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1. Introduction
In this paper we derive bandwidth and roll-off rate formula for the infinite duration Linear FMCW waveform. In paper JRG-73 the spectrum of the Linear FMCW waveform was given for both a single and multiple chirp sequence. Here we base the formula derivation on the large frequency approximation to the Fresnel Integral equations.  
We note that the formula derived within do not include tolerances for implementation issues or consider modified LFMCW waveforms such as flyback, amplitude or phase coded modulations.
2. Approximation to LFMCW Theory

The theoretical spectrum of the LFMCW waveform is discussed in a number of previous JRG documents. Here we start with the derivations of JRG-73.

2.1. Single Chirp Theory Preliminaries
The instantaneous frequency of an LFMCW waveform with bandwidth B and chirp duration T is: 
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where t is time and 
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 is the carrier frequency. The signal phase can be calculated as:
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with the signal representation:
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The spectrum of this signal can be obtained from its continuous Fourier transform:
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letting 
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which can be solved in terms of Fresnel integrals C(x) and S(x):
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where 
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 and hence the power spectral density becomes:
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We may let
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 without loss of  generality, so 
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. Substituting for the temporal limits we find:
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and
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2.2. Large frequency approximation

Let us now replace the Fresnel Integrals with their large x>5 approximations (see JRG-73):
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A further approximation is made here by keeping only the first two terms of each Equations 10 & 11. After some algebra and trigonometry relations we obtain:
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The cosine term can be expanded to find
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As discussed in JRG-73 if this is a good large frequency approximation then we may determine from Equation 13 that the single chirp roll-off rate formula is a function of
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and hence the single chirp roll-off rate is 20 dB/decade.

2.3. Special Case – the infinite periodic sequence

The spectrum of an infinite repetitive sequence can be derived from the spectrum of a single repetition as shown in Figure 1. Figure 1(a) represents a single chirp (Equation 3) with Figure 1(b) as its Fourier transform pair (Equation 7). The convolution of the single chirp with an infinite sequence of delta functions of spacing T, Figure 1(c), produces the desired periodic sequence, Figure 1(e). The temporal convolution equates to a spectral multiplication, Figure 1(d) of delta functions with separation 1/T Hz. This results in the infinite spectrum being the single chirp spectrum sampled at the waveform repetition frequencies, Figure 1(f). That is, the infinite spectrum is a discrete spectrum with lines at integer multiples of the repetition frequency:
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Figure 1 Fourier transform of a periodic signal
Making the substitution Equation 15 into Equation 13 we obtain:
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Substituting for 
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 (Equations 8 & 9) and then Equation 16 into the spectrum Equation 7:
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We note here that this formula is a function of 
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and hence under the specified approximations the roll-off rate for a periodic LFMCW waveform is 40 dB/decade. As an example Figure 2 shows (for B=10000Hz, T=1/50sec) both the single chirp spectrum (Equation 7), the spectrum for the infinite sequence (Equation 15 in 7), and the large frequency approximation to the infinite sequence (Equation 17). The approximation only follows the infinite sequence spectrum at high frequencies as expected. Nevertheless the approximation gives incentive for use as a 40 dB bandwidth formula and perhaps a 20 dB bandwidth formula.
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Figure 2 Single and infinite chirp spectra versus the infinite sequence approximation
2.4. 40 db bandwidth formula

From Equation 7 it may be determined that the spectrum scales with 
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       and rearranging to solve for frequency:
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By solving for frequency at the normalised spectral value of -40 dB, and introducing a factor of 2 to obtain the full spectrum width then the 40 dB bandwidth formula is derived:
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which is a function of the bandwidth and the Time-Bandwidth Product. Figure 3 shows a plot of this formula (green, Equation 20), as a function of time-bandwidth product, against the theoretical value (red), and for comparison the JRG-70-Equation-16 proposal. Excellent agreement to the full theoretical curve is achieved.
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Figure 3 40dB bandwidth formula
2.5. 20 dB bandwidth formula

Given Equation 19 we may also derive bandwidth formula for other levels, though we note that the approximation breaks down at lower frequencies. For example the 20 dB bandwidth approximation formula is given by:
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This function is plotted in Figure 4, where comparison to the true theoretical value is still good and the JRG-70-Equation-15 formula is also displayed.

[image: image37.png]
Figure 4 20dB bandwidth formula
3. Conclusions
In this report we have derived the roll-off rate, a 40 dB bandwidth formula, and a 20 dB bandwidth formula for an infinitely periodic LFMCW waveform. The derivation is based on approximations to the Fresnel Integral equations of a single chirp waveform. The roll-off rate for a single chirp was found to be 20 dB/decade, whilst the roll-off rate for an infinite chirp sequence is 40 dB/decade. The 40 dB and 20 dB bandwidth formula are given in Equations 20 and 21 respectively. We note that these formulas do not include any implementation factors.
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