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The Effects of zero-padding FFT’s and the 

Windowing Function on Time sampled Waveforms
1.
Introduction

The United Sates administration performed a series of measurements on High Frequency (HF) radars that employed FMCW and gated FMCW waveforms in January 2007.  The measurements were done according to the techniques M1177 for peak sampled emission spectra in the frequency domain using a spectrum analyzer, and in the time domain using an Agilent Vector Signal Analyzer (VSA).  The details of this measurement are in JRG-80 and JRG-81.

The measurements have indicated that a zero-padded time series has a different power spectrum density (PSD) than non-zero-padded time series.  The issue is important since at least one administration is proposing the use of zero-padded time series as an input to the PSD computation for ITU-R SM1541 compliance measurements.  The purpose of this contribution is to describe the effect of zero-padding in mathematical terms and to serve as a starting point for the discussion of using  Fourier transformed (FT) time sampled data  for radio spectrum emission compliance measurements.  
For the purposes of this contribution, zero-padding is defined as appending zero values to a time series.  The time series is typically a time-sampled waveform collected with a sample rate fs. The appended zero values are treated as additional samples collected at the same rate, and therefore extending the total collection time.
2.
Numerical evaluation of the Fourier Transform for a discrete time series

 
The Fast Fourier Transform (FFT) is a computational algorithm for the efficient evaluation of the Discreet Fourier Transform (DFT), which is in turn a special case of the Discreet Time Fourier Transform (DTFT).  The FFT is a DTFT evaluated at a set of uniformly-spaced points in frequency.  

Definition of the DTFT:

The Discreet Time Fourier Transform for a time series 
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For a fixed-length time series with N samples this becomes:
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Suppose that we create a new time series, 
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 of length N+M, that is defined as follows:
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This is the equivalent of appending M zeros onto the end of 
[image: image6.wmf])

(

n

h

.  The DTFT of 
[image: image7.wmf])

(

n

g

is (from eq. 2):
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Equation 3 shows that zero-padding does not alter the Fourier transform of the time series.  This is consistent with an intuitive argument that by appending zeros that, additional energy is not added to the signal nor is there any re-arranging of the energy content.  Therefore, there can be no change to the PSD.


So what can account for the difference in calculated PSD’s in the experiments?  Part of the answer lies in the subtleties of calculation itself.  The transform in equations 1 – 3 is a continuous function of 
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.  To achieve a numerical result, the transform is evaluated at a fixed set of values in 
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.  The number and choice of these evaluation points can give dramatically different curves.

2.1
The Discreet Fourier Transform and Fast Fourier Transform


Most data processing algorithms that estimate the PSD perform a Fast Fourier Transform (FFT).  The FFT is an optimized algorithm for computing a special case of the Discreet Fourier Transform (DFT).  The DFT is defined as
:
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This is the same transform as defined in equation 1, but evaluated at N equally-spaced points from ω = 0 to (N-1)2π/N (the frequency units are normalized with 2π being the angular sample rate).  When N is a power of 2, symmetries in the transform can be exploited to reduce the computational complexity.  The result is the FFT.


When computing the FFT, the evaluation points are fixed. The only way to compute more detail in the PSD is to increase the number of points, N.  The simplest way to do this without acquiring more samples in the time series is to add zeros.  This is a way to force the FFT algorithm to sample the spectrum at smaller frequency intervals.

2.1.2
Zero-padding Simulated Waveforms
Example 1 – rectangular pulse.

Consider the time series in Figure 1.  This is a real-valued rectangular pulse with no windowing and a small amount of noise.
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Figure 1 - Rectangular pulse. N = 1024.

In Figure 2, the computed FFT’s are shown for N=1024, and zero-padded versions with N = 2048 and N = 4096.  Note that the computed points are common to each curve.  The effect of zero-padding is to fill-in more detail in the spectrum.
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Figure 2 - PSD of the original time series, the series with 2X padding, and the series with 4X padding.

This is the only impact that zero-padding can have on a given set of time samples.  In cases where other differences are evident, there must be other artifacts in the processing.  These may be:

· Scaling.

· Windowing

· Post-FFT processing, such as averaging multiple PSD’s.

Each of these techniques are common to FFT-based PSD processing routines.
Example 2: 
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Figure 3 is a real-valued time signal that is sampled on an interval.  The sampling operation consists of a) multiplying the function by sequence of dirac delta functions in time and b) selecting a finite set of samples by multiplying the infinite set with a rectangular window.
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Figure 3 – Real-valued time signal,
[image: image17.wmf])

