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FEDERAL AVIATION ADMINISTRATION
SYSTEMS RESEARCH AND DEVELOPMENT SERVICE
SPECTRUM MANAGEMENT STAFFE

Statement of Mission

The mission of the Spectrum Management Staff is to assist the De-
partment of State, Office of Telecommunications Policy, and the
Federal Communications Commission in assuring the FAA's and the
nation's aviation interests with sufficient protected electromag-
netic telecommunications resources throughout the world to provide
for the safe conduct of aeronautical flight by fostering effective
and efficient use of a natural resource--the electromagnetic radio
frequency spectrum.

This object is achieved through the following services:

Planning and defending the acquisition and retention
of sufficient radio frequency spectrum to support the
aeronautical interests of the nation, at home and a-
broad, and spectrum standardization for the world's
aviation community.

Providing research, analysis, engineering, and evalu-
ation in the development of spectrum related policy,
planning, standards, criteria, measurement equipment,
and measurement techniques.

Conducting electromagnetic compatibility analyses to
determine intra/inter-system viability and design
parameters, to assure certification of adequate spec-
trum to support system operational use and projected
growth patterns, to defend aeronautical services
spectrum from encroachment by others, and to provide
for the efficient use of the aeronautical spectrum.

Developing automated frequency selection computer
programs/routines to provide frequency planning, fre-
quency assignment, and spectrum analysis capabilities
in the spectrum supporting the National Airspace Sys-
tem.

Providing spectrum management consultation, assis-
tance, and guidance to all aviation interests, users,
and providers of equipment and services, both na-
tional and international.
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APPLICATIONS GUIDE
FOR :
PROPAGATION AND INTERFERENCE ANALYSIS
COMPUTER PROGRAMS (0.1 to 20 GHz)

M. E. Johnson and G. D. Gierhart!

Assignments for aeronautical radio in the radio frequency
spectrum must be made so as to provide reliable services for an
increasing air traffic density [30]2. Potential interference be-
tween facilities operating on the same or on adjacent channels
must be considered in expanding present services to meet future
demands. Service quality depends on many factors, including the
desired-to-undesired signal ratio at the receiver. This ratio
varies with receiver location and time even when other parameters,
such as antenna gain and radiated powers, are fixed.

The computer programs cove;éd in this report were developed
by the Department of Commerce (DOC) with the sponsorship of the
Federal Aviation Administration (FAA}. Although these programs
were intended for use in predicting the service coverage assocCi-
ated with ground- or satellite-based VHF/UHF/SHF air navigation
aids, they can be used for other services in this frequency range.

The propagation model used with these programs is applicable
to air/ground, air/air, ground/satellite, and air/satellite paths
over smooth or irregular terrain. It can also be used for ground/
ground paths that are line-of-sight, smooth earth, or have a com-
mon horizon. These computer programs are useful in estimating

! The authors are with the Institute for Telecommunication
Sciences, Office of Telecommunications, U. S. Department
of Commerce, Boulder, Colorado 80303.

2 References are listed alphabetically by author at the end
of the report so that reference numbers do not appear se-

quentially in the text.



the service coverage of radio systems operating in the frequency
band from about 0.1 to 20 GHz. They may be used to obtain a wide
variety of computer-generated microfilm plots such as transmis-
sion loss [43, 44] versus path length, and the desired-to-
undesired signal ratio at a receiving location versus the dis-
tance separating the desired and undesired transmitting facili-
ties.

This type of information is very similar to that previously
developed by DOC during the last decade [19, 20, 21, 22, 23, 24,
26, 27, 32, 38, 39, 49, 55]. The use of such information in spec-
trum engineering has been discussed by Hawthorne and Daugherty
[28] and Frisbie et al. [18]; other information on spectrum en-
gineering for air navigation, and communications systems is avail-
able [13, 14, 15, 16, 29, 33].

‘The potential user should

1) read the brief description of the propagation model
provided in section 2 to see if the model could be
applicable to his problenm,

2) select the program(s) whose output(s) is most appro-
priate from the information provided in section 3,

3) determine values for the input parameters discussed
in section 4, and

4) wutilize the information provided in section 5 to re-
qﬁest program runs.

Many examples of the graphical output produced by these pro-
grams are provided in section 3.1, and additional examples are
included in Appendix A (see list of figures). Most abbreviations,
acronyms, and symbols used in this répért are identified in Ap-

pendix B,

2. PROPAGATION MODEL
The DOC has been active in radio wave propagation research
and prediction for several decades, and has provided the FAA with
many propagation predictions relevant to the coverage of air

2
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navigation and communications systems [20, 21, 22].

During 1960-1973, an air/ground propagation model applicable -
to irregular terrain was developed by the Institute for Telecom-
munication Sciences (ITS) for the FAA and was documented in de-
tail [24]. This IF-73 (ITS-FAA-1973) propagation model has e-
volved into the IF-77 model which is applicable to air/ground,
air/air, ground/satellite, and air/satellite naths. It can also
be used for ground/ground paths that are line-of-sight, smooth
earth, or have a common horizon. Model applications are restric-
ted to telecommunication links operating at radio frequencies
from about 0.1 to 20 GHz with antenna heights greater than 1.5 ft
(0.5 m). In addition, the elevation of the radio horizon must be
1éss than the elevation of the higher antenna. The radio horizon
for the higher antenna is taken either as a common horizon with
the lower antenna or as a smooth earth horizon with the same ele-
vation as the lower antenna effective reflecting plane [24, sec.
A.4.1.]. Ranges for other parameters associated with IF-77 will
be given later (table 2).

At 0.1 to 20 GHz, propagation of radio energy is affected by
the lower nonionized atmosphere (troposphere), specifically by
variations in the refractive index of the atmosphere [1, 2, 3, 4,
5, 6, 31, 35, 40, 47, 49, 50, 51, 52]. Atmospheric absorption
and attenuation or scattering due to rain become important at SHF
[24, sec. A.4.5.; 35, sec. 8; 49, ch. 3; 51; 54]. The terrain,
along and in the vicinity of the great-circle path between trans-
mitter and receiver, also plays an important part. In this fre-
quency range, time and space variations of received signal and
interference ratios lend themselves readily to statistical de-
scription [39; 45; 49, sec. 10].

Conceptually, the model is very similar to the Longley-Rice
[37] propagation model for propagation over irregular terrain,
particuarly in that attenuation versus distance curves calculated
for the (a) line-of-sight [24, sec. A.4.2], (b) diffraction [24,
sec. A.4.3], and (c) scatter [24, sec. A.4.4] regions are blend-

ed together to obtain values in transition regions. In addition,

3



the Longley-Rice relationships involving the terrain parameter ah

are used to estimate radio horizon parameters when such informa-

tion is not available from facility siting data [24, sec. A.4.1].

The model includes allowance for

,éﬁp a)Qﬁaverage ray bending [4, ch. 3; 6; 24, p. 44; 49,

sec. 4; 567,

b) horizon effects [24, sec. A.4.1],

c) 1long-term fading [24, sec. A.5; 49, sec 10],

d) facility antenna patterns (figs. 45, 46),

e) surface reflection multipath [7; 8; 23, sec. 2.3;
24, sec. A.6; 27, sec. CI-D.7]7,

f) tropospheric multipath [2; 11, sec. 3.1; 24, sec.
A.7; 31; 36, pp. 60, 119, B-2],

g) atmospheric absorption [21, sec. A.3; 24, sec. A.4.5;
49, sec. 3],

h) dionospheric scintillations [23, sec. 2.5; 27, sec.
CVII; 46; 58], and

i) rain attenuation [10, 51, 52, 54].

The model is an extended version of the IF-73 model previ-

%

O

ously described in detail by Gierhart and Johnson [24, sec. A].
These extensions include provisions for

a) sea state (table 6),

b) a divergence factor [25, sec. 3.2],

c) a ray length factor for situations where the free-
space loss associated with a surface reflected ray
may be significantly greater than that associated
with the direct ray [25, sec. 3.3],

d) an antenna pattern at each terminal (sec. 4.1),

e) circular polarization [25, sec. 3.5],

f) frequency and temperature variations of the complex
dielectric constant of water [25, sec. 3.5],

g) long-term power fading as a function of radio cli-
matic region (table 8) or time block (table 9),

h) rain attenuation [25, sec. 4.4],



i) ionospheric scintillation (fig. 47),

j) an improved method for calculating the transmission
loss associated with tropospheric scatter [25, sec.
51, '

k) ray elevation angle adjustment factors to allow for
ray tracing [25, sec. 10.2],

1) antenna tracking options (sec. 4.1),

m) an improved estimate of the distance where horizon
effects can be neglected [25, sec. 7],

n) a free-space loss formulation that is applicable to
very high antennas [25, sec. 8], and

o) a formulation for facility horizon determinations
that includes ray tracing [25, sec. 9.2].

Detailed documentation covering these extensions is provided in

another report [25].

3. COMPUTER OUTPUTS

The propagation model described in section 2 has been incor-
porated into ten computer programs. These programs are written
in FORTRAN for a digital computer (CDC 6600) at the Department
of Commerce Laboratories, Boulder, Colorado. Since they utilize
the cathode-ray tube microfilm plotting capability at the Boulder
facility, substantial modification would have to be made for oper-
ation at any other facility. Average running time for the pro-
grams ranges from a few second, for each graph produced, to a
minute or so. These programs are extensions of programs previ-
ously developed and described [24; 27, sec. CII]. The extensions
involve a more comprehensive propagation model (sec. 2) and a
larger variety of computer generated microfilm outputs.

A guide to the plotting capabilities of these programs is
provided in table3 1. Potential users should use it to select
the program(s) whose outputs are most appropriate for their prob-
lems. Figure numbers given in table 1 refer to graphs of section

3 Tables and figures for sections 3 and 3.1 are grouped together
following the section 3.1 text.
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3.1. Short discussions for each capability are given in section
3.2. Simple problem applications involving the graphs of section
3.1 are provided in section 3.3. Some additional graphs and prob-
lems are given in Appendix A. Input parameters needed to operate
the various programs and plotting options such as a choice of
English or metric units (table 4) are discussed in section 4.

Each program causes the computer to produce (a) listings of
parameters associated with particular runs and (b) microfilm
plots. These outputs are provided for each parameter set used as
input to the computer and are tied to each other by a run code
consisting of the date and time at which calculations for a par-
ticular parameter set started.

Parameter sheets for all programs have a similar format and
provide similar information. In programs associated with inter-
ference analysis, a parameter sheet is produced for both the de-
sired and undesired facility when the input parameters associated
with them are not identical [24, figs. 8, 9].

Computer produced parameter sheets do not have dual English/
metric units and are either English or metric depending on the
unit option selected (sec. 4.3). Sample parameter sheets similar,
except for dual units, to those produced by the programs are
shown in figures3 1 through 5. These parameters were used in de-
veloping the curves provided in section 3.1 to illustrate the
plotting capabilities of the programs. Systems considered are
Air Traffic Control communications (ATC, fig. 1), Instrument
Landing System (ILS, fig. 2), UHF Satellite (fig. 3), Tactical
Air Navigation (TACAN, fig. 4), and VHF Omni-directional Range
(VOR, fig. 5). Parameters are given in about the same order as
they are discussed in section 4.1. The effective area, AI’ Te-
quired to convert power density, SR’ to power available at the
output of an ideal (loss less) isotropic receiving antenna, PI’
is given at the bottom of the parameter sheets for power density

predictions (figs. 1, 2, 4, 5); i.e.,



P, [dBW] = S [dB-W/sq m] + A [dB-sq m]. (1"

R[ I[
3.1 GRAPHS

Figures 6 through 39 are sample graphs associated with the
various capabilities summarized in table 1. These graphs are
meant to illustrate general capability and care should be taken
in using them for particular problems where the parameters re-
quired may differ from those used to develop the graphs. They
should be used, rather, as examples to help select the graph
types that are most appropriate for the particular applications.
Graphs produced by the computer are very similar to these, but
do not include all the labeling. In particular, the supplemen-
tary scale is not computer generated and only provides an approx-
imate correspondence with primary units. More accurate readings
can be obtained by using the primary scale, and then converting to
the desired units by using an appropriate conversion factor (p.ii).
This method was used to obtain dual values for readings given in
the text.

Options available (sec. 4.3) for units result in the plotting
of the primary grid and heading data in English (nautical or sta-
tute) miles, or metric units. Except for figures 6 through 15
where the metric option was used, all figures in this section were
generated with the nautical mile option. An option to plot a-
gainst central angle (fig. 41) instead of distance was used to

produce figure 16.

“ The notation used for the units of these quantities is intended
to imply that they are decibel-type quantities obtained by
taking 10 log of a quantity with the units indicated after dB-;

[dB-sq m] = 10 log {Az[sq m]/47)} (where x» [m] is
wavelen&th) Equations used in this report are dimensionally
consistent. Where difficulties with units could occur, brack-
ets are used to indicate proper units. )

7



Table 1. Plotting Capability Guide

Capability Figure(s)* Program Remarks
Lobing** 6 LOBING Transmission loss versus path distance.
Reflection coefficient** 7 LOBING Effective specular reflection coefficient versus path
. distance.

Path length difference** 8 LOBING Difference in reflected and direct ray 1engths versus
path distance.

Time lag** 9 LOBING Same as above with path length difference expressed as
time delay.

Lobing frequency-D** 10 LOBING Normalized distance lobing frequency versus path dis-
tance.

Lobing frequency-H** 11 LOBING Normalized height lobing frequency versus path distance.

Reflection point** 12 LOBING Distance to reflection point versus path distance.

Elevation angle** 13 LOBING Direct ray elevation angle versus path distance.

Flevation angle difference** 14 LOBING Angle by which the direct ray exceeds the reflected ray
versus path distance.

Spectral plot** 15 LOBING Amplitude versus frequency response curves for various
path distances.

Power available 16 ATOA Power available at receiving antemna versus path dis-
tance or central angle for time availabilities 'S5, 50,
and 95 percent.

I'ower density 17-19 ATOA Similar to above, but with power density ordinate.

Transmission loss 20 ATOA Similar to above, but with transmission loss ordinate.

Power available curves 21 ATLAS Power available curves versus distance are provided
for several aircraft altitudes with a selected time
availability, and a fixed lower antemna height.

Power density curves 22 ATLAS Similar to above, but with power density as ordinate.

Transmission loss curves 23 ATLAS Similar to above, but with transmission loss as ordinate.

Power available volume 24 HIPOD Fixed power available contours in the altitude versus
distance plane for time availabilities of 5, 50, and
95 percent.

Power density volume 25 HIPOD Similar to above, but with fixed power density contours.

