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1. INtroduction

This paper presents an approach to reconciling the previous papers on the spectra of FMCW radars1-5.  The analysis is approximate since the data in references 2 and 4 suggests that an exact match between theory and practice is unlikely, therefore there is no need to calculate the former with high precision.

2. theoretical analysis

The key paper appears to be reference 5, which produces an analytic form for the spectrum of a single FMCW ramp.  Unfortunately, this seems to contain an error, in that the definition of  (fc - f)  is not compatible with equations (2) and (5).  Assuming that equation (5) and the relations below it are compatible then it seems that the correct definition of   should be 







 fc - f).








(Eqn. 1
If we also assume that the instantaneous frequency at time -T/2 is 0, then fc = B/2

In that case x reduces to ((2/)(0,B - f),  i.e. the two values at the limits of the integration are the sideband levels as a function of the frequency deviation, f, with respect to the nominal edge of the sweep.

In  view of the need to modify the definition of to arrive at this answer, some confirmation is desirable.  Reference 6 also quotes the integral Fourier transform of a chirp, and gives a similar form.  Unfortunately, to make this compatible to the result above, we must assume that the time-domain waveform of which the transform is quoted is actually



s(t) = -(2A2S/p12)sin [ V2(t-t0)2/(p12)]




(Eqn. 2

rather than, as quoted


s(t) = -(2A2S/p12)sin [ V2(t-t0)2/(2p12)]

Note that if the changes given in equations (1) and (2) are made, then references 5 and 6 become compatible, but if they are not, the two original versions are not compatible.

If we assume that the modification is correct, then if we consider the roll off at one end of the nominal excursion, then the contribution from the 'other' end may be assumed to take the constant value of 0.5, that being its limiting value.

Following equation (7) of reference 5, and taking the first two terms in the approximations in section (C) of that reference, we may assume that


C(x2) - C(x1)  ((/2/((2f)







(Eqn. 3 

where the factor of (2 in the demoninator in equation 3 represents an average value of sinusoidal terms, and similarly


S(x2) - S(x1)  -((/2/((2f)







(Eqn. 4 

so that


|v(f)|2 .(/2f)2








(Eqn. 5

The roll-off with respect to the within-beam signal is then


A (/2f)2









(Eqn. 6


 (B/2Tf)2









(Eqn. 7


 BT/fT)2









(Eqn. 8


Compared with reference 1 this suggests that the unity gain point is expanded out by a factor of (BT) compared with the assumed sin(x)/x roll-off.

We will use this new factor to modify the roll-off assumed in reference 1 and compare this with the experimental and simulated data.  The formula given in figure 3 of reference 1 can be simplified to


A = 20 log10fT)2









(Eqn. 9

If we include the time-bandwidth product effect, this becomes


A = -10 log10 BT) + 20 log10fT)2






(Eqn. 10

2.1 Effect of Flyback

We may approximate the effect of the flyback by considering that the effective value of T for the flyback is the flyback period Tf. The power density of the flyback signal is reduces by a factor (Tf/T) due to the lower energy in the flyback and again by another factor of (Tf/T) because the power will be spread over a wider bandwidth.  Following equation 9 we would then have for the sidelobes of the flyback


A = 20 log10 Tf/T) + 20 log10fTf)2






(Eqn. 11

which reduces back to equation 9 itself.  This shows that, below the level determined by the forward sweep/flyback time ratio, the out of band emissions due to the mainlobe and sidelobe will be the same.  The residual level may then vary between 6dB higher than estimated by equation (9) to zero, depending on how the signals add up.  Reference 3 suggests that for a triangular sweep (Tf =T) the out-of-band emissions cancel out to first order.  In practice this is a dangerous assumption when  we consider the imperfections of practical signals.  When we consider that the time-bandwidth product of the flyback is less than that of the signal, the relative out-of-band emission power of the flyback will be further reduced by another factor of the ratio between the flyback time and the 'forward' sweep time so that for sawtooth sweeps, the effect of the flyback spectrum can actually be ignored.

3. COMPARISON WITH OTHER DATA

3.1 Experimental Results in Reference 2.

The results shown for the YIG-tuned source in reference 2 may be summed up as  follows:

Test
Time-Bandwidth Product
Sweep Time
Measured Width
Predicted
1
47dB



1ms

0.8/2.3MHz@-45dB
11MHz

2
33dB



100s

0.6/1.6MHz@35dB
4MHz

3
18.5dB



100s

0.2/1.4MHz@-35dB
kHz

4
18.5dB



100s

0.2/1.1MHz@-45dB
Hz

Table 1: Predicted and Measured Widths Including (TB Factor
This formula thus seems to predict wider spectra than are actually seen, however, it can seen by comparison with table 2, below, that the match is better than if the time-bandwidth product factor is ignored, i.e. we revert essentially to equation (9): 

