

v(f) =
N∑

s=1

ej2πf(s−N+1
2 )T ·

∫ T
2

−T
2

v(t)e−j2πftdt (9)

where s & N denote sweep index & number, and we have
made use of the Fourier transform time shift property. An
example spectrum for an eight sweep waveform is displayed
in Figure 7. The spectrum appears as the sum of harmonic
lines separated by the waveform repetition frequency (WRF=
1/T = 100 Hz). The envelope spectrum was obtained by
searching for the maximum value over each WRF interval. The
envelope spectrum is of similar (but not identical) appearance
to the single sweep spectrum, and a coherent gain at the
harmonic line frequencies is observed.

In Figure 8 the envelope spectra for various number of
waveform sweeps is shown, with each spectrum normalised



Fig. 6. Spectral envelope and sidelobe roll-off of LFMCW waveforms with
bandwidth of 1 kHz as a function of TBP.

Fig. 7. Spectrum morphology for a repetitive rectangular LFMCW waveform.

to its peak value. For longer observation of the waveform,
better peak to sidelobe performance is achieved.

F. In-band Performance

For radar applications the acceptance of alternative wave-
forms typically critically depends on at least range discrim-
ination performance. The waveform ambiguity function may
be calculated as:

|χ(τ, fd)|2 =
∣∣∣∣∫ v∗(f)v(f − fd)e−j2πfτ df

∣∣∣∣2 (10)

The zero Doppler ambiguity function (or range pattern) may
thus be calculated discretely as:

χ(k, 0) = F−1
{
wR(f)|v(f)|2

}
(11)

whereF−1 represents the inverse discrete Fourier transform,k
is the range bin number, and a range processing taper function
wR is introduced to reduce range sidelobe performance. Fig-
ure 9 displays the range pattern for the various waveform mod-
ulation methods (described later), incorporating a rectangular
taperwR(f) = 1. The best far-range sidelobe performance is
achieved by the amplitude modulation technique, which will
be described in the next section.

Fig. 8. Normalised Spectra as a function of waveform repetitions.

Fig. 9. Zero-Doppler waveform ambiguity function

III. OUT-OF-BAND EMISSION SUPPRESSION

Alternative waveforms (to LFMCW) designed with objec-
tives to meet both the ITU-R recommendations and radar
system requirements are of interest. The following subsections
discuss frequency and amplitude modulation modifications to
the rectangular LFMCW waveform. This type of reduction of
sidelobes through time and frequency weighting is discussed
by Kowatschet al. [5]. The principal involved is to improve
the OoB emission spectrum whilst maintaining in-band perfor-
mance. The obvious modification is to smooth the frequency
transition region at the ends of each chirp, by smoothing
the signal in either the instantaneous frequency or amplitude
domains.

Three modifications to the basic rectangular LFMCW wave-
form are considered. All methods are somewhat adhoc, as they
are not directly designed with the objective to minimise OoB
emissions.

A. Spectral Taper Method

The waveform may be designed in the spectral domain.
An adhoc means is to start with the LFMCW single sweep
spectrum (6), modulated by a taper functionwST (f) [7], then
inverse Fourier transformed to derive the signal:

vfm(t) =
∫ ∞

−∞
wST (f) · v(f)ej2πftdt (12)



Figure 10 shows an example spectral envelope calculated
from the sampled signal using the Hann taper function, see
black curve. Some gain in OoB emission performance is
achieved, though the roll-off rate is identical to the blue curved
rectangular LFMCW technique. This modification results in
slight changes to the signal phase, amplitude and instantaneous
frequency, as displayed in Figure 11, 12 & 13.

Fig. 10. Envelopes of half Spectra for various waveform modulations.

Fig. 11. Phase for various waveform modulations.

Fig. 12. Magnitude for various waveform modulations.