Transmission loss volume 26 HIPOD Similar to above, but with fixed transmission loss
contours.

[LIRP contours 27-29 APODS Contours for several EIRP levels needed to meet a par-
ticular power density requirement are shown in the al-
titude versus distance plane for a single time availa-
bility.

Power available contours 30 APODS Similar to above, but with power available contours for
a single EIRP.

Power density contours 31 APODS Similar to above, but with power density contours.

Transmission loss contours 32 APODS Similar to above, but with transmission loss contours,

Signal ratio-$ 33 ATADU Desired-to-undesired, D/U, signal ratio versus station

separation for a fixed desired facility-to-receiver
distance, and time availabilities of 5, 50, and 95
percent.



Table 1. Plott iﬁg C?._Pablllt}’ Guide (cont.)

Capability Figure(s)* Program Remarks

Signal ratio-DD 34 DUDD Similar to above, but abscissa is desired facility-to-
receiver distance and the station separation is fixed.

Orientation 35 TWIRL Undesired station antenna orientation with respect to
the desired to undesired station line versus required
facility separation curves are plotted for several de-
sired station antenna orientations. These curves show
the maximum separation required to obtain a specified
D/U signal ratio value at several aircraft locations
(i.e., protection points).

Service volume 36-37 SRVLUM Fixed D/U contours are shown in the altitude versus
distance plane for a fixed station separation and time
availabilities of 5, 50, and 95 percent.

Signal ratio contours 38-39 DURATA Contours for several D/U values are shown in the alti-
tude versus distance plane for a fixed station separa-
tion and time availability.

* Additional discussion, by capability, is provided in the text.

**  Applicable only to the line-of-sight region for spherical earth geametry. Varlablhty with time and
horizon effects are neglected and the counterpoise option is not available. The phase change asso-
ciated with surface reflection in the lobing region is taken as 0 or 180° to avoid missing lobe nulls.



PARAMETERS FOR ITS PROPAGATION MODEL IF-77
77/07/18. 17.33.01 RUN

POWER DENSITY FOR ATC

SPECIFICATION REQUIRED
AIRCRAFT (OR HIGHER) ANTENNA ALTITUDE: 45000. FT (13716.M) ABOVE MSL
FACILITY (OR LOWER) ANTENNA HEIGHT: 50.0 FT (15.2M) ABOVE FSS
FREQUENCY: 125. MHZ

SPECIFICATION OPTIONAL

AIRCRAFT ANTENNA TYPE: ISOTROPIC
POLARIZATION: HORIZONTAL
EFFECTIVE REFLECTION SURFACE ELEVATION ABOVE MSL: 0. FT (0.M)
EQUIVALENT ISOTROPICALLY RADIATED POWER: 14.0 DBW
FACILITY ANTENNA TYPE: ISOTROPIC
POLARIZATION: HORIZONTAL
HORIZON OBSTACLE DISTANCE: 8.69 N MI (16.09KM) FROM FACILITY*
ELEVATION ANGLE: -0/ 6/30 DEG/MIN/SEC ABOVE HORIZONTAL*
HEIGHT: 0. FT (0.M) ABOVE MSL
REFRACTIVITY:
EFFECTIVE EARTH RADIUS: 4586. N MI (8493.XM)*
MINIMUM MONTHLY MEAN: 30l1. N-UNITS AT SEA LEVEL
SURFACE REFLECTION LOBING: CONTRIBUTES TO VARIABILITY
SURFACE TYPE: AVERAGE GROUND
TERRAIN ELEVATION AT SITE: 0. FT (0.M) ABOVE MSL
TERRAIN PARAMETER: 0. FT (0.M)
TIME AVAILABILITY: FOR INSTANTANEOUS LEVELS EXCEEDED

POWER DENSITY (DB-W/SQ M) VALUES MAY BE CONVERTED TO POWER
AVAILABLE AT THE TERMINALS OF A PROPERLY POLARIZED
ISOTROPIC ANTENNA (DBW) BY ADDING -3.4 DB-SQ M.

* COMPUTED VALUE

Notes:

1) Aircraft antenna information is not actually used in power density
calculations.

2) Parameter values (or options) not indicated are taken as the as-
sumed values (or options) provided on the general parameter speci-

fication sheet (table 2).

3) To simulate computer output, only upper case letters are used.
Dual units are not provided on actual computer output.

Figure 1. Parameter sheet, ATC (Air Traffic Control).
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PARAMETERS FOR ITS PROPAGATION MODEL IF-77
77/07/19. 11.39.28. RUN

POWER DENSITY FOR ILS
SPECIFICATION REQUIRED

AIRCRAFT (OR HIGHER) ANTENNA ALTITUDE: 6250. FT (1905.M) ABOVE MSL
FACILITY (OR LOWER) ANTENNA HEIGHT: 5.5 FT (1.68M) ABOVE FSS
FREQUENCY: 110. MHZ

SPECIFICATION OPTIONAL

AIRCRAFT ANTENNA TYPE: ISOTROPIC
POLARIZATION: HORIZONTAL
EFFECTIVE REFLECTION SURFACE ELEVATION ABOVE MSL: 0. FT (0.M)
EQUIVALENT ISOTROPICALLY RADIATED POWER: 24.0 DBW
FACILITY ANTENNA TYPE: 8~LOOP ARRAY (COSINE VERTICAL PATTERN)
POLARIZATION: HORIZONTAL

HORIZON OBSTACLE DISTANCE: 2.88 N MI (5.33KM) FROM FACILITY*
ELEVATION ANGLE: . =0/ 2/09 DEG/MIN/SEC ABOVE HORIZONTAL*
HEIGHT: 0. FT ABOVE MSL

REFRACTIVITY:

EFFECTIVE EARTH RADIUS: 4586. N MI (8493 .KM) *
MINIMUM MONTHLY MEAN: 301. N-UNITS AT SEA LEVEL
SURFACE REFLECTION LOBING: CONTRIBUTES TO VARIABILITY
SURFACE TYPE: AVERAGE GROUND
TERRAIN ELEVATION AT SITE: 0. FT (0.M) ABOVE MSL
TERRAIN PARAMETER: 0. FT (0.M)
TIME AVAILABILITY: FOR INSTANTANEOUS LEVELS EXCEEDED

POWER DENSITY (DB-W/SQ M) VALUES MAY BE CONVERTED TO POWER
AVAILABLE AT THE TERMINALS OF A PROPERLY POLARIZED
ISOTROPIC ANTENNA (DBW) BY ADDING -2.3 DB-SQ M.

* COMPUTED VALUE

Notes:

1) Aircraft antenna information is not actually used in power density
calculations.

2) Parameter values (or options) not indicated are taken as the as-
sumed values (or options) provided in the general parameter speci-

fication sheet (table 2).

3) To simulate computer output, only upper case letters are used.
Dual units are not provided on actual computer output.

Figure 2. Parameter sheet, ILS (Instrument Landing System)
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PARAMETERS FOR ITS PROPAGATION MODEL IF-77
77/09/01. 17.43.34. RUN

POWER AVAILABLE FOR UHF SATELLITE SEA STATE O
SPECIFICATION REQUIRED

AIRCRAFT (OR HIGHER) ANTENNA ALTITUDE: 19351. N MI (35838.KM) ABOVE MSL
FACILITY (OR LOWER) ANTENNA HEIGHT: 30000.0 FT (9144.M) ABOVE FSS
FREQUENCY: 1550. MHZ

SPECIFICATION OPTIONAL

ATIRCRAFT ANTENNA TYPE: JTAC
BEAMWIDTH, HALF-POWER: 10.00 DEGREES
POLARIZATION: CIRCULAR
TILT IS -90.0 DEGREES ABOVE HORIZONTAL
EFFECTIVE REFLECTION SURFACE ELEVATION ABOVE MSL: 0. FT (0.M)
EIRP PLUS RECEIVING ANTENNA MAIN BEAM GAIN: 41.0 DBW
FACILITY ANTENNA TYPE: JTAC
BEAMWIDTH, HALF-POWER: 20.00 DEGREES
POLARIZATION: CIRCULAR
ANTENNA IS TRACKING
HORIZON OBSTACLE DISTANCE: 208.85 N MI (385.79KM) FROM FACILITY*

ELEVATION ANGLE: -2/49/36 DEG/MIN/SEC ABOVE HORIZONTAL*
HEIGHT: 0. FT (0.M) ABOVE MSL

IONOSPHERIC SCINTILLATION INDEX GROUP: O

REFRACTIVITY:

EFFECTIVE EARTH RADIUS: 4586. N MI (8493.KM)*
MINIMUM MONTHLY MEAN: 301. N-UNITS AT SEA LEVEL
SURFACE REFLECTION LOBING: CONTRIBUTES TO VARIABILITY
SURFACE TYPE: SEA WATER
STATE: O
CALM (GLASSY)
0.00 FT (0.00M) RMS WAVE HEIGHT
TEMPERATURE: 10. DEG CELSIUS
3.6 PERCENT SALINITY
TERRAIN ELEVATION AT SITE: 0. FT (0.M) ABOVE MSL
TERRAIN PARAMETER: 0. FT (0.M)
TIME AVAILABILITY: FOR INSTANTANEOUS LEVELS EXCEEDED

* COMPUTED VALUE

Notes:

1) Parameter values (or options) not indicated are taken as the as-
sumed values (or options) provided in the general parameter spe-
cification sheet (table 2).

2) To simulate computer output, only upper case letters are used.
Dual units are not provided on actual computer output.
Figure 3. Parameter sheet, UHF Satellite.
12



PARAMETERS FOR ITS PROPAGATION MODEL IF-77
77/07/19. 11.39.31. RUN

POWER DENSITY FOR TACAN
SPECIFICATION REQUIRED

ATRCRAFT (OR HIGHER) ANTENNA ALTITUDE: 40000. FT (12192.M) ABOVE MSL
FACILITY (OR LOWER) ANTENNA HEIGHT: 30.0 FT (9.14M) ABOVE FSS
FREQUENCY: 1150. MHZ

SPECIFICATION OPTIONAL

AIRCRAFT ANTENNA TYPE: ISOTROPIC
POLARIZATION: VERTICAL
EFFECTIVE REFLECTION SURFACE ELEVATION ABOVE MSL: 0. FT (0.M)
EQUIVALENT ISOTROPICALLY RADIATED POWER: 39.0 DBW
FACILITY ANTENNA TYPE: TACAN (RTA-2)
POLARIZATION: VERTICAL

HORIZON OBSTACLE DISTANCE 6.73 N MI (12.46KM) FROM FACILITY*
ELEVATION ANGLE: -0/ 5/ 2 DEG/MIN/SEC ABOVE HORIZONTAL¥*
HEIGHT: 0. FT (0.M) ABOVE MSL

REFRACTIVITY:

EFFECTIVE EARTH RADIUS: 4586. N MI (8493.KM)*
MINIMUM MONTHLY MEAN: 301. N-UNITS AT SEA LEVEL
SURFACE REFLECTION LOBING: CONTRIBUTES TO VARIABILITY
SURFACE TYPE: AVERAGE GROUND
TERRAIN ELEVATION AT SITE: 0. FT (0.M) ABOVE MSL
TERRAIN PARAMETER: 0. FT
TIME AVAILABILITY: FOR INSTANTANEOUS LEVELS EXCEEDED

POWER DENSITY (DB-W/SQ M) VALUES MAY BE CONVERTED TO POWER
AVAILABLE AT THE TERMINALS OF A PROPERLY POLARIZED
ISOTROPIC ANTENNA (DBW) BY ADDING -22.7 DB-SQ M.

* COMPUTED VALUE

Notes:

1) Aircraft antenna information is not actually used in power density
calculations.

2) Parameter values (or options) not indicated are taken as the as-
sumed values (or options) provided in the general parameter speci-

fication sheet (table 2).

3) To simulate computer output, only upper case letters are used.
Dual units are not provided on actual computer output.

Figure 4. Parvameter sheet, TACAN (Tactical Air Navigation).
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PARAMETERS FOR ITS PROPAGATION MODEL IF-77
77/07/19. 11.39.36. RUN

POWER DENSITY FOR VOR
SPECIFICATION REQUIRED

AIRCRAFT (OR HIGHER) ANTENNA ALTITUDE: 30000. (9144.M) ABOVE MSL
FACILITY (OR LOWER) ANTENNA HEIGHT: 16.0 FT (4.88M) ABOVE FSS
FREQUENCY: 113. MHZ

SPECIFICATION OPTIONAL

ATRCRAFT ANTENNA TYPE: ISOTROPIC
POLARIZATION: HORIZONTAL
EFFECTIVE REFLECTION SURFACE ELEVATION ABOVE MSL: 0. FT (0.M)
EQUIVALENT ISOTROPICALLY RADIATED POWER: 22.2 DBW
FACILITY ANTENNA TYPE: 4-LOOP ARRAY (COSINE VERTICAL PATTERN)
POLARIZATION: HORIZONTAL
COUNTERPOISE DIAMETER: 52. FT (15.8M)
HEIGHT: 12. FT (3.66M) ABOVE SITE SURFACE
SURFACE: METALLIC

HORIZON OBSTACLE DISTANCE: 4.91 N MI (9.09KM) FROM FACILITY*
ELEVATION ANGLE: ~0/ 3/41 DEG/MIN/SEC ABOVE HORIZONTAL*
HEIGHT: 0. FT ABOVE MSL

REFRACTIVITY:

EFFECTIVE EARTH RADIUS: 4586. N MI (8493.KM)*
MINIMUM MONTHLY MEAN: 301. N-UNITS AT SEA LEVEL
SURFACE REFLECTION LOBING: DETERMINES MEDIAN
SURFACE TYPE: AVERAGE GROUND
TERRAIN ELEVATION AT SITE: 0. FT (0.M) ABOVE MSL
TERRAIN PARAMETER: 0. FT (0.M)
TIME AVAILABILITY: FOR INSTANTANEOUS LEVELS EXCEEDED

POWER DENSITY (DB-W/SQ M) VALUES MAY BE CONVERTED TO POWER
AVAILABLE AT THE TERMINALS OF A PROPERLY POLARIZED
ISOTROPIC ANTENNA (DBW) BY ADDING -2.5 DB-SQ M.

* COMPUTED VALUE

Notes:

1) Aircraft antenna information is not actually used in power density
calculations.

2) Parameter values (or options) not indicated are taken as the as-
sumed values (or options) provided in the general parameter speci-
fication sheet (table 2).

3) To simulate computer output, only upper case letters are used.
Dual units are not provided on actual computer output.