Test
Time-Bandwidth Product
Sweep Time
Measured Width
Predicted
1
47dB



1ms

0.8/2.3MHz@-45dB
kHz

2
33dB



100s

0.6/1.6MHz@35dB
90kHz

3
18.5dB



100s

0.2/1.4MHz@-35dB
kHz

4
18.5dB



100s

0.2/1.1MHz@-45dB
kHz

Table 2: Predicted Widths Excluding (TB Factor

3.2 Experimental Results from Reference 3

If we now compare these formulae with those in table 1 of reference 3, and include the time-bandwidth factor we have:
Test
Time-Bandwidth Product
Sweep Time
Measured Width
Predicted
1
1MHz



100ms

2.2kHz @ -20dB
5kHz








6.4kHz @ -40dB
50kHz

2
10MHz



10ms

22kHz @-20dB

kHz








64kHz @ -40dB
kz

3
100MHz


1ms

220kHz @ -20dB
kHz








640kHz @ -40dB
Hz

Table 3: Predicted Widths Including (TB Factor

This gives predictions are generally over-generous by about a factor of 5.For reference we can also calculate the widths excluding the time-bandwidth product factor:

Test
Time-Bandwidth Product
Sweep Time
Measured Width
Predicted
1
1MHz



100ms

2.2kHz @ -20dB
Hz








6.4kHz @ -40dB
z

2
10MHz



10ms

22kHz @ -20dB
Hz








64kHz @ -40dB
kz

3
100MHz


1ms

220kHz@-20dB
kHz








640kHz @ -40dB
kHz

Table 4: Predicted Widths Excluding (TB Factor

These predictions are obviously too narrow. 

3.3 Comparison Between References 2 and 3

The final cross-check is to compare the formulae in reference 3 with the results from reference 2.  The measured results are at the -35dB or -45dB points.  These will be compared with the predicted values at -40dB.  It was noted in reference (4) that generating data with phase discontinuities is very difficult, so the equations for ( = 0 seem most appropriate..  Since the time bandwidth product seems to be in natural, rather than logarithmic units, the terms which are negative exponentials of the latter will be effectively zero for any reasonable time-bandwidth product.  Hence we can simplify equation (16) of reference 3 to:


B-40 = B[1.1078 -6.8221 (BT)-0.25 +14.5749(BT)-1/3] 


 


(Eqn. 12

The half-width of the roll off is thus:

B-40 = B[0.0539 -3.4111 (BT)-0.25 +7.2875(BT)-1/3]  




(Eqn. 13

Test
Time-Bandwidth Product
Sweep Time
Measured Width
Predicted @ -40dB
1
47dB



1ms

0.8/2.3MHz@-45dB
MHz

2
33dB



100s

0.6/1.6MHz@35dB
2.4MHz

3
18.5dB



100s

0.2/1.4MHz@-35dB
kHz

4
18.5dB



100s

0.2/1.1MHz@-45dB
kHz

Table 5: Predicted Widths Using Formula from Reference 3

4. CONCLUSIONS

References 5 and 6 agree that the exact formulation of the roll-off rate shows that it depends on the differences between Fresnel integrals.  Reference 5 shows that this results in an out-of-band roll-off at -20dB/decade.  The analysis above suggests that, compared with the simple analysis in reference 1 these terms will broadens the out-of-band spectrum by the square root of the time-bandwidth product of the signal.  This gives a better match to the observed data than the formula in reference 1, but is over-pessimistic by about a factor of something like 5, although it still underestimates the out-of-band signals on the 'lower' side of the experimental data from reference 2.

The formulae from reference 3 probably give the best overall match to the experimental data, but still over-estimate the out-of-band width on the upper side by about a factor of 2 and underestimate it on the lower side by about the same amount.  Since this is an ad-hoc fit to the data, it is unsuitable for a general recommendation until its limits are known.

Ideally one would calculate a better approximations to the formulae in reference 5 and derive theoretically-based formulae to predict the widths of the spectra.  However, it is believed that this is not a priority, since any recommendation would take have to take account of the practical effects noted in reference 2.  Since it had a relatively long time constant due to the inherent difficulty of driving its electro-magnetic circuits, the YIG circuits measured therein probably constitute the worst case of different transmitter/exciter designs.

Since the width of the spurious emissions from FMCW radars is proportionately much less than for most other types of radars, even if better approximations to the analytic formulae could be used,  the gain in spectral efficiency would be very modest.

The following formula is therefore proposed:

a) 
a roll-off of A = -10 log10 BT) + 20 log10fT)2 together with

b)
a broadening of 1MHz + 0.01B on either side to account for limitations in the accuracy of the sweep generator.

The measurements should be made in as narrow a bandwidth as practical, in order accurately to measure the shape of the response.  The measurements should also make allowance for the width of the analyser filters at the response level being measured.  Reference 2 gives some typical examples, but they will not be repeated here as they are, in principle, specific to one analyser, although further investigation may show that the filter shape factors used by different manufacturers may be quite similar.

It may be noted that no data has yet been able to be presented of radiated measurements of spectra of FMCW radars.  Reference 2 argues that the difference between indirect and radiated measurements is likely to be less significant for these radars than, for example, for magnetron-based radars, but it would still be desirable to be able to have some radiated measurements to support the indirect measurements which have been made.
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