B. Flyback Waveforms

Examination of the rectangular LFMCW waveform indi-
cates the instantaneous frequency is a discontinuous function.
A simple method to reduce this discontinuity is to introduce

Fig. 13. Instantaneous frequency for various waveform modulations.

a counter sloping chirp at the waveform end [8]:

fI(t) =


1

1−γ
B
T t + fc −T/2 ≤ t ≤ (1− 2γ)T/2

− 1
γ

B
T t + fc otherwise

where 0 ≤ γ ≤ 1/2 is the flyback factor. If desired higher
order interpolations may be incorporated.

C. Amplitude Modulation

The conventional method for reducing roll-off rates is the
application of amplitude tapering [7]. Here we apply a cosine-
Tukey amplitude taper to the signal.

vam(t) = wCT (t) · v(t) (13)

As observed in Figure 10 this technique provides excellent
OoB emission control, even with low percentage tapering
(here 10%, Figure 12), thereby causing little associated loss in
coherent gain. The method does however rely on linear high
power amplifier performance (linearity).

IV. ITU-R MASK

The ITU-R spectral management document SM.1541-1
[4] provides recommendations on OoB emission advice for
a taxonomy of radar waveforms including the rectangular
LFMCW waveform. An emission mask is defined for three
segments of the spectrum called the necessary domain, the
OoB emission domain, and the spurious domain. The domain
definitions are:

Necessary Bandwidth
The width of the frequency band which is just sufficient to
ensure the transmission of information at the rate and with
the quality required under specified conditions.

Out-of-band emission
The frequency range, immediately outside the necessary
bandwidth but excluding the spurious domain, in which OoB
emissions generally predominate.

Spurious
The frequency range beyond the OoB domain in which
spurious emissions generally predominate.



For FMCW radar the necessary bandwidth is defined as
twice the frequency deviationBD:

BN = 2BD = B (14)

whereas for FM Pulse waveforms:

BN =
1.79√
tdtr

+ 2BC (15)

whereBC is the frequency deviation,tr is the pulse rise time,
and td is the pulse duration at half amplitude.

The OoB domain emission limits for primary radar
are based on a 40 dB bandwidth and a roll-off rate of
20 dB/decade. For FMCW radars the 40 dB bandwidth formula
is:

B−40 = BN + 0.0003fc; (16)

whereas for FM Pulse waveforms:

B−40 = 2(BC +
A

tr
) +

K√
tdtr

; (17)

where

A =
{

0.105 if K = 6.2 whereP > 100kW
0.065 if K = 7.6 whereP < 100kW

Considering the operational envelope for carrier frequency
and bandwidth for radar in the HF band4 < fc(MHz)) < 30
and4 < B < 50(kHz), then the ratio of the 40 dB bandwidth
formula to the bandwidth spans (16):

1.024 <
B40

B
< 3.25

whereas for example the trapezoidal FM pulsed waveforms of
JRG13 [9] span (17):

1.9 <
B40

B
< 5.7

making the FMCW radar task comparatively difficult.
The amplitude of the mask in the necessary region depends

on a reference and measurement bandwidth as defined in ITU-
R measurement document M.1177 [10]. Relative values are
given in dBpp units. Here we substitute the spectral peak value
as the reference value.

The regulations specify a spurious attenuation level for the
spurious domain as the least stringent of 60 dB or 43 dB +
10 log(PEP ), wherePEP is the peak envelope power. Here
we assume the 60 dB value.

In Figure 14 the ITU emission masks are displayed against
the FMCW spectra for a single radar chirp with bandwidth
of 10 kHz and various TBPs. For these cases the waveforms
achieve suitable roll-off rate, but are non-compliant with
the emission masks, especially at low TBP and low carrier
frequency.

Fig. 14. ITU-R Masks for various TBPs and constant bandwidth.