Figure 5. Parameter sheet, VOR (VHF Omni-Directional Range.)
14
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3.2 CAPABILITIES

A brief discussion of each capability summarized in table 1

Ll

is given in this section. Each discussion title contains the
capability name and indicates (in parentheses) the figure and a
sample problem that are associated with the capability. Applica-
tion examples in the form of sample problems, with solutions, are

provided in section 3.3.

LOBING (fig. 6, p. 15; prob. 1, p. 64) Transmission loss is plot-
ted against path distance for (a) lobing (solid curve) caused by
the phase difference in direct and reflected rays for the first
10 lobes inside the radio horizon, (b) limiting values associated
with in phase (low loss, upper curve with small dots) and out of
phase (high loss, lower curve with small dots) conditions, and
(c) free space (curve with large doté) [27, sec. CII-C.1]. As
indicated in a table 1 footnote, this'graph and others generated
via program LOBING are applicable only to the line-of-sight re-
gion for spherical earth geometry, and time variability and hori-
zon effects are neglected. Figure 40 illustrates this geometry,
shows the two rays involved (ro and Ty, =Tyt rz), and defines
variables that will be used in the discussion of plots produced ~
with LOBING.

Antenna gains are included in transmission loss since it is
the difference (dB) between power radiated (dBW), and the power
available (dBW) at the output of an ideal receiving antenna (no .
internal losses), but in the sample run presented here, transmis-
sion loss 1s the same as basic transmission loss because isotro-
pic antennas were assumed. Spacing between the limiting curves ‘
decreases as the reflection coefficient decreases. A test 1is
built into the program to prevent unrealistic null depths [8,

p.- 393]. It limits the maximum transmission loss to its free

space value plus 40 dB.

REFLECTION COEFFICIENT (fig. 7, p. 16; prob. 2, p. 64) The ef-
fective reflection coefficient is plotted against path distance
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Horizontal at
terminal 1

Antenna height for

terminal 1 or 2 = H1,2

Difference in ray
elevation angles = Sd

Direct ray elevation angle = %ﬂ
Direct ray length = o

Effective earth radius = a,

Grazing angle = ¢

Great-circle path length = d = d]-+d2

Refl d 1 h = = +
eflected ray lengt M= *rs

Figure 40. Geometry for reflection from spherical earth.
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(d of fig. 40). Relative antenna gains, surface parameters (di-
electric constant, conductivity and roughness), frequency, and
grazing angle (¢ of fig. 40) are included in the calculation of
effective reflection coefficient [27, secs. CI-D, CII-C.2]. The
drop in reflection coefficient at short distances is associated -
with the ray length reduction factor [27, sec. CI-D.5]. The drop
in reflection coefficient at the far distances is caused by the

divergence factor [27, sec. CI-D.1].

PATH LENGTH DIFFERENCE (fig. 8, p. 17; prob. 3, p. 65) The ex-
tent (Ar) by which the length of the reflected ray (r12 of fig.
40) exceeds that of the direct ray (ro of fig. 40) is plotted
against path distance [27, sec. CII-C.3]; i.e.,

12 Tor (2)

This equation is not actually used to calculate Ar since it 1n-
volves the difference of two, large, nearly equal terms. The
formulation used [24, fig. 16] avoids this precision problem.

Ar =T

TIME LAG (fig. 9, p. 18; prob. 3, p. 65) The time lag of trans-
mission via the surface reflection path relative to the direct

path is plotted against path distance [27, sec. CII-C.4]. This
is the (free space) time (tr) required for a radio wave to travel

the path length difference (Ar) of figure 8; i.e.,
t[nsec] = 3.34 [nsec/m] Ar[m]. (3)

LOBING FREQUENCY-D (fig. 10, p. 19; prob. 4, p. 66) Lobing fre-
quency with distance (fd) for an aircraft traveling directly to-

ward (or away from) the facility may be determined from values of
normalized distance lobing frequency (NDLF) read from this graph,
radio frequency (f), and the magnitude of its velocity (Vd); i.e.,

fd[Hz] = NDLF[(Hz/THz)/kts]f[THz]Vd[kts], (4a)
fd[Hz] = NDLF[(Hz/THz)/s mi/hr)]f[THz]Vd[s mi/hr], (4b)
or f,[Hz] = NDLF [ (Hz/THz)/ (km/ht) 1 £[THz]V 4 [km/hT]. (4¢)
Note that f is in terahertz (THz) where one terahertz 1is 1012 Hz
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6

or 10 is in hertz.

MHz, but that fd

Received signal level will vary with aircraft location as it
moves through the lobing structure (fig. 6) associated with the
phase difference between direct and surface reflected rays. The
frequency at which this variation occurs is called the lobing
frequency, lobe modulation frequency, or Doppler beat modulation
[11, sec. 4; 27, secs. CI-C.4, CII-C.5]. Reed and Russell [47,
ch. 10] developed formulas using both lobe modulation and Doppler
beat modulation concepts to show that "...no fundamental differ-
ence exists between the lobe modulation and the Doppler-beat
modulation concepts. They differ only in the treatment of the
independent variable'.

The lobing frequency (fl) encountered by an aircraft can be

estimated from fd and fh (see eqn. 6); i.e.,

£,5 £+ £y (5)

Here < is needed since it is possible for an aircraft to follow a
flight pattern such that the lobing with distance is compensated
for by lobing with height so that f2 = 0 even though fd + fh > 0;
e.g., an aircraft flying the glide slope of a conventional ILS in
which the lobing structure is used to determine the desired

flight path.

LOBING FREQUENCY-H (fig. 11, p. 20; prob. 4, p. 66) Lobing fre-
quency [27, secs. CI-C.4, CII-C.6] with height (fh) for an air-
craft in vertical ascent (or descent) may be determined from
values of normalized lobing frequency (NHLF), radio frequency (f),
and the magnitude of the ascent rate (Vh); i.e.,

fh[Hz] NHLF[(HZ/THz)/(ft/min)]f[THZ]Vh[ft/min], (6a)

or
fh[Hz]

NHLF[(HZ/THZ)/(m/min)]f[THz]Vh[m/min]. - (6b)

Values of fh can be used in (5) to estimate lobing frequency.
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REFLECTION POINT (fig. 12, p. 21; prob. 2, n. 64) Distance (d,
of fig. 40) from the facility to reflection point is plotted a-

gainst path distance [27, secs. CI-C.2.3, CII-C.7].

ELEVATION ANGLE (fig. 13, p. 22; prob. 2, p. 64) The elevation
angle (ehl of fig. 40) of the direct ray at the facility in de-
grees above horizontal is plotted against path distance [27, secs.
CcI-c.2.3, CII-C.8].

ELEVATION ANGLE DIFFERENCE (fig. 14, p. 23; prob. 2, p. 64) The
amount (ed of fig. 40) by which the elevation angle of the direct
ray at the facility exceeds that of the reflected ray (elevation
angle difference) is plotted against path distance [27, secs. CI-
c.2.3, CII-C.9].

"SPECTRAL PLOT (fig. 15, p. 24; prob. 5, p. 66) Figure 15 shows
one spectrum corresponding to each path distance point calculated
-for the lobing graph (fig. 6). Each spectrum is of bandwidth
fof, where ff is a fraction of the carrier frequency f; i.e.,
bandwidth = (2)(0.0004)(125) = 0.1 MHz = 100 kHz. The scale
along the diagonal axis is proportional to the distance shown for
that point on the lobing graph, and the amplitude scale is linear
in decibels with a maximum range of 43 dB [27, sec. CII-C.10].

POWER AVAILABLE (fig. 16, p. 25; prob. 6, p. 67) Power available
(see eqn. 1) at the output of an ideal antenna (no internal los-

ses) 1s plotted against central angle for a particular satellite
(or higher antenna such as an aircraft) altitude. Available
power expected to be exceeded for 5, 50, and 95 percent of the
time (i.e., 5, 50, and 95 percent time availabilities) is plotted
along with the available power that would be present under free-
space propagation conditions. The term "EIRPG'" used in the para-
meter summary at top of the graph is an abbreviation for equiva-
lent isotropically radiated power (EIRP) plus receiving antenna
main beam gain (see eqn. 12). Options exist to express the
abscissa (path length) in kilometers, statute miles, nautical
miles, or degrees of central angle.

Central angle is the angle subtended by the great-circle
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path (eo of fig. 41 inset); it 1s useful when coverage estimates
for a geostationary satellite are desired since the central angle
corresponds to latitude along the subsatellite meridian, and lon-
gitude along the equator from the subsatellite point. Loci of
constant central angle are circles on earth projections normally
used to show earth coverage [23, 46]. Figure 41 illustrates such
loci for a geostationary satellite located at 100° W. Great-circle
path distance fd of fig. 41 inset) is related to central angle by

d{n mi] = 60.0[n mi/deg]eo[deg], (7a)

d{s mi] = 69.1(s mi/deg]eo[deg], (7b)

d{km] = 111.2[km/deg]eo[deg], (7¢)

eo[deg] = 0.0167[deg/n mi]d[n mi], (8a)

6 [deg] = 0.0145(deg/s mild(s mi], (8b)
or

o _[deg] = 0.00899[deg/km]d kn]. (8¢)

POWER DENSITY (figs. 17-19, pp. 26-28; prob. 7, p. 67) Sample
"POWER DENSITY'" graphs are provided for ILS (fig. 17), TACAN
(fig. 18), and VOR (fig. 19). Power density (see eqn. 1) at the

receiving antenna location (aircraft in this case) is plotted a-

gainst path distance for a particular aircraft (or higher antenna)
altitude. The curves show the power density expected to be ex-
ceeded for 5, 50, and 95 percent of the time along with the power
density that would be present under free-space propagation condi-
tions. Options exist to express the abscissa in kilometers, stat-
ute miles, nautical miles, or degrees of central angle. Central
angle is useful when coverage estimates for a geostationary satel-
lite are desired (see POWER AVAILABLE, fig. 16, discussion).

TRANSMISSION LOSS (fig. 20, p. 29; prob. 1, p. 64) Transmission
loss (see LOBING, fig. 6, discussion) is plotted against path

distance for a particular aircraft altitude. The curves show

transmission loss values that are unexceeded for at least 5, 50,
and 95 percent of the time along with the transmission loss that

would be present under free-space propagation conditions. The
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Figure 41. Geographic location of constant centraZ angle contours
The subsatellite point is at 100°W [23, figs. 8, 9].

55



term "GAIN'" used in the parameter summary at the top of the graph
is an abbreviation for the sum of the transmitting and receiving
antennas' main beam gains. Since GAIN = 0 in this case, trans-
mission loss is really basic transmission loss. Options exist

to express the abscissa in kilometers, statute miles, nautical
miles, or degrees of central angle. Central angle is useful when
coverage estimates for a geostationary satellite are desired (see

POWER AVAILABLE, fig. 16, discussion).
Values obtained from figure 20 may differ somewhat from those

obtained from figure 6 since the calculations for figure 20 in-
cluded lobing as part of the time variability along with horizon
effects, while those for figure 6 did not. '

The increase in variability for distances somewhat less than
150 n mi (278 km) occurs because of the specular surface reflec-
tion multipath contribution to variability that occurs somewhat
inside the horizon. Lower short-term variability near the hori-

zon has been observed in propagation data [1].

POWER AVAILABLE CURVES (fig. 21, p. 30; prob. 8, p. 67) Curves
of power available (see eqn. 1) at the output of the receiving
antenna are plotted against distance for several aircraft alti-
tudes, a single facility antenna height, and a time availability
of 95 percent. Options exist to express the abscissa in kilo-

meters, statute miles, or nautical miles, and to use other time

availabilities.

POWER DENSITY CURVES (fig. 22, p. 31; prob. 9, p. 68) Curves of
power density (see eqn. 1) at the receiving antenna location
(aircraft in this case) are plotted against distance for several
aircraft altitudes, a single facility antenna height, and a time
availability of 95 percent. Options exist to express the ab-

scissa in kilometers, statute miles, or nautical miles, and to

use other time availabilities.

TRANSMISSION LOSS CURVES (fig. 23, p. 32; prob. 1, p. 64) Curves
of transmission loss (see LOBING, fig. 6, discussion) are plotted
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against distance for several aircraft altitudes, a single facility
antenna height, and a time availability of 95 percent. Options
exist to express the abscissa in kilometers, statute miles, or

nautical miles, and to use other time availabilities.

POWER AVAILABLE VOLUME (fig. 24, p. 33; prob. 10, p. 68) Contours
for a single available power {see eqn. 1) are plotted in the alti-
tude versus distance plane for time availabilities of 5, 50, and
95 percent. When symmetry about the ordinate axis can be assumed
(e.g., omnidirectional antenna), the volume formed by rotating

a contour about the ordinate axis defines the air space in which

the time availability will almost always equal or exceed that
associated with the contour used to form it. This volume might
include some air space with inadequate time availability, since

it may not describe conditions directly above the desired facility
perfectly. Noise and interference levels are not considered in
this display. Options exist to express the abscissa in kilome-
ters, statute miles, or nautical miles, and to express the ordi-

nate in feet or meters.

POWER DENSITY VOLUME (fig. 25, p. 34; prob. 11, p. 68) Contours
for a single power density value are plotted in the altitude

versus distance plane for time availabilities of 5, 50, and 95
percent. When symmetry about the ordinate axis can be assumed
(e.g., omnidirectional antenna), the volume formed by rotating

a contour about the ordinate axis defines the air space in which
the time availability will almost always equal or exceed that
associated with the contour used to form it. This volume might
include some air space with inadequate time availability, since
it may not describe conditions directly above the desired facility
perfectly. Noise and interference levels are not considered in
this display. Options exist to express the abscissa in kilo-
meters, statute miles or nautical miles, and to express the or-

dinate in feet or meters.

TRANSMISSION LOSS VOLUME (fig. 26, p. 35; prob. 12, p. 69) Con-
tours for a single transmission loss (see LOBING, fig. 6,
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discussion) value are plotted in the altitude versus distance
plane for time availabilities of 5, 50, and 95 percent. When
symmetry about the ordinate axis can be assumed (e.g., omnidirec-
tional antenna), the volume formed by rotating a contour about
the ordinate axis defines the air space in which the time avail-
ability will almost always equal or exceed that associated with
the contour used to form it. This volume might include some air
space with inadequate time availability, since it may not de-
scribe conditions directly above the desired facility perfectly.
Noise and interference levels are not considered in this display.
Options exist to express the abscissa in kilometers, statute

miles, or nautical miles, and the ordinate in feet or meters.