cos(

t

w

, sampled on an interval.
The Fourier transform of these discrete samples is a continuous function that is the convolution of the transforms of the cosine function, the set of Dirac delta functions, and the rectangular window.  The result is a sinc function of width 1/(window size) that is centered at the frequency of the cosine, shown in Figure 4. 
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Figure 4 – Continuous Fourier transform of the samples shown in Figure 3.  Only the first Nyquist region is plotted.
 The FFT of these samples is a set of points from the Fourier transform in Figure 4 at a set of frequency values uniformly spaced between 0 and
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 is the sampling frequency.  Figure 5 is a plot of the samples.  Figure 6 is a plot of 3 FFT’s: the first using only the original points, a second using the original points zero-padded to twice the original length, and a third using the original points zero-padded to 4 times the original length.  The zero padded versions show the sinc characteristic that is present but missed in the red curve.  The common sampling points are the same for all three curves, subject to small differences due to added noise. 
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Figure 5 - Samples of
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. The sample time was chosen to include exactly 8 periods of cosine.  One cycle of the cosine is 128 samples.
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Figure 6 - Three versions of the FFT, the unpadded version in red shows that the spectrum is uniquely sampled at the zeros with the exception of the two center frequency points.
Next, the function is changed slightly in frequency.  The time series now includes almost 8 full cycles of the cosine function (the period is 121 instead of 128).  The FFT’s are shown in Figure 7. Note in this figure how the FFT of the original sample sequence results in the calculation points being near the maxima of the underlying sinc function (except for near the center frequency). As in Figure 6, the common points are the same in all three emission plots in Figure 7.  Changing the frequency of the cosine waveform could not have caused its emissions to roll-off at a different rate.  The window function is the same for both time sequences. The difference for the emissions levels for the  red curves in Figures 6 and 7 is due entirely to the change in the position of the lobes in the sinc function (due to the change in frequency) relative to the fixed FFT calculation points.
[image: image24.png]PSD (dB)

COS(ot), ® = 27*1024/121*n

70

I
— Orig.
—— 2X zeropad
—— 4X zeropad

60

50

40

A

30

——_—

I A

e

20

'V\/WW@ I

10

-10
-0.02

-0.015

-0.01

-0.005 0 0.005
Normalized Frequency

0.01

0.015

0.02




Figure 7 - FFT’s of a cosine with period 121.  The zero padding was done in the same manner as for the FFT’s of Figure 6.
2.1.2
Zero-padding Measured Waveforms

To address the matter  of zero padding an actual time sampled waveform and taking multiple pulses in the FFT to transform it to the frequency domain, the VSA was used to collect 10 seconds (~20 pulses) of time data (both magnitude and phase information) on  each waveform.  This data was used in the following analyses.  


The total sweep time Tsweep of the FMCW radar was 0.5 seconds.  Between each sweep, the waveform returns to the start frequency over a short period known as the flyback time. For this radar, the flyback time was estimated from the measured data to be approximately 100 μs.  The chirp bandwidth was 49.4 kHz.  Figure 8 shows the FFT of 1 pulse of the data with no zero padding and with 4 times zero padding, with a no other windowing applied to the data.  The figure shows that the 4 times padded FFT reveals  more power distributed along the out-of-band domain (OOB) than the non-zero padded version.  This is due to the same phenomena described previously, namely the change in position of the underlying sinc functions.  Figure 9 zooms in on the out-of-band domain for this waveform where the sinc function becomes more observable.  The blue curve (4 times zero padding) shows the familiar structure of the sinc function, while the red curve has a much wider and unevenly sampled sinc function.  The blue curve better shows the appearance of the sinc function, because the zero-padding has added more samples in the frequency domain.  As in the simulated results above, the points in the non-zeropadded FFT are common to the zero-padded curve.
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Figure 8 – 1 Pulse of HF FMCW collected data, FFT’ed with 0x padding and with 4x padding, no window function used.
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Figure 9 – Zoomed in view of 1 Pulse of HF FMCW collected data, FFT’ed with 0x padding and with 4x padding, no window function used.


When multiple pulses are used in the FFT, the longer total collection time results in a narrower frequency-domain effect of the windowing function, and therefore the emissions seem to roll-off at a faster rate, i.e., a time sampled waveform transformed to the frequency domain using multiple pulses will exhibit a faster roll-off than a single pulse transformed to the frequency domain.  This was first reported in JRG-73 by the Australian administration.  In addition to a narrower window, a longer time sequence provides an increase in spectral resolution.  The real spectral resolution of an FFT is
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 is the sampling rate, and N is the number of data samples.  Adding zeros will allow one to observe greater detail in the emission spectrum (by interpolating samples in the frequency domain), but it will not allow greater spectral resolution in the original data.  Figure 10 shows a plot of the FMCW waveform for 4 pulses used in the FFT with no padding and 4x zero padding.  Figures 11 and 12 show a comparison between 1 and 4 pulses (both have been zero padded to the same length).  It is evident in Figure 11 that the 4 pulse case exhibits 5 to 6 dB lower calculated emissions in the OOB than the 1 pulse case due to the narrower window effect.  Figure 12 shows a zoomed in portion of Figure 11.  It is easier to see the difference in the spectral resolution in Figure 11, as the 4 pulse case represented by the red trace shows a much narrower sinc function than the 1 pulse case represented by the blue trace, even though the spectral sampling is the same.  This shows the difference in adding data versus adding zeros to an FFT.
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Figure 10 – 4 Pulses of HF FMCW collected data, FFT’ed with 0x padding and with 4x padding, no window function used.
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Figure 11 – Comparison of 1 pulse versus 4 pulses of HF FMCW collected data, FFT’ed with 4x padding and no window function used.
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Figure 12 – Zoomed comparison of 1 pulse versus 4 pulses of HF FMCW collected data, FFT’ed with 4x padding and no window function used.