V. WAVEFORM GENERATOR TEST BED

Here we provide results of measurements produced by the
DSTO HF Radar Waveform Generator Test Bed. Three DSTO
waveform functions were selected for input to a BAE Systems
Waveform Generator. These were the LFMCW, cosine-Tukey
AM-LFMCW, and a coded waveform from a MIMO orthog-
onal waveform eight set. The Waveform Generator was set to
a centre frequency of 15.05 MHz, then a BAE Systems HF
Direct Digital Receiver together with a DSTO down converter
were used to acquire data at an IQ sampling frequency of
1 MHz.

Figure 15 shows the real signal component for a single
chirp of an LFMCW waveform (B=10 kHz, WRF=50 Hz).
The corresponding spectrum and its envelope are shown in
Figure 16; this matches the expected theoretical spectrum. The
AM-LFMCW waveform with 10% cosine-Tukey weighting
was input to the Waveform Generator Test Bed. Figure 17
shows the real signal component for a single chirp (B=10 kHz,
WRF=50 Hz), with the corresponding spectrum shown in
Figure 18. In effect the excellent OoB response is achieved
by trading the in-band to OoB transistion width. This sug-
gests additional tolerance should be included in the necessary
bandwidth definition (14) for the FMCW case to include a
transition bandwidthBT :

BN = 2BD + BT

Comparison of the half spectrum envelopes for the LFMCW
and AM-LFMCW data is shown in Figure 19. The overlayed
ITU-R FMCW mask (at extreme carrier frequencies) indicates
the difficulty of compliance for even the excellent spectral
OoB performance achieved by the AM-FMCW waveform.
For further comparison Figure 20 shows the spectral response
at a higher TBP. Finally for reference the measured spectral
response of the MIMO waveform is shown in Figure 21.

VI. MEASUREMENT

Under the ITU-R recommendations, techniques for the spec-
trum measurement are given in document ITU-R M.1177 [10].
The reference bandwidth value for FMCW radar waveforms



Fig. 15. Waveform Generator LFMCW, real component of signal.

Fig. 16. Waveform Generator LFMCW spectrum.

is defined as:

Bref =

√
B

T
Hz (18)

The document also defines the receiver measurement band-
width (sometimes referred to as resolution bandwidth):

Bm ≤
√

B

T
Hz (19)

Given the actual spectrum depends on the observation time, the
measurement duration will influence the measured spectrum
and hence the peak to OoB emission spectrum.

For all of the described waveforms the actual spectrum
observed depends on the observation period. The design
objectives are typically based on the spectrum of a single
complete waveform repetition cycle (chirp or sweep). Thus
the designed spectrum will only be observed for a single
complete chirp measurement, which can only be achieved if
the exact waveform period and start are available. Figure 22
shows the half envelope spectrum for 100 trials of Waveform
Generator Test Bed data, using a 10% Cosine-Tukey AM-
LFMCW with B=10 kHz and WRF=50 Hz. In each trial
the measurement duration was selected as a random value
between 0.5 and 8 waveform periods, and the start time was
also random. The lower blue curve corresponds to the exact
single period measurement duration. All other trial spectra
do not reflect the true spectrum and default to a roll-off of

Fig. 17. Waveform Generator AM-LFMCW (10% Cosine-Tukey), real
component of signal.

Fig. 18. Waveform Generator AM-LFMCW (10% Cosine-Tukey) spectrum.

20dB/decade. From these trial spectra the 40dB bandwidth was
calculated and shown in Figure 23. A reasonable estimate of
the true 40dB bandwidth only occurs for measurement periods
greater than 5 chirps. The problem presented by this type
of spectral analysis is that the measurement duration does
not coincide with an integer number of waveform periods. A
means to overcome this problem is to apply a taper function to
the whole measurement duration. The analysis was repeated
using an Hann taper with the results shown in Figures 24
& 25. The 40dB bandwidth estimate is robust for measurement
durations greater than about 2 chirps. However observation of
the spectra indicate some trial spectra over-achieve in the OoB
domain, due to the taper influence, and that in-band spectral
response is occasionally poor.