EIRP CONTOURS (figs. 27-29, pp. 36-38; prob. 13, p. 69) Sample
"EIRP CONTOURS'" graphs are provided for ILS (fig. 27), TACAN
(fig. 28), and VOR (fig. 29). Several (up to eight) contours

of EIRP (see eqn. 11) levels needed to meet a single power den-
sity requirement are plotted in the altitude versus distance
plane. The contours pass through points where the power density
requirement can be met by using the EIRP associated with the con-

tour. A single time availability is applicable to all contours.

Options exist to express the abscissa in kilometers, statute
miles, or nautical miles, and the ordinate in feet or meters,

POWER AVAILABLE CONTOURS (fig. 30, p. 39; prob. 14, p. 69) Sev-
eral (up to eight) contours of available power (dBW, see eqn. 1)
are plotted in the altitude versus distance plane. Identical
values (one each) of time availability and EIRP (see eqn. 11) are
used for all contours. Options exist to express the abscissa in

kilometers, statute miles, or nautical miles, and the ordinate

in feet or meters.

POWER DENSITY CONTOURS (fig. 31, p. 40; prob. 15, p. 70) Several
(up to eight) contours of power density (dB-W/sq m, see eqn. 1)
are plotted in the altitude versus distance plane. Identical
values (one each) of time availability and EIRP (see eqn. 11) are
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used for all contours. Options exist to express the abscissa in -
kilometers, statute miles, or nautical miles, and to express the

ordinate in feet or meters.

TRANSMISSION LOSS CONTOURS (fig. 32, p. 41; prob. 16, p. 70)
Several (up to eight) contours of transmission loss (see fig. 6

discussion) are plotted in the altitude versus distance plane for
a single time availability value. Options exist to express the
abscissa in kilometers, statute miles, or nautical miles, and the

ordinate in feet or meters.

SIGNAL RATIO-S (fig. 33, p. 42; prob. 17, p. 70) Desired-to-
undesired (D/U [dB]) signal ratio availiable at the output of the
receiving antenna (aircraft in this case) is plotted against sta-

tion separation. The curves show D/U ratios for time availabil-
ities of 5, 50, and 95 percent along with the D/U values that
would be obtained under free-space propagation conditions. Figure
42 shows the interference configuration. Aircraft-to-desired
facility great-circle distance (dD) and aircraft-to-undesired
great-circle facility distance (dU) are used to determine station

separation (S) from

S = dD + dU (9)

where dD and dU do not have to be part of the great-circle con-
necting the facilities. Aircraft location relative to the de-
sired facility (altitude and dD) is fixed for each graph. An
option exists to express the abscissa in kilometers, statute

miles, or nautical miles.

SIGNAL RATIO-DD (fig. 34, p. 43; prob. 18, p. 70) The D/U [dB]
signal ratio available at the output of the receiving antenna
(aircraft in this case) is plotted against the desired facility
to aircraft distance (DD or dD of fig. 42). The curves show D/U
ratios for time availabilities of 5, 50, and 95 percent along
with D/U values that would be obtained under free-space propaga-
tion conditions. Aircraft altitude and station separation (see

SIGNAL RATIO-S, fig. 33, discussion) are fixed for each graph.
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An option exists to express the abscissa in kilometers, statute

miles, or nautical miles.

ORIENTATION (fig. 35, p. 44; prob. 19, p. 71) Curves showing the

relative azimuthal orientation of the undesired facility course

line (¢U) with respect to the great circle-path connecting the
desired and undesired facilities are plotted versus the facility
separation required to achieve a specified D/U ratio or better at
each of five specified protection points. Each curve represents
a different relative azimuthal orientation of the desired facility
course line (¢D) with respect to the path connecting facilities.
Orientation geometry for the protection points is illustrated in
figure 43. These protection points are located relative to the
desired facility by a distance from the desired (DA,B,C,D,E)
facility and relative azimuth angle from the desired facility
course line (GA,B,C,D,E)' In the calculations for figure 35, (a)

the protection points were at

Distance Angle

DA = 10 n mi (18.5 km) @y = 325°
DB = 18 n mi (33.3 km) ag = 350°
DC = 18 n mi (33.3 km) a- = 0°
DD = 18 n mi (33.3 km) ap = 10°
DE = 10 n mi (18.5 km) ap = 35°

(b) ¢p was varied in 30° increments from 0 to 180° (see line code
in upper right of fig. 35), (c) ¢y was varied in 10° increments
from 0 to 360°, and (d) azimuth (horizontal) patterns for the
8-loop localizer were used for both facilities.

Protection point C on figure 43 is used to illustrate the
difference between facility separation (Sf) calculated via pro-
gram TWIRL and station separation (S) used elsewhere (see SIGNAL
RATIO-S, fig. 33, discussion). In particular, Sf < S since S
need not be measured along the great-circle path connecting the
facilities. Note that (a) the dU to point C changes as.ép
changes, even if Sf remains fixed, and (b) the angle from the
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undesired facility to point C changes with both % and 9y even if
Sf remains fixed, so that the applicable gain for the undesired
facility varies in accordance with its horizontal pattern.

The geometrical consequences of these complications are
handled as part of the calculations performed by program TWIRL.
" These calculations would be very tedious to perform by hand even
if appropriate signal ratio graphs (fig. 33) were available. A
graph similar to figure 35 is constructed for each protection
point and the maximum Sf for each combination of ¢D and ¢U is
selected for the final graph. These intermediate graphs have a
format identical to figure 35 and are available as computer out--
put even though no samples are provided here. ‘

Options exist to express the abscissa in kilometers, statute

miles, or nautical miles.

SERVICE VOLUME (figs. 36-37, p. 45-46; prob. 20, p. 71) Sample
"SERVICE VOLUME" graphs are provided for TACAN (figﬁ 36) and

VOR (fig. 37). Fixed D/U contours are plotted in the altitude
versus distance.plane for free space conditions and for time
availabilities of 5, 50, and 95 percent. A fixed station separa-
tion (see SIGNAL RATIO-S, fig. 33, discussion) is used for each

graph. When symmetry about the ordinate axis can be assumed

(e.g., omnidirectional antenna), the volume formed by rotating

a contour about the ordinate axis defines the air space in which
the time availability will almost always equal or exceed that
associated with the contour used to form it. This volume might
include some air space with inadequate time availability, since
it may not describe conditions directly above the desired facil-
ity perfectly. Service limitations associated with noise level
are not considered in this display. Options exist to express the
abscissa in kilometers, statute miles, or nautical miles, and the

ordinate in feet or meters.

SIGNAL RATIO CONTOURS (figs. 38-39, pp. 47-48; prob. 21, p. 71)
Sample '"SIGNAL RATIO CONTOURS" graphs are provided for ILS (fig.

38) and VOR (fig. 39). Several (up to eight) D/U signal ratio
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contours are plotted in the altitude versus distance plane (cf.,
figs. 36, 37). Single values of time availability and station
separation are used for eacHAgraph. Options exist to express the
abscissa in kilometers, statute miles, or nautical miles, and the

ordinate in feet or meters.

3.3 APPLICATIONS
Graphs like those provided in section 3.1 and discussed in
section 3.2 can be used to solve a wide variety of problems where
system reliability is dependent upon radio-wave propagation. The
application of each plotting capability is illustrated by a prob-
lem and solution in the remainder of this section. These prob-
lems are ordered by the capability applied in accordance with the

table 1 listing.

LOBING GRAPH (fig. 1, p. 10; fig. 6, p. 15; fig. 20, p. 29; fig.
23, p. 32).
Problem 1: Estimate the extent of smooth earth coverage for a
system with the parameters of figure 1 and an allowable transmis-
sion loss of 135 dB.

Solution: Figure 6 indicates potential coverage gaps from
75 to 87 n mi (139 to 161 km) and no coverage beyond 232 n mi
(430 km). Figure 20 indicates coverage to 259, 233, and 220 n mi
(480, 432, and 407 km) for time availabilities of 5, 50, and 95
percent. Figure 20 has the effects of surface reflection multi-
path included statistically in the signal level variability so
that nulls, while not shown, are accounted for in the time avail-

ability estimate. Figure 20 also provides a better estimate of
transmission loss near the horizon. Figure 23 could have been
used instead of figure 20 to obtain coverage for a 95 percent

time availability.
REFLECTION COEFFICIENT (fig. 6, p. is; fig. 7, p. 16; fig. 12, p.

21; fig. 13, p. 22; fig. 14, p. 23).
Problem 2: Determine the reflection coefficient, reflection
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point location, elevation angle, and elevation angle difference
associated with the null inside the horizon for the conditions of
problem 1. These parameters are useful in evaluating potential :
methods of reducing the null depth by effective reflection coef-
ficient reduction. For example, terrain near the reflecting point
~could be altered to reduce surface reflectivity or an antenna pat-
tern could be used that has low gain toward the reflecting sur-
face.
Solution: The required parameters are obtained from graphs
produced by program LOBING; i.e.,
distance to null (fig. 6) is 79 n mi (147 km),
effective reflection coefficient (fig. 7) for 79 n mi
(147 km) is 0.96,
distance to reflection point (fig. 12) for 79 n mi
(147 km) is 0.15 n mi (0.28 km),
elevation angle (fig. 13) for 79 n mi (147 km) is 4.5°,
and '
difference in direct and reflected ray elevation angle
(fig. 14) for 79 n mi (147 km) is 9°.

PATH LENGTH DIFFERENCE (fig. 8, p. 17; fig. 9, p. 18)

Problem 3: For the conditions of problem 1, find the maximum
time by which a pulse traveling the reflected ray route will lag
the pulse traveling the direct ray route. Pulse distortion asso-

ciated with smooth earth multipath can be avoided if the pulse

duration is much larger than the time lag.
Solution: The maximum path length difference (fig. 8) oc-
curs at 0 n mi (0 km) and is 30.4 m. This path difference, Ar,

is converted to time lag via (3); i.e.,

t = 3.34 [nsec/m] Ar [m] = (3.34)(30.4) = 102 nsec.
Note that values for t can be obtained directly from figure 9

where the time lag is given as slightly larger than 100 nsec.
TIME LAG This capability was used in the solution to problem 3.

LOBING FREQUENCY-D (fig. 1, p. 10; fig. 10, p. 19; fig. 11, p. 20).

Problem 4: For the conditions of problem 1, determine the lobing
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frequency via (5) for an aircraft at 4.8 n mi (8.9 km) with a
radial velocity of 250 kts (463 km/hr) and an ascent rate of 103
ft/min (305 m/min).
Solution: First, required parameters are obtained from out-
put of program LOBING; 1i.e.,
f (fig. 1) is 125 MHz = 1.25 x 10-% THz,
NDLF (fig. 10) is 1.52 (Hz/THz)/kts or 0.819 (Hz/THz)/
(km/hr) at 4.8 n mi (8.9 km),
and
NHLF (fig. 11) is 10-2 (Hz/THz)/(ft/min) or 0.035
(Hz/THz)/(m/min) at 4.8 n mi (8.9 km).
Then,
fd[Hz] = NDLF[(Hz/THz)/kts]f[THz]Vd[kts] from (4a),
£, = (1.52)(1.25x10°%)(250) = 4.75x107 2Hz,
fh[Hz] = NHLF[(Hz/THz)/(ft/min)]f[THz]Vh[ft/min] from (6a),
£ = (10-2)(1.25x10-%)(103) = 0.125x10-2 Hz,
f

< fd + fh from (5),

h

2
and

i)

Therefore the maximum value of f2 at 4.8 nmi (8.9 km) is 4.9 x

102 Hz.

(4.75 + 0.125)1072Hz = 4.9 x 1072 Hz,

.|/\

LOBING FREQUENCY-H This capability was used in the solution to

problem 4.
REFLECTION POINT This capability was used in the solution to

problem 2.

ELEVATION ANGLE This capability was used in the solution to

problem 2.
ELEVATION ANGLE DIFFERENCE This capability was used in the solu-

tion to problem 2.

SPECTRAL PLOT (fig. 6, p. 15; fig. 15,.p. 24).
Problem 5: For the conditions of problem 1, would spectra associ-
ated with lobing within + 50 kHz of 125 MHz be flat for distances
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from 27 n mi (50 m) to the radio horizon? Frequency selective
fading (i.e., when all frequencies within a receiver bandpass do®
not fade together) can distort a modulated signal so that intel-
ligibility is lowered. It does not occur when spectra are flat.

Solution: Figure 6 indicates that the top of the lobe 4 oc-
curs at a distance somewhat less than 27 n mi (50 km). Therefore,
the spectra shown in figure 15 are applicable to this problem,

and these spectra are flat, so the answer is yes.

POWER AVAILABLE, UHF SATELLITE (fig. 3, p. 12; fig. 16, p. 25).
Problem 6: Determine how far north coverage from a geostationary
UHF satellite extends when the parameters of figure 3 are appli-
cable, and a time availability of 95 percent and a power available

of -160 dBW are required.

Solution: Figure 16 is applicable to this problem, and it
indicates that coverage out to an angular distance of 80° can be
obtained for the required time availability. Therefore, coverage
to 80°N is possible along the subsatellite meridian. The great-

circle distance for this arc can be obtained using (7c¢); i.e.,

d[km]

111.2 [km/deg]e [deg],

(111.2)(80) 8,900 km (4,800 n mi),

POWER DENSITY (fig. 5, p. 14; fig. 19, p. 28)

Problem 7: For the VOR parameters of figure 5, determine the in-
terference range of a VOR at 30,000 ft (9,144 m) when a time a-
vailability of 5 percent and a power density of -134 dB-W/sq m

or more are used to define the interference range.
Solution: Figure 19 is applicable to this problem, and it

indicates an interference range of 236 n mi (437 km).

TRANSMISSION LOSS This capability was used in the solution to

problem 1.

POWER AVAILABLE CURVES  (fig. 1, p. 10; fig. 21, p. 30)
Problem 8: For the ATC parameters of figure 1 where the aircraft
is at 45,000 ft (13,716 m), determine the service range when a
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time availability of 95 percent and a power available of -130 dBW

are used to define service range.
Solution: Figure 21 is applicable to this problem, and it

indicates a service range of 239 n mi (443 km).

POWER DENSITY CURVES (fig. 1, p. 10; fig. 21, p. 30; fig. 22, p.

31).
Problem 9: Solve problem 8 using the power density graph of

figure 22.
Solution: First, convert the power available requirements
of problem 8 to power density using (1) and the conversion factor

provided in figure 1; i.e.,

PI(dBW] = SR[dB—W/sq mj] + AI[dB—sq m],
Sp = Py - A =P - (-3.4),

and

1]

S -130-(-3.4) = -126.6 dB-W/sq m.