3.
Conclusion


Zero-padding a time series prior to processing (using the FFT) results in the generation of frequency-domain samples that are more tightly spaced.  There is no additional information regarding the spectral emissions that is revealed by this method.  The apparent differences in computed spectra for zero-padded versus non-zero-padded time series is entirely the result of a tighter sampling of the windowing effects present in the non-padded series.  This contribution has shown the differences in the output of various FFT’s using both simulated signals and transforming frequency domain measurements of actual radar systems.  The analyses shows  that adding zeros or multiple pulses to  the FFT of time-sampled emission data   changes the representation of the emission spectra roll-off in the OOB in the frequency domain, but it does not change the  underlying spectrum.  Therefore, before allowing transformed time sampled data to be used for regulatory purposes, the inputs, resolution, and windowing functions of the transforming FFT must be carefully studied.   

Appendix:  MATLAB code for Simulated Examples
Example 1

samples = 1024;

pulsesize = fix(samples/(2*sqrt(2)));

ts = [ones(1,pulsesize),zeros(1,1024-pulsesize)];

ts_zp2x = [ts,zeros(1,length(ts))];

ts_zp4x = [ts_zp2x,zeros(1,length(ts_zp2x))];

%add noise

ts = ts + 1e-3*randn(1,length(ts));

ts_zp2x = ts_zp2x + 1e-3*randn(1,length(ts_zp2x));

ts_zp4x = ts_zp4x + 1e-3*randn(1,length(ts_zp4x));

%fft's

psd_ts = 20*log10(abs(fft(ts)));

psd_ts_zp2x = 20*log10(abs(fft(ts_zp2x)));

psd_ts_zp4x = 20*log10(abs(fft(ts_zp4x)));

%plot

plot(([0:length(psd_ts)-1]-length(psd_ts)/2)/length(ts),fftshift(psd_ts),'r',...

     ([0:length(psd_ts_zp2x)-1]-length(psd_ts_zp2x)/2)/length(psd_ts_zp2x),fftshift(psd_ts_zp2x),'b',...

     ([0:length(psd_ts_zp4x)-1]-length(psd_ts_zp4x)/2)/length(psd_ts_zp4x),fftshift(psd_ts_zp4x),'g');

Example 2 Note: change cwsize to 121 in line 4 to create figure 7.

samples = 1024;

%pulsesize = fix(samples/(2*sqrt(2)));

%ts = [ones(1,pulsesize),zeros(1,samples-pulsesize)];

cwsize = 128;

ts = cos(2*pi*[0:samples-1]/cwsize);

ts_zp2x = [ts,zeros(1,length(ts))];

ts_zp4x = [ts_zp2x,zeros(1,length(ts_zp2x))];

%add noise

ts = ts + 1e-3*randn(1,length(ts));

ts_zp2x = ts_zp2x + 1e-3*randn(1,length(ts_zp2x));

ts_zp4x = ts_zp4x + 1e-3*randn(1,length(ts_zp4x));

%fft's

psd_ts = 20*log10(abs(fft(ts)));

psd_ts_zp2x = 20*log10(abs(fft(ts_zp2x)));

psd_ts_zp4x = 20*log10(abs(fft(ts_zp4x)));

%plot

plot(([0:length(psd_ts)-1]-length(psd_ts)/2)/length(ts),fftshift(psd_ts),'r',...

     ([0:length(psd_ts_zp2x)-1]-length(psd_ts_zp2x)/2)/length(psd_ts_zp2x),fftshift(psd_ts_zp2x),'b',...

     ([0:length(psd_ts_zp4x)-1]-length(psd_ts_zp4x)/2)/length(psd_ts_zp4x),fftshift(psd_ts_zp4x),'g');

set(gca,'xlim',[-0.02,0.02]);

set(gca,'ylim',[-70,70]);

legend('Orig.','2X zeropad','4X zeropad');

ylabel('PSD (dB)');

xlabel('Normalized Frequency');

title('COS(\omegat), \omega = 2\pi*8*n/1024')

grid

� Kuc, Roman; Introduction to Digital Signal Processing; New York; McGraw-Hill; 1988; p. 67.


�Kuc, Roman; Introduction to Digital Signal Processing; New York; McGraw-Hill; 1988; p. 123.
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