VII. CONCLUSIONS

LFMCW waveforms only achieve 20 dB/decade roll-off.
At HF frequencies the ITU-R OoB emission mask is tight
at low TBPs and low HF carrier frequency. The cosine-
Tukey AM-LFMCW waveform presents a conceptually simple
modulation with excellent range ambiguity performance. This
meets the 40 dB/decade proposal for the theoretical and the
demonstrated waveform generator test data. We find the ITU-R
40 dB bandwidth formula difficult to meet, even for excellent
out-of-band spectral performance, due to the poor carrier



Fig. 19. Waveform Generator envelope half spectra,B=10kHz, WRF=50Hz.

Fig. 20. Waveform Generator envelope half spectra,B=50kHz, WRF=4Hz.

frequency relation. Even though simulations and state-of-art
waveform generators indicate excellent potential performance,
however it has not been demonstrated that HPA systems
can achieve this response. The linearity issue of high power
amplifiers still causes recommendation for no change to the
20 dB/decade roll-off rate. In addition the wider in-band to
OoB transition regions indicates a need for new definition of
theB40 bandwidth. MIMO orthogonal waveforms may present
a new classification of radar waveform.

VIII. RECOMMENDATIONS

• The 40 dB bandwidth of FMCW radar should be related
in-line with FMCW pulsed radar.

• The output of high power HF transmission systems
should be measured for comparison against the demon-
strated state of art waveform generators. Hence the cur-
rent 20 dB/decade roll-off rates should be maintained.

• Measurements should be performed over at least five
waveform periods with use of a taper function to ensure
waveform end effects are accounted.
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Fig. 21. Waveform Generator envelope half spectra of coded waveform,
B=20kHz, WRF=3.82Hz.

Fig. 22. Waveform Generator AM-LFMCW (10% Cosine-Tukey) half
spectrum from 100 acquisitions from 0.5 to 8 sweeps.

REFERENCES

[1] J.M. Headrick and M.I. Skolnik, “Over-the-horizon radar in the HF
band,” Proc. IEEE, vol. 62, no. 6, pp. 664–673, 1974.

[2] D.H. Sinnott, “Jindalee – DSTO’s over-the-horizon radar project,”
Digest IREECON87, 21st International Electronics Convention and
Exhibition, Sydney, pp. 661–664, Sept. 1987.

[3] A. Stove, “Linear FMCW Radar Techniques,”IEE Proc. F, 1992.
[4] International Telecommunications Union, “ITU-R SM.1541-1 Unwanted

emissions in the out-of-band domain,” 2002.
[5] M. Kowatsch, H.R. Stocker, F.J. Seifert and J. Lafferl, “Time Sidelobe

Performance of Low Time-Bandwidth Product Linear FM Pulse Com-
pression Systems,”IEEE Trans. Sonics and Ultrasonics, vol. SU-28, no.
4, July 1981.

[6] M. Abramowitz and I.A. Stegun,Handbook of Mathematical Functions,
Dover, 1965.

[7] F. Harris, “On the use of windows for harmonic analysis with the discrete
Fourier transform,”Proc. IEEE, vol. 66, Jan. 1978.

[8] G. Frazer, “Flyback Waveforms for HF Radar,” private communication,
DSTO, 2001.

[9] J. Holloway, “Spectrum of chirped radar pulses using non-linear FM,”
ITU-R JRG 1A-1C-8B.

[10] International Telecommunications Union, “ITU-R M.1177-3 Annex 2
Techniques for measurement of unwanted emissions of radar systems,”
2003.



Fig. 23. Waveform Generator AM-LFMCW (10% Cosine-Tukey) half 40dB
widths from 100 trials.

Fig. 24. Waveform Generator AM-LFMCW (10% Cosine-Tukey) half
spectrum from 100 acquisitions from 0.5 to 8 sweeps.

Fig. 25. Waveform Generator AM-LFMCW (10% Cosine-Tukey) half 40
dB widths from 100 trials.