R
Then, using this power density, read the 95 percent time avail-
ability curve of figure 22. This gives 241 n mi (446 km), which
is less than 1 percent larger than the answer obtained previously

for problem 8 using figure 21.

TRANSMISSION LOSS CURVES This capability was used in the solu-

tion to problem 1.

POWER AVAILABLE VOLUME (fig. 24, p. 33)
Problem 10: For the VOR parameters of figure 5, a time availa-
bility of 95 percent, and an available power of -114 dBW, deter-
mine the minimum altitude at which the service range extends to
150 n mi (278 km).

Solution: Figure 24 is applicable to this problem, and it
indicates a minimum altitude of 30,000 ft (9,144 m) for the 150

n mi (278 km) service range.

POWER DENSITY VOLUME (fig. 5, p. 14; fig. 25, p. 34)
Problem 11: For the VOR parameters of figure 5, a time availabil-

ity of 95 percent, a power density of -111 dB-W/sq m, and
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altitudes up to 100,000 ft t30,480 m), determine aircraft altitudes
for which service 1s not available at 150 n mi (278 km).

Solution: Figure 25 is applicable to this problem, and it
indicates that service is not available at 150 n mi (278 km) for
altitudes below 31,000 ft (9,449 m).

TRANSMISSION LOSS VOLUME (fig. 5, p. 14; fig. 26, p. 35)

Problem 12: For the VOR parameters of figure 5, a time availa-
bility of 50 percent, and altitudes up to 100,000 ft (30,480 m),
determine the altitudes for which a basic transmission loss of
134 dB is exceeded at a distance of 175 n mi (324 km).

Solution: Figure 26 is applicable, and it indicates that
the 134 dB transmission loss level is exceeded 50 percent of the
time at a distance of 175 n mi (324 km) for altitudes below
40,000 ft (12,192 m).

EIRP CONTOURS (fig. 4, p. 13; fig. 28, p. 37)
Problem 13: For the TACAN parameters of figure 4, determine the
minimum EIRP of transmitted pulses necessary to maintain a pulse
power density greater than -86 dB-W/sq m for 95 percent of the
time at an altitude of 30,000 ft (9,144 m) and a distance of
125 n mi (232 km).

 Solution: Figure 28 is applicable to this pfoblem, and it
indicates that an EIRP of 42 dBW would be sufficient.

POWER AVAILABLE CONTOURS (fig. 4, p. 13; fig. 30, p. 39)
Problem 14: For the TACAN parameters of figure 4, a service range
defined by a time availability of 95 percent, and a power density

of -86 dB-W.sq m, determine the service range available at 30,000

ft (9,144 m) by using figure 30.

Solution: First convert the power density requirement to
power available using (1) and the conversion factor provided in
figure 4; i.e.,

PI[dBW] = Sa[dB—W/sq m] + AI[dB—Sq m],

and PI = -86+(-22.7) = -108.7 dBW.

Then, using this power available, read the 95 percent time
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availability curve of figure 30. This gives 111 n mi (206 km).

POWER DENSITY CONTQURS (fig. 4, p. 13; fig. 30, p. 39; fig. 31,
p. 40).
Problem 15: Solve problem 14 using figure 31.

Solution: Figure 31 indicates that the service range at
30,000 ft (9,144 m) is 111 n mi (206 km), which is the same an-

swer obtained previously for problem 14 using figure 30.

TRANSMISSION LOSS CONTOURS (fig. 4, p. 13; fig. 32, p. 41)
Problem 16: For the TACAN parameters of figure 4 and a time a-
vailability of 95 percent, determine the minimum altitude for
which a basic transmission loss of 150 dB is not exceeded at a
distance of 100 n mi (185 km).

Solution: Figure 32 is applicable since it was developed
with antenna gains set to zero so that basic transmission loss
is obtained. It indicates that 150 dB of basic transmission loss
is not exceeded for 95 percent of the time at 100 n mi (185 km)
for altitudes above 18,000 ft (5,486 m).

SIGNAL RATIO-S (fig. 5, p. 14; fig. 33, p. 42; fig. 42, p. 60)
Problem 17: For the VOR parameters of figure 5, a time availa-
bility of 95 percent, and a desired facility to aircraft distance,
dD, of 100 n mi (185 km), determine the station separation (fig.
42) necessary to obtain a desired-to-undesired signal ratio, D/U,
of 23 dB at an altitude of 30,000 ft (9,144 m).

Solution: Figure 33 is applicable to this problem, and it
indicates that a station separation of 320 n mi (593 km) is ade-
quate to obtain D/U (95%) = 23 dB with dD = 100 n mi (185 km).
However, this signal ratio is not available beyond 100 n mi
(185 km) for altitudes less than 30,000 ft (9,144 m).

SIGNAL RATIO-DD (fig. 5, p. 14; fig. 34, p. 43)

Problem 18: For the VOR parameters of figure 5, a time availa-
bility of 95 percent, and a D/U of 23 dB or more, determine the
maximum dD available for a station séparation of 250 n mi (463

km) .
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Solution: Figure 34 is applicable to this problem and it

indicates that a maximum dD of 59 n mi (109 km) is available.

ORIENTATION (fig. 2, p. 11; fig. 35, p. 44; fig. 43, p. 62)

Problem 19: For the ILS localizer parameters of figure 2, but
with altitude of 4500 ft (1,372 m), the protection point loca-
tions associated with figure 43 (see ORIENTATION, fig. 35, dis-

cussion 1in sec. 3.2), a time availability ot 95 nercent, and a

D/U’of 23 dB determine the facility separation required when the
undesired course line angle (¢y in fig. 43) is 150° and the de-
sired course line angle (¢D of fig. 43) is 60°.

Solution: Figure 35 is applicable to this problem, and it
indicates that a facility separation of 88 n mi (163 km) is suf-

ficient.

SERVICE VOLUME (fig. 5, p. 14; fig. 37, p. 46)
Problem 20: For the VOR parameters of figure 5, a time availa-

bility of 95 percent, and a station separation of 400 n mi (741
km), determine the maximum dD for which D/U = 23 dB is available
at an altitude of 40,000 ft (12,192 m).

Solution: Figure 37 is applicable to this problem, and it
indicates that a dD of 144 n mi (267 km) is available at 40,000
ft (12,192 m).

SIGNAL RATIO CONTOURS (fig. 2, p. 11; fig. 38, p. 47)
Problem 21: For the ILS localizer parameters of figure 2, a time
availability of 95 percent, and a station separation of 95 n mi
(176 km), determine the maximum dD available at 1,000 ft (305 m)
for which D/U > 23 dB.

Solution: Figure 38 is applicable to this problem, and it
indicates that a dD of 30 n mi (56 km) is available at 1,000 ft

(305 m).

4, INPUT PARAMLTERS
Parameters that may be specified as input to the programs
are summarized in tables 2, 3, and 4. Blank spaces are provided
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in these tables so that copies of them can be used to specify in-

put requirements for program runs. These tables cover input para-
meters for 10 programs which have 28 plotting capabilities (table

1) so that only information for a small fraction of the parameters
listed need be provided for any one capability.

Table 2 covers general parameters that are usually anplicable
to many programs, and multiple entries or two copies of this table
may be used if the desired and undesired facilities have different
parameter values. Note that, although about 40 items can be spe-
cified, specification of only 3 is required. These ''primary pa-
rameters'" consist of antenna heights and frequency. Values for
"secondary parameters' will be computed or assumed if not speci-
fied. A more detailed discussion of table 2 is provided in sec-
tion 4.1.

Table 3 covers special parameters required for particular
capabilities. Some of these parameters are required by more than
one capability, and 13 (i.e., first 13 of table 1) of the capa-
bilities do not require parameters from table 3. Additional dis-
cussion of table 3 is provided in section 4.2.

Table 4 covers parameters associated with graph formats. In
many cases, an adequate selection of these parameters can be made
by the program operator so that complete specification via table
4 is not often required. Options associated with ordinate (feet
or meters) and/or abscissa (kilometers, statute miles, or nau-
tical miles) units are available. These options are selected via
table 4. A more detailed discussion of table 4 is provided 1in

section 4.3.

4.1 GENERAL PARAMETERS (Table 2, p. 73)

General parameters that are usually applicable to many pro-
grams may be specified by using copies of table 2. Multiple en-
tries or two copies of this table may be used if the desired and
undesired facilities have different parameter values associated

with them. In the absence of such information, it will be as-

sumed that the two facilities have identical parameters. All
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capabilities that involve the use of desired to undesired (D/U)
signal ratios involve two facilities. This includes the last §
capabilities listed in table 1.

Although about 40 items can be specified with table 2, re-
quired specification involves only 3. These ''primary parameters"
consist of antenna heights and frequency. Values for ''secondary
parameters'" will be computed or assumed if not specified. Para-
meter values (or options) that will he assumed in licu of speci-
fication are indicated in the table along with the acceptable
value range (or options available).

The nomenclature used to distinguish between the two anten-
nas of a particular path may be misleading to the uninitiated but
is used for convenience. The lower of the two anténnas is called
the '"facility" even though it may be an aircraft. The other an-
tenna must be equal to or higher in altitude than the '"facility
or lower'" antenna and is designated as the '"aircraft'" even though
it may be a ground-based antenna or a satellite.

For convenience, the parameters in table 2 are listed alpha-
betically within categories. A short discussion of each parameter
is provided in the remainder of this section, and these discus-
sions are ordered in accordance with the order of appearance of

the parameter in table 2.

ATIRCRAFT (OR HIGHER) ANTENNA HEIGHT As shown in figure 44, this
altitude is measured above mean sea level (msl). The propagation
model is not valid for antennas located below the surface, and
radio horizons may not be treated correctly if the aircraft alti-
tude is less than the facility antenna horizon elevation above
msl. Use of such aircraft altitudes will result in an éborted
run after an appropriate note has been printed on the comnuter-
gencrated parameter sheet (e.g., fig. 1). Notes are printed,

but the run 1s not aborted if the altitude is (a) less than 1.5
ft (0.5 m) where surface wave contributions that are not included
in the model could become important, or (b) less than the effec-
tive reflecting surface elevation plus 500 ft (152 m) where the
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model may fail to give proper consideration to the aircraft radio

horizon.

FACILITY (OR LOWER) ANTENNA HEIGHT As shown in figure 44, this

height is measured above the facility site surface (fss). The

propagation model is not valid for antennas below the surface,
and such a facility antenna height will result in an aborted run,
after an appropriate note has been printed on the computer-gener-
ated parameter sheet (e.g., fig. 1). A note is printed, but the
run is not aborted if the height is less than 1.5 ft (0.5 m),
for which surface wave contributions not included in the model

could become important.

AIRCRAFT ALTITUDE ABOVE msl Y

FACILITY ANTENNA HEIGHT ABOVE fss

FACILITY SITE SURFACE (fss) ELEVATION ABOVE ms] ‘

"EFFECTIVE REFLECTION SURFACE ELEVATION ABOVE msl

MEAN SEA LEVEL (msl)

Figure 44. Antenna heights and surface elevations. Note that the
atreraft altitude is elevation above msl while the facility
antenna height ts measured with respect to fss.

S _




FREQUENCY Notes are printed if the frequency is (a) less than
100 MHz, when neglected ionospheric effects may become important;
(b) greater than 5 GHz, when neglected scattering from hvdromete-
ors (rain, etc.) may become important; and (c) greater than

17 GHz, when the estimates made for atmospheric absorption may be
inaccurate. For frequencies less than 20 MHz or greater than

100 GHz, the run is aborted.

ATRCRAFT ANTENNA TYPE OPTIONS These options involve the antenna

gain pattern of the aircraft antenna in the vertical plane. Op-

tions currently built into the program include isotropic, cosine
(voltage), and JTAC (see egn. 10) patterns (fig. 45). Program
modifications can easily be made to accommondate other patterns
that are specified in terms of gain versus elevation angle. Hori-
zontal (or azimuth) patterns for the aircraft antenna are not

used in any program.

Antenna pattern data are used to provide information on gain
relative to the main beam only. The extent to which the main beam
antenna gain exceeds that of an isotropic antenna is listed in
table 2 as a separate item (i.e., under GAIN) and is included in

the specification of EIRPG (see eqn. 12).

ATIRCRAFT ANTENNA BEAM WIDTH This parameter is currently used
only in connection with the JTAC [33, p. 51] antenna pattern
where relative (voltage) gain (g) is a function of the half-power
beam width (GHP), beam tilt above horizontal (et), and the ray
elevation angle (ee) for which g is desired [24, (67)]; i.e.,

g[V/V] = [1 + (z'ee'et'/er)z'S] -0.5 .

where ee, 8 and ¢ must all be expressed in the same units of

t’ HP
angular measure, such as degrees or radians.

ATRCRAFT ANTENNA POLARIZATION OPTIONS Polarization of the air-
craft is not optional. It is always taken as being identical
with that of the facility antenna, which may be specified as cir-

cular, horizontal, or vertical. Therefore, losses associated
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with polarization sense mismatch are not included in the programs.
However, provisions do exist to allow antenna gain patterns for
horizontally and vertically polarization components to be individ-

ually specified for calculations involving circular polarization.

AIRCRAFT ANTENNA TILT The aircraft antenna main beam tilt above
horizontal is currently used only with the JTAC antenna pattern

formulation of (10).

ATIRCRAFT ANTENNA TRACKING OPTION If this tracking option 1is

used, the main beam of the aircraft antenna will always point at

the desired facility antenna.

EFFECTIVE REFLECTION SURFACE ELEVATION As shown in figure 44,

this elevation is measured above msl. If not specified, it will

be taken as the terrain elevation above msl of the facility site
surface (fss). This factor is used when the terrain from which
reflection is expected is not at the same elevation as the fa-
cility site; e.g., a facility located on a hilltop or cliff edge.
When the elevation of the facility antenna or horizon obstacle
is below the effective reflection surface level, a note will be
printed and the run aborted. This elevation is also used as the
elevation of average terrain for terrain other than the facility
site and horizon obstacle.

The following guidelines are useful in estimating effective
reflecting surface elevations:
1) Do not specify a value for this elevation (then a value equal
to the facility site elevation will be assumed) if (a) terrain in-
formation is too difficult to obtain, or (b) the path profile
[49, sec. 6.2] is such that a reasonable estimate is difficult.
For example, do not specify a value when the facility-to-horizon
reflection would be expected to occur from a tilted plane and the
facility horizon obstacle elevation is greater than the facility
site elevation:
2) Take this elevation as the facility horizon obstacle eleva-
tion if the path profile is such that the facility-to-horizon re-

flection would be expected to occur from a tilted plane and the
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horizon obstacle elevation is less than the facility site eleva-
tion; e.g., when the terrain slopes downward from the facility
site to its horizon so that none or very little of the terrain be-
tween the two has an elevation less than that of the horizon

obstacle.

3} This elevation should, in most cases, be taken as an estimate
of average terrain elevation in the vicinity of the surface along
the great-circle path that is expected to support reflection be-
tween the facility antenna and the facility horizon obstacle. In
a plane tangent to the reflecting point, the angle of incidence
should equal the angle of reflection; i.e., grazing angles (y of
fig. 40) are equal at the reflecting point [8, sec. 11.A; 27, sec.
CI-C.2]. '

The effort required to determine appropriate terrain input
parameters for IF-77 when the first two guidelines are not appli-
cable can be very difficult for inexperienced personnel without
adequate tools. Experienced personnel and computer programs use-
ful in processing terrain data are available at DOC and should be

utilized for difficult problems.

EQUIVALENT ISOTROPICALLY RADIATED POWER Equivalent isotropically
radiated power (EIRP) is the power radiated from the transmitting

antenna increased by the antenna's main lobe gain; i.e.,

EIRP[dBW] = P [dBW] + G [dBi] (11)

where PTR is the total power radiated from the transmitting an-
tenna and GT is the main beam gain of the transmitting antenna.
The term EIRPG is sometimes used (e.g., fig. 16) to indicate EIRP

increased by the receiving antenna main beam gain (GR); i.e.,
ETRPG(dBW] = EIRP[dBW] + G,[dBi]. (12)

In the calculation of transmission loss (e.g., fig. 23) only the
sum of the antenna gains is involved, and the term GAIN is used

where
GAIN[dBi] = GT[dBi] + GR[dBi]. (13)
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For example, a radiated power of 10 dBW, a transmitting antenna
gain of 10 dBi, and a receiving antenna gain of 6 dBi would result
in 20 dBW EIRP, a 26 DBW EIRPG, and a 16 dBi GAIN. Effective ra-
diated power (ERP) is similar to EIRP but is calculated with an
antenna gain specified relative to a half-wave dipole; therefore)
an EIRP value is 2.15 dB higher than an equivalent LRP value when

the same radiated power is involved.

FACILITY ANTENNA TYPE OPTIONS These options involve the antenna
gain pattern of the facility antenna. Some of the vertical plane

patterns currently available include those illustrated in figures
45 and 46 where antenna gain, normalized to the maximum gain, is
plotted against elevation angle (measured above the horizontal).

Figure 45 shows vertical patterns for the cosine, isotropic,
TACAN RTA-2 [12], and Tull. The 'cosine'" (voltage) pattern [24,
(67)] is used for a vertically polarized electric dipole or a
horizontally polarized magnetic dipole such as the antenna associ-
ated with VOR. Measured gain data on the RTA-2 and modified RTA-
2 antennas, supplied to DOC by FAA, were used in obtaining the
patterns for these TACAN antenna types. The Tull pattern is the
vertical radiation pattern associated with the localizer vortion
of the Tull Microwave Instrument Landing System and is a piece-
wise linear fit to data provided via the FAA.

Figure 46 shows vertical patterns for different Distance Mea-
suring Equipment (DME) antennas. These patterns are all piece-
wise linear fits to information provided by the FAA. Dashed lines
are used where the curves are extended beyond the data provided.
The pattern labeled "DME-Specification" was developed from a FAA
specification [17, sec. 3.5.7] by using minimum acceptable gain {
values. :

One pattern is currently available that allows beam width
and tilt to determine the pattern. This pattern is the JTAC pat-
tern previously discussed under "Aircraft antenna beam width"
where (10) defines the relative gain in terms of beam width and

tilt. Program modifications can easily be made to accommodate
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other patterns that are specified in terms of gain versus eleva-
tion angle.

Program TWIRL is the only program which involves the use of
horizontal plane (azimuth) antenna patterns (see ORIENTATION, fig.
35, discussion in sec. 3.2). An example of such a pattern is the

localizer portion of an ILS 8-loop array antenna [22, fig. 1].

This pattern and preliminary patterns for other ILS localizer
antennas are currently available, but program modifications can
easily be made to accommondate other patterns that are specified
in terms of gain versus azimuth angle.

Antenna pattern data are used to provide information on gain
relative to main beam only. The extent to which the main beam
antenna gain exceeds that of an isotropic antenna is listed in
table 2 as a separate item (i.e., under GAIN) and is used in the
specification of EIRP as per (11) when the antenna is transmit-

ting.

FACILITY ANTENNA BEAM WIDTH This parameter is currently used
only in connection with the JTAC antenna pattern given by (10).

FACILITY ANTENNA COUNTERPOISE DIAMETER The counterpoise was in-
corporated into the model for the VOR. It will not be included
in the calculations if its diameter is specified as zero, and the

parameters associated with it will not be printed. A diameter
greater than 500 ft (152 m) will cause a warning note to be

printed, but will not abort the run.

FACILITY ANTENNA COUNTERPOISE HEIGHT If the counterpoise height
above the facility site surface (fss) is less than zero, it will
be set equal to zero. An appropriate note will be printed and
the run aborted if the height is (a) greater than 500 ft (152 m),
or (b) greater than the facility antenna height. The facility
antenna should be above the counterpoise by at least one-third

of a wavelength, which is 3 ft (1 m) at 100 MHz, and by not more
than 2,000 ft (610 m).
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FACILITY ANTENNA COUNTERPOISE SURFACE OPTIONS Counterpoise sur-

face options fix the conductivity and dielectric constant associ-

ated with the counterpoise surface. Values associated with each

option are given in table 5.

FACILITY ANTENNA POLARIZATION OPTIONS These options include

circular , horizontal, and vertical polarization [47, ch. 8].

Polarization for the aircraft antenna is always taken as being
identical with that of the facility antenna. Therefore, losses
assoclated with polarization sense mismatch are not included in
the programs. However, provisions do exisf to allow antenna gain
patterns for horizontally and vertically polarized components to
be individually specified for calculations involving circular

polarization.

FACILITY ANTENNA TILT The facility antenna main beam tilt above-
horizontal is currently used only with the JTAC antenna pattern

formulation of (10). However, it can also be used to adjust the-

tilt of other patterns.

FACILITY ANTENNA TRACKING OPTION If this tracking option is

used, the main beam of the facility antenna will always point atf

the aircraft.

Table 5. Surface Types and Constants
[25, table 6]

Type Conductivity Dielectric
(mhos/m) Constant
Poor ground 0.001 4
Average ground 0.005 15
Good ground 0.02 25
Sea water 5% g1*
Fresh water 0.01% 81*
Concrete 0.01 5
Metal 107 10

*More appropriate values are calculated if surface sea tempera-

ture is specified.




FREQUENCY FRACTION This is the fraction of the carrier frequency
that corresponds to half the bandwidth used for the spectral plot
‘capability (fig. 15). For example, a carrier frequency of 125 MHz
and a fraction of 0.0004 would result in a bandwidth of
(2)(0.0004)(125) =0.1 MHz = 100 kHz.

GAIN, RECEIVING ANTENNA This item is the main beam gain [dBi]

of the receiving antenna. A 0 dBi value will be assumed if no

gain is specified.

GAIN, TRANSMITTING ANTENNA This item is the main beam gain
[dBi] of the transmitting antenna. A 0 dBi value will be assumed

if no gain is specified.

TRANSMITTING ANTENNA LOCATION This item is included to provide

a more complete specification of problem parameters and to allow

the program operator to check for potential incorrect power den-
sity or D/U estimates. Other predictions have transmitter/re-
ceiver reciprocity. Power density and D/U calculations assume

that the transmitting antenna is located at the facility.

HORIZON OBSTACLE DISTANCE FROM FACILITY If not specified, this
distance will be calculated from horizon parameters that are spec-
ified and/or by using the terrain varameter Ah. When the dis-
tance is not within 0.1 to 3 times the smooth earth horizon dis-

tance, a warning note will be printed, but the run will not be

aborted.

HORIZON OBSTACLE ELEVATION ANGLE ABOVE HORIZONTAL AT FACILITY

If not specified, the horizon obstacle elevation angle at the
facility will be calculated from horizon parameters that are spec-
ified and/or by using the terrain parameter Ah. When the angle
exceeds 12°, a warning note will be printed, but the run will not

be aborted.

HORIZON OBSTACLE HEIGHT If not specified, this height will be
calculated from horizon parameters that are specified and/or by
using the terrain parameter Ah. When the height is not within
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the 0 to 15,000 ft-msl (4572 m) range, a warning note will be

printed, but the run will not be aborted.

IONOSPHERIC SCINTILLATION FREQUENCY SCALING FACTOR The use of

this simple scaling factor is optional. It should only be used

.when estimates of the variability associated with ionospheric
scintillation at a particular frequency (f in MIiz) must bc based
on data collected at 136 MHz [55, sec. 3.4]. Use of this factor
‘results in scaling by (136/f)n where n varies from 1 to 2 as a

function of facility latitude [55, (27)].

TONOSPHERIC SCINTILLATION INDEX GROUP Variability associated
with 1onospheric scintillation for paths that pass through the
ionosphere (e.g., earth station/satellite path) is considered via
the distributions shown in figure 47. Input requirements involve
the specification of the particular scintillation index groun
(fig. 47) of interest. Scintillation index is the ratio of peak

excursion from mean power to mean power [46, (2); 58]. Provi-
sions exist (table 2, index group =6) to allow the signal level
variability associated with jionospheric scintillation to change
with earth facility latitude. Figure 48 shows the distributions
currently used when this option is selected. These distributions.
were developed by mixing distributions for particular scintilla-
tion index groups in accordance with the estimated time for which
they would be present at a frequency of 136 MHz [55, sec. 3.4] so
that the frequency scaling factor discussed above should be used
with these distributions. However, only minor program modifica-
tions would be necessary to incorporate other distributions that

might be of interest.

RAIN ATTENUATION OPTIONS An allowance for rain attenuation may
be made by using a fixed attenuation rate (dB/km) or by using

rain attenuation statistics for a particular rain zone and storm

size. Rain attenuation via the rain zone model is present for
less than 2 percent of the time so that only time availabilities

greater than 98 percent will be affected.
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RAIN ATTENUATION/KM With this option, rain attenuation is cal-
culated as the product of the attenuation rate and the length of

the most direct ray path between the terminals that is within the

storm.

RAIN STORM SIZE This is the length (or diameter) of the storm
over the great-circle path connecting the terminals. It 1is as-
sumed that this length is made up by a single storm that extends

to an altitude above average terrain that is equal to the storm

size and contains as much of the most direct ray nath as possible.
For the models used here the greatest length of path subjected to
rain attenuation is limited to the rain storm length and the smal-
lest is zero since the direct ray could be entirely above the

storm for an air-to-air propagation path.

RAIN ZONE If the option involving statistical attenuation rates
is desired, a rain zone number from either figure 49 for the con-
tinental United States or figure 50 for other parts of the world
is selected [51, 52, 53, 54, 57]. Rain attenuation via this op-
tion is present for less than 2 percent of the time so that only

time availabilities greater than 98 percent will be affected.

REFRACTIVITY Values for the minimum monthly mean surface refrac-
tivity referred to mean sea level (NO) may be estimated from ei-

ther figure 51 for the continental United States or figure 52 for
other parts of the world. Other information [3, 4, 5, 50, 51, 52]
which may be more appropriate for the particular conditions (e.g.,

time of year and location) involved can be used to estimate NO

or a minimum monthly mean value for effective earth radius. Spec-
ification of NO outside the 200-to-400 N-unit range will result

in NO being set to 301. If the surface refractivity (NS) calcu-
lated [49, (4.3)] from NO is less than 200 N-units, NS will be

set to 200 N-units and an appropriate note printed. An NS of 301
N-units corresponds to an effective earth radius factor of 4/3
(49, fig. 4.2], If desired, a value for effective earth radius

can be specified directly.
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SURFACE REFLECTION LOBING OPTIONS Lobing associated with the

phase difference between direct and reflected rays in the line-of-

sight region contributes to the short-term variability (within the
hour fading) or is used to define the median level in the line-
~of-sight region. These options can result in predictions that

are very different. The variability option provides a more reli-
able estimate of propagation statistics in most cases. I[lowever,
the lobing pattern option is uscful when sclecting antenna heights
to avoid low signal levels (nulls) in particular portions of air
space. With the variability option, lobing is treated as part of
the short-term (within-the-hour) variability when the reflected
ray path length exceeds the direct ray path length by more than
half a wavelength (inside horizon lobe) so that the lobing pat-
tern is not plotted. The other option allows the median level to
be determined by such lobing for the first ten lobes inside the
radio horizon so that the lobing pattern will be plotted. Regard-
less of the option selected, lobing caused by reflection from the
counterpoise (if present) is used in median level determination
and does not contribute to the short-term fading; i.e., if pre-

sent, counterpoise lobing is plotted with either option.

SURFACE TYPE OPTIONS These options fix the conductivity and di-
electric constants associated with the effective reflecting sur-

face. Values associated with each option are given in table 5.
If the surface is water, the constants of table 5 may be used or

surface constants may be calculated using surface sea temperature.

SURFACE SEA STATE If fresh or sea water is chosen, an allowance

may be made for water roughness by specifying sea state or the

root-mean-square deviation of surface excursions within the lim-
its of the first Fresnel zone in the dominant reflecting plane
(oh). Table 6 shows the relationship used to relate sea state to
Uh.

Values for a SN provided in table 6 were estimated using

significant wave height (Hl/S) estimates from Sheets and Boat-

wright [53, table 1] with a formulation given by Moskowitz
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for Sea States [27, p. CI-81]

Table 6., Estimates of Oh
Sea(a) Average Wave H (b) Oh (c)
State (a) Height Range 1,3
Code Descriptive Terms Meters (feet) Meters (feet) Meters (feet)
0] Calm (glassy) 0] 0 0
(0) (0) (0)
1 Calm (rippled) 0 - 0.1 0.09 0.00
(0 - 0.33) (0.3) (0.08)
2 Smooth (wavelets) 0.1 - 0.5 0.43 0.11
(0.33 - 1.6) (1.4) (0.35)
3 Slight 0.5 - 1.25 1 0.25
(1.6 = 4.0) (3.3) (0.82)
4 Moderate 1.25 - 2.5 1.9 0.46
(4 - 8) (6.1) (1.5)
5 Rough 2.5 - 4 3 0.76
(8 - 13) (10) (2.5)
6 Very rough 4 - 6 4.6 1.2
(13 - 20) (15) (3.8)
7 High 6 - 9 7.9 2
(20 - 30) (26) (6.5)
8 Very high 9 - 14 12 3
(30 - 46) (40) (10)
9 Phenomenal >14 >14 >3.5
(>46) (>45) (>11)

(a) Based on international meteorological code [42, code 3700].

(b) Estimates significant wave heights, average of highest one-third,

E 53, table 1].
1/3[ ]

(c) Estimated using a formulation provided by Moskowitz [41,

H estimates.

1/3

100

(1)] with



[41, (1)]. However, o, may also be specified directly.

SURFACE SEA TEMPERATURE The dielectric constants and the conduc-

tivity of water vary with frequency, salinity, and temperature

[27, sec. CI-D.8]. The programs allow water surface constants to
be calculated for either fresh water or average sea water (3.6%

salt) and three water temperatures (0°, 10°, or 20°C).

TERRAIN ELEVATION This is the elevation of the facility site
above msl (fig. 44). Values less than zero are set to zero, and
a note will be printed if the 15,000 ft-msl (4572 m-msl) limit is

exceeded, but the run will not abort.

TERRAIN PARAMETER The terrain parameter (Ah) is used to charac-

terize irregular terrain. Values for it may be calculated from

path profile data [37, annex 2] or estimated using table 7. When
the aircraft is much higher (> 10 times) than the facility, the
terrain used to determine Ah should be that terrain between the
facility and its radio horizon. Estimates can also be made using
figure 53 when profile data or terrain type information is not

conveniently available.

Table 7. Estimates of Ah [37, table 1]

Type of Terrain Ah Ah
(feet) (meters)

Water or very smooth plains 0 - 20 -0 -5
Smooth plains 20 - 70 5 - 20
Slightly rolling plains 70 -130 20 - 40
Rolling plains 130 -260 40 - 80
Hills 260 -490 80 -150
Mountains : 490 -980 150 -300
Rugged Mountains 980 -2000 300 -700
Extremely rugggd mqutains 7 >2,000 _1700
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TERRAIN TYPE OPTIONS If the smooth earth option is selected,

all calculations will be based on smooth earth parameters even

though parameters specified elsewhere imply irregular terrain.
For example, smooth earth specification would cause specified hor-
izon parameters to be neglected and smooth earth values used in

their place.

TIME AVAILABILITY OPTIONS If the first option is selected,
short-term (within-the-hour) fading will contribute to the vari-

ability, and time availability is applicable to instantaneous lev-
els that are available for specific percentages of the time. With
the second option, only long-term (hourly median) variations are
included in the variability, and time availability is anplicable
to the hourly median levels that are available for a specific per-

centage of hours.

TIME AVAILABILITY CLIMATES OR TIME BLOCKS If no option is selec-

ted under climates, the programs will use the long-term (hourly

median) variability as described in Gierhart and Johnson [24,
sec. A.5]; i.e., continental all year climate. Climates similar
to those defined by the CCIR [9] and described in table 8 are
available. ‘Variability functions for these climates were devel-
oped at the DOC (informal communication, A. G. Longley and G. A.
Hufford). The factor used in the propagation model to avoid ex-:
cessive variability for paths with a very high antenna (satellite)
was developed for the continental all year climate [23, fig. 2];
and the use of other climates for satellite paths may result in
excessive variability. Time blocks for the continental temperate
climate also are options. The time block periods are defined in
table 9.

4.2 SPECIAL PARAMETERS (Table 3, p. 76)
Special parameters required for particular capabilities are
covered in table 3. Some of these parameters are required for
more than one capability, and the 13 capabilities associated with

programs LOBING and ATOA (table 1) do not require parameters from
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Table 9. Time Block Ranges [47, p. III-45]

No. Months Hours
1 November - April 0600 - 1300
2 November - April 1300 - 1800
3 November - April 1800 - 2400
4 May - October 0600 - 1300
5 May - October 1300 - 1800
6 May - October 1800 - 2400
7 May - October 0000 - 0600
8 | November - April 0000 - 0600
Summer: " May - October " all-hours
Winter November - April all-hours ___

- - — o«

table 3. Short discussion for each of the parameters given in
table 3 are provided in this section. These discussions are or-
dered by order of appearance in table 3. Information as to how
these parameters are related to particular capabilities can be
obtained from the capability discussions nrovided in section 3.2
and table 1.

AIRCRAFT ALTITUDES These represent the altitudes (a) for which

specific curves of power available (fig. 21), power density, (fig.

22) or transmission loss (fig. 23) curves will be developed, or
(b) that are used to cover the altitude versus distance airspace
for which volume (e.g., power available volume, fig. 24) or con-
tour (e.g., EIRP contours, fig. 27) type granhs are desired. Es-
timates of the altitudes required for the latter can be made by
the program operator from the graph format specifications of
table 4 so that the specification altitudes in table 3 are not
always required. Altitude is measured with respect to mean sea
level (msl) and provision for the use of units of feet (ft-msl)
or meters (m-msl) are made in table 3. The appropriate units
should be circled or explicitly stated, if different from the

choices provided.
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TIME AVAILABILITY The specification of time availability (see
sec. 4.1, TIME AVAILABILITY... discussions) is required for those

capabilities where a single time availability is used. It may
range from 0.01 to 99.99 percent. Statistical rain attenuation
effects will only be present for time availabilities greater than
98 percent (see sec. 4.1, RAIN ZONE discussion). A time availa-
bility of 95 percent will be used when another value is not speci-
fied.

POWER AVAILABLE, POWER DENSITY, TRANSMISSION LOSS AND/OR EIRP
Single and/or multiple values of power available, power density,

transmission loss, and/or EIRP are needed for several capabili-

ties.

STATION SEPARATION The specificatidn of station separation (fig.

42) is required for those capabilities where a single station
separation is used. The appropriate units should be circled or
explicitly stated, if different from the choices provided.

DESIRED FACILITY-TO-ATIRCRAFT DISTANCE This distance is re-
quired for the Signal Ratio-S (fig. 33) capability where the

location of the aircraft is fixed (altitude and distance) rela-
tive to the desired facility. The appropriate units should be
circled or explicitly stated, if different from the choices

provided.

DESIRED-TO-UNDESIRED SIGNAL RATIO Specification of desired-
to-undesired signal ratio (D/U) is required for those capabili-

ties where a single D/U ratio is us'ed.

PROTECTION POINT LOCATIONS Protection point locations must be
specified for the orientation capability. These points are

located relative to the desired facility as illustrated in fi-
gure 43 with angles relative to the desired facility course
line, and desired facility to protection point distance. Pro-
tection point locations will be taken as those associated with
figure 43 when they are required, but not specified. The ap-
propriate units should be circled or explicitly stated, if

different from the choices provided.
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4.3 GRAPH FORMAT PARAMETERS (Table 4, p. 78)

Parameters associated with graph formats are covered in ta-

ble 4. In many, if not most, cases, an adequate selection of
these parameters can be made by the program onerator so that
complete specification via table 4 is not often required.

Some graphs have options associated with the ordinate (feet
or meters) and/or abscissa (degrees, kilometers, nautical miles,
or statute miles) units. These options are selected via tablec 4
by circling the choice desired. The degrees onption involves the
use of central angle instead of path distance (fig. 41). This
option is useful when coverage estimates for a geostationary
satellite are required.

Except for the spectral plot canability, the parameters re:
quired for table 4 are associated with the ordinate (lower-to-
upper) and abscissa (left-to-right) scales. End points, incre-
ment between grid lines, and units are specified. The interval
between end points should correspond to an integer number of in-
crements. Except when transmission loss is plotted, the upver
value should exceed the lower value. In all cases, the right
value should exceed the left value and values less than zero
should not be used.

Spectrum plots may be made with the spectral nlot capability
for any 5 consecutive lobes within 10 lobes of the radio-horizon
where the first lobe is taken as the first lobe inside the radio
horizon (see SPECTRAL PLOT, fig. 15, discussion in sec. 3.2).
For example, specification to '"plot lobe 3 through 7" would re-

sult in plots for lobes 3, 4, 5, 6, and 7.

5. SUMMARY AND SUBMISSION INFORMATION

The ten computer programs covered by this report are useful

in estimating the service coverage of radio systems operating in
the frequency band from 0.1 to 20 GHz. These programs and the
propagation models (sec. 2) used in them are extensions of work
previously reported [24; 25, sec. CII]. They may be used to
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obtain a wide variety of computer generated microfilm plots.
Plotting capabilities are summarized in table 1 and discussed in
section 3.2. Sample graphs are provided in section 3.1 and sam-
ple problem applications are given in section 3.3. Concise in-
formation on input parameter requirements is provided in tables 2
through 4 (sec. 4)
A potential user should
1) read the brief description of the propagation model
provided in section 2 to see if the model is annli-
cable to his problem,
2) select the program(s) whose output(s) are most apnro-
nriate from the information given in section 3 (ta-
ble 1),
3) determine values for the input parameters discussed
in section 4 (table 2 through 4),
4) request a cost estimate for appropriate computer
runs, and
5) submit the formal request and/or purchase order that
may be required.
FAA requests should be addressed to:

Federal Aviation Administration

Spectrum Management Staff, ARD-60
Systems Research and Development Service
2100 Second Street, S.W.

Washington, D. C. 20591

Attention: Navigation Specialist

Telephone contact is strongly encouraged, and Mr. Robert Smith,
Navigation Specialist, can be reached at 426-3600 if the Federal
Telecommunications System (FTS) is used, or (202)426-3600 if com-

mercial telephone is used.
Other requests should be addressed to:
Department of Commerce
Spectrum Utilization Division, OT/ITS-1

325 Broadway
Boulder, CO 80303

Attention: Mary Ellen Johnson
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Telephone contact is strongly encouraged and Mrs. Mary Ellen John-
son can be reached at 323-3587 if FTS is used or (303)499-1000

x 3587 if commercial telephone is used. If extension 3587 can't
be reached, try extension 4162, which is the Spectrum Utilization

Division office.
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APPENDIX A. ADDITIONAL PROBLEM APPLICATIONS

This appendix provides additional problem applications simi-
lar to those of section 3.3. These problems were included to il-
lustrate the effects of varying particular parameters on system
performance. The subject of each problem is summarized in table
Al, and these subjects have bcen used as headings in the text as

an aid to the reader.

Table Al Additional Problem Applications

Problem System Predicted Variable

Parameter Parameter

Al ATC Range Polarization

A2 ATC Range Terrain Parameter

A3 TACAN Range Beam Tilt

A4 Satellite Range Scintillation Index

A5 Satellite Margin Sea State

A6 ILS ' Separation Site Elevation

A7 ILS Separation Surface Constants

A8 ILS Separation Terrain Parameter

A9 ILS Separation Terrain Profile

ATC, Range, Polarization

Problem Al: Estimate the gapless service range for the geometry

illustrated in figure Al and the ATC system with parameters of
figure A2 for vertical, horizontal, and circular polarization by
using both the lobing and variability options of the transmission
loss capability. Use a time availability of 95 percent, and ba-
sic transmission loss, Lb (95%), value of 125 dB to determine ser-
vice range. Here, gapless implies that satisfactory service,
Lb(95%) < 125 dB, is available at all distances within the ser-

vice range; i.e., no gaps.
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Solution: Key parameters associated with this problem are
illustrated in figure Al. Figures A3 through A8 were developed
in response to this problem and the values of maximum gapless

range tabulated below were taken from them.

Polarization Figures Gapless Service Range [n mi (km)]
Lobing Option Variability Option

Vertical A3, A4 179 (332) 82 (152)
Horizontal AS, A6 28 (52) 56 (104)
_Circular A7, A8 75 (139) 67 (124)

Note that (a) the use of vertical polarization results in the
greatest range in all cases since it has the lowest reflection co-
efficient associated with it, (b) the variability optilion results
in the lower range in two cases since it is usually more pessi-
mistic when low (< about 0.5) reflection coefficients are in-
volved, and (c) the lobing option results in the lowest range for
horizontal polarization since it tends to be more pessimistic for

high (> about 0.5) reflection coefficients.

—
—_—
—_—

-~
S~
S~
Horizontal polarization is perpendicular to both =
the facility-to-aircraft ray (FAR) and the
great-circle path plane (GCPP).

Aircrafr altitudes=
45.000 fe {13,716 «
~ ™

Vertical polarization is perpendicular to the FAR
and in the GCPP.

Circular polarization has both horizontal and”
yertical polarization companents.,

dp

Facility antenna height=
50 ft {(15.2 m)

dp= Desired facility-to-aircrafe
great-circle distance.,

Figure Al. Problem Al, geometry sketch (not drawn to scale).
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PARAMETERS FOR ITS PROPAGATION MODEL IF-77
77/07/13. 22.15.49. RUN

BASIC TRANSMISSION LOSS FOR ATC
SPECIFICATION REQUIRED

AIRCRAFT (OR HIGHER) ANTENNA ALTITUDE: 45000. FT (13716.M) ABOVE MSL
FACILITY (OR LOWER ANTENNA HEIGHT: 50.0 FT (15.2M) ABOVE FSS
FREQUENCY: 125. MHZ

SPECIFICATION OPTIONA

AIRCRAFT ANTENNA TYPE: ISOTROPIC
POLARIZATION: HORIZONTAL
EFFECTIVE REFLECTION SURFACE ELEVATION ABOVE MSL: 0. FT (0.M)
GAIN SUM OF MAIN BEAMS: 0.0 DBI
FACILITY ANTENNA TYPE: ISOTROPIC
POLARIZATION: HORIZONTAL

HORIZON OBSTACLE DISTANCE: 8.69 N MI (16.09KM) FROM FACILITY*
ELEVATION ANGLE: -0/ 6/30 DEG/MIN/SEC ABOVE HORIZONTAL¥*
HEIGHT: 0. FT (0.M) ABOVE MSL

REFRACTIVITY:

EFFECTIVE EARTH RADIUS: 4586. N MI (8493.KM)*
MINIMUM MONTHLY MEAN: 301. N-UNITS AT SEA LEVEL
SURFACE REFLECTION LOBING: CONTRIBUTES TO VARIABILITY
SURFACE TYPE: AVERAGE GROUND
TERRAIN ELEVATION AT SITE: 0. FT (0.M) ABOVE MSL
TERRAIN PARAMETER: 0. FT (0.M)
TIME AVAILABILITY: FOR INSTANTANEOUS LEVELS EXCEEDED

* COMPUTED VALUE

Notes:

1) Polarization, surface reflection lobing option and terrain para-
meter used for figures A3 through A8 and AlO and All vary as indi-
cated in the figure captions.

2) Parameter values (or options) not indicated are taken as the as-
sumed values (or options) provided on the general parameter speci-
fication sheet (table 2).

3) To simulate computer output, only upper case letters are used.
Dual units are not provided on actual computer output.

Figure A2. Problems Al and A2, parameter sheet, ATC.
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ATC, Range, Terrain Parameter

Problem AZ: Estimate the maximum gapless service range for an

ATC system with the geometry illustrated by figure A9 and the
parameters of figure A2 with vertical polarization for smooth
earth, rolling hills, and mountains by using the transmission
loss capability with the variability option. Use a time availa-
bility of 95 percent and basic transmission losses of 130 and
150 dB.

Solution: Tigures A4, Al0 and All are applicable to this
problem and the values of gapless range tabulatcd below were ta-
ken from them. The increase in service range with terrain irreg-
ularity for Lb(95%) =130 dB is caused by a decrease in the specu-
lar reflection coefficient as surface roughness increases, while
the decrease for Lb(95%)= 150 dB.is caused by a decrease in radio
horizon distance. Except for the last case (mountains, 150 dB)
increasing irregularity tends to increase the service range be-
cause of a corresponding decrease in reflection coefficient. In
the last case the decrease of service range occurs because of a

decrease in radio horizon distance.

——— Aircraft altitude=
T~ 45,000 ft (13,716 m)

Facility antenna height=
50 fr (15.2 m)

// / Facility horizon
,/ / parameters are computed
N/ / using the terrain
~ / parameter,Ah. Beyond
) this horizon the earth
Surface roughness computed from Ah is considered smooth.
is used in the calculation of
reflection coefficients.

dp= Desired facility-to-aircraft
great-circle distance. i
Figure A9. Problem A2, geomclry vketch (not drawm to scale).
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[n mi (km)]

Terrain Figure Gapless Service Range

Lb(QS%]= 130 dB Eb(QS%)= 150 dB

Smooth earth Ad 118 (219)
Rolling plains Al0 165 (306)
Mountains All 175 (324)

TACAN, Range, Beam Tilt

Problem A3:. Estimate the maximum service range for

254 (470)
254 (470)
244 (452)

the geometry

illustrated in figure Al12 and the TACAN parameters given in fig-

ure Al3 for three antenna main beam tilts, (a) normal,
and (c) adjusted to track the aircraft. Use -86 dB-

power density and a time availability of 95 percent

maximum service range.

—_——— ///’\\Aircraft altitude=
T —— 40,000 ft (12,192 m)

(b) 0°,
W/sq m of
to define

~
g =~
7 ~
7 ~
// \
il (a) Tracking, mainbeam always
(a) points at aircraft
(b) (b} Normal, mainbeam elevation

fixed at Qu,

Facility antenna height=

30 ft (9.1 m)

dp= Desired facility-to-aircraft
great-circle distance.

angle fixed at 7°.

(c) Mainbeam elevation angle

Figure A12. Problem A3, geometry sketch (not drawm to scale).
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PARAMETERS FOR ITS PROPAGATION MODEL IF-77
77/04/12. 16.48.40. RUN

POWER DENSITY FOR TACAN
SPECIFICATION REQUIRED

AIRCRAFT (OR HIGHER) ANTENNA ALTITUDE: 40000. FT (12192.M) ABOVE MSL
FACILITY (OR LOWER) ANTENNA HEIGHT: 30.0 FT (9.14M) ABOVE FSS
FREQUENCY: 1150. MHZ

SPECIFICATION OPTIONAL

e L i —  m —m — —_—— = =

AIRCRAFT ANTENNA TYPE: ISOTROPIC
POLARIZATION: VERTICAL
EFFECTIVE REFLECTION SURFACE ELEVATION ABOVE MSL: 0. FT (O0.M)
EQUIVALENT ISOTROPICALLY RADIATED POWER: 39.0 DBW
FACILITY ANTENNA TYPE: TACAN (RTA-2)
POLARIZATION: VERTICAL

HORIZON OBSTACLE DISTANCE: 6.73 N MI (12.46KM) FROM FACILITY¥*
ELEVATION ANGLE: -0/ 5/02 DEG/MIN/SEC ABOVE HORIZONTAL¥*
HEIGHT: 0. FT (0.M) ABOVE MSL

REFRACTIVITY:

EFFECTIVE EARTH RADIUS: 4586. N MI (8493.KM)*
MINIMUM MONTHLY MEAN: 301. N-UNITS AT SEA LEVEL
SURFACE REFLECTION LOBING: CONTRIBUTES TO VARIABILITY
SURFACE TYPE: AVERAGE GROUND
TERRAIN ELEVATION AT SITE: 0. FT (0.M) ABOVE MSL
TERRAIN PARAMETER: 0. FT (0.M)
TIME AVAILABILITY: FOR INSTANTANEOUS LEVELS EXCEEDED

POWER DENSITY (DB-W/SQ M) VALUES MAY BE CONVERTED TO POWER
AVAILABLE AT THE TERMINALS OF A PROPERLY POLARIZED
ISOTROPIC ANTENNA (DBW) BY ADDING =-22.7 DB-SQ M.

* COMPUTED VALUE

Notes:

1) Aircraft antenna information is not actually used in power density
calculations.

2) Parameter values (or options) not indicated are taken as the as-
sumed values (or options) provided in the general parameter speci-

fication sheet (table 2).

3} To simulate computer output, only upper case letters are used.
Dual units are not provided on actual computer output.

Figure A13. Problem A3, parameter sheet, TACAN.

123



Solution: Figures Al4 through Al6 were developed for this
problem and the values tabulated below were taken from them. The
larger range for the normal tilt angle is caused by better surface
reflection discrimination associated with the antenna pattern

tilt.

Beam Tilt Figure Gapless Scrvice Range [n mi (km) ]
Normal Ald 125 (232)
0° Al5 100 (185)
Tracking Al6 108 (200)

Satellite, Range, Scintillation Index

Problem A4: Estimate the maximum north latitude for which satis-
factory service is available for a VHF geostationary satellite
with the geometry illustrated in figure Al7 and the parameters of
figure Al18. Let the ionospheric scintillation index group be
fixed at 0 or 5. Also, use the variable scintillation option
(table 2, scintillation index group code of 6) with the frequency
scaling factor option (table 2). Use a power available at the
receiving antenna terminal of -140 dBW and a time availability of
95 nercent to define satisfactory service.

Solution: Figures Al9 through 21 are applicable to this
problem, and the values tabulated below were taken from them.
The maximum north latitude occurs along the subsatellite meridian.

Scintillation Index Figure Maximum North
Group Latitude
0 Al9 79°
5 AZ0 68°
Variable A21 79°

During worst case conditions (group 5), the power available 95
percent of the time never exceeds -137 dBW so that a 3 dB increase
of the received power requirements would result in unsatisfactory
service for all angles. However, the same increase in received
power requirement would not decrease coverage to a maximum north

latitude significantly for the other two conditions examined.
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’//’~‘Geostationary satellite altitude=
19,351 n mi (35,838 km)

Aircraft altitude=
30,000 ft (9,144 m)

Central angle,®,, is latitude along
the subsatellite meridian.

Figure A17.  DProblems A4 and A5, geometry sketch (not drawn to scalel.
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PARAMETERS FOR ITS PROPAGATION MODEL IF-77
77/09/01. 17.42.47. RUN

POWER AVAILABLE FOR VHF SATELLITE SEA STATE O
SPECIFICATION REQUIRED ’

AIRCRAFT (OR HIGHER) ANTENNA ALTITUDE: 19351. N MI (35838.KM) ABOVE MSL
FACILITY (OR LOWER) ANTENNA HEIGHT: 30000.0 FT (9144.M) ABOVE FSS
FREQUENCY: 125. MHZ

SPECIFICATION OPTIONAL

ATIRCRAFT ANTENNA TYPE: JTAC

BEAMWIDTH, HALF-POWER: 10.00 DEGREES

POLARIZATION: CIRCULAR

TILT IS -90.0 DEGREES ABOVE HORIZONTAL
EFFECTIVE REFLECTION SURFACE ELEVATION ABOVE MSL: O. FT (0.M)
EIRP PLUS RECEIVING ANTENNA MAIN BEAM GAIN: 35.0 DBW
FACILITY ANTENNA TYPE: JTAC

BEAMWIDTH, HALF-POWER: 20.00 DEGREES

POLARIZATION: CIRCULAR

ANTENNA IS TRACKING
HORIZON OBSTACLE DISTANCE: 208.85 N MI (385.79KM) FROM FACILITY*

ELEVATION ANGLE: -2/49/36 DEG/MIN/SEC ABOVE HORIZONTAL*
- HEIGHT: 0. FT (0.KM) ABOVE MSL
IONOSPHERIC SCINTILLATION INDEX GROUP: O
REFRACTIVITY:

EFFECTIVE EARTH RADIUS: 4586. N MI (8493.xXM)*
MINIMUM MONTHLY MEAN: 301. N-UNITS AT SEA LEVEL
SURFACE REFLECTION LOBING: CONTRIBUTES TO VARIABILITY
SURFACE TYPE: SEA WATER )l
STATE: O
CALM (GLASSY)
0.00 FT (0.00M) RMS WAVE HEIGHT
TEMPERATURE: 10. DEG CELSIUS
3.6 PERCENT SALINITY
TERRAIN AT ELEVATION SITE: 0. FT (0.M) ABOVE MSL
TERRAIN PARAMETERS: O. FT (0.M)
TIME AVAILABILITY: FOR INSTANTANEOUS LEVELS EXCEEDED

* COMPUTED VALUE

Notes: 1) Parameter values (or options) not included are taken as the as-
sumed values (or options) provided in the general parameter speci-
fication sheet (table 2).

2) To simulate computer output, only upper case letters are used.
Dual units are not provided on actual computer output.

Figure A18. Problems A4 and A5, parameter sheet, VHF satellite.
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Satellite, Margin, Sea State

Problem A5: Estimate the fade margin required for the VHF and

UHF satellite systems with the parameters of figures A18 and A22
at a central angle (fig. Al17) of 70° when the sea state is 0 or 6
and ionosphere scintillation is neglected. Take the required
fade margin as the diffcrencc hetween power available curves for
a time availability of 50 and 95 percent.

Solution: Figures A19, A23, A24, and A25 are applicable, and
the values tabulated below were obtained from them.

Satellite Sea State Figure Fade Margin [dB]
VHF 0 Al9 1
VHF 6 AZ3 0.5
UHF 0 A24 1
UHF 6 A25 <0.5

Fade margins required for smooth sea (sea state 0) are greater
than those required for very rough sea (sea state 6, table 6) be-
cause the roughness of the reflecting surface lowers the magni-
tude of the specular reflection coefficient so that the short
term variability associated with surface reflection multipath is
reduced for higher sea states. The factor used to reduce the
specular reflection coefficient [24, (66)] provides more reduc-
tion at higher frequencies (i.e., roughness expressed in wave-
length increases with frequency), but is unity for a smooth sur-

face regardless of frequency.
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PARAMETERS FOR ITS PROPAGATION MODEL IF-77
77/09/C1. 17.43.34. RUN

POWER AVAILABLE FOR UHF SATELLITE SEA STATE O
SPECIFICATION REQUIRED

AIRCRAFT (OR HIGHER) ANTENNA ALTITUDE: 19351. N MI (35838.KM) ABOVE MSL
FACILITY (OR LOWER) ANTENNA HEIGHT: 30000.0 FT (9144.M) ABOVE FSS
FREQUENCY: 1550. MHZ

SPECIFICATION OPTIONAL

AIRCRAFT ANTENNA TYPE: JTAC
BEAMWIDTH, HALF-POWER: 10.00 DEGREES
POLARIZATION: CIRCULAR
TILT IS -90.0 DEGREES ABOVE HORIZONTAL
EFFECTIVE REFLECTION SURFACE ELEVATION ABOVE MSL: 0. FT (0.M)
EIRP PLUS RECEIVING ANTENNA MAIN BEAM GAIN: 41.0 DBW
FACILITY ANTENNA TYPE: JTAC
BEAMWIDTH, HALF-POWER: 20.00 DEGREES
POLARIZATION: CIRCULAR
ANTENNA IS TRACKING
HORIZON OBSTACLE DISTANCE: 208.85 N MI (385.79KM) FROM FACILITY*

ELEVATION ANGLE: -2/49/36 DEG/MIN/SEC ABOVE HORIZONTAL*
HEIGHT: 0. FT (0.M) ABOVE MSL

IONOSPHERIC SCINTILLATION INDEX GROUP: O

REFRACTIVITY:

EFFECTIVE EARTH RADIUS: 4586. N MI (8493.KM)*
MINIMUM MONTHLY MEAN: 301. N-UNITS AT SEA LEVEL
SURFACE REFLECTION LOBING: CONTRIBUTES TO VARIABILITY
SURFACE TYPE: SEA WATER
STATE: O
CALM (GLASSY)
0.00 FT (0.00M) RMS WAVE HEIGHT
TEMPERATURE: 10. DEG CELSIUS
3.6 PERCENT SALINITY
TERRAIN ELEVATION AT SITE: 0. FT (0.M) ABOVE MSL
TERRAIN PARAMETER: 0. FT (0.M)
TIME AVAILABILITY: FOR INSTANTANEOUS LEVELS EXCEEDED

* COMPUTED VALUE

Motes:

1) Parameter values (or options) not indicated are taken as the as-
sumed values (or options) provided in the general parameter speci-
fication sheet (table 2).

2) To simulate computer output, only upper case letters are used.
Dual units are not provided on actual computer output.

Figure A22. DProblem A5, parameter sheet, UHF Satellite
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ILS, Separation, Site Elevation

Problem A6: For the geometry illustrated in figure AZ6 and the
desired ILS localizer facility parameters of figure A27, determine
the station separation required to obtain a 23 dB desired-to-
undesired localizer signal ratio at the aircraft with a time a-
vailability of 95 percent when the parameters for the undesired
localizer are identical to thosc of the desired localizer except
that i1ts site elevation is (a) 1,000 [t (305 m) higher, (b) 0 ft
higher, and (c) 1,000 ft (305 m) lower.

—————— 7,250 ft (2,210 m) - ms)

Al N~
2,000 ft (610 m)- ms] - I N -
Ld p - ~
=/ e — —_— - T ~
1,000 ft (305 m)- ms] b - /’,-";7’71_,/ .4*,_ T =a N -
- - P — ~a VR
//, ////// - ~~ \\
e //’ e e N o T\
AT e N— e\
’ ///// " — \‘\\ R
y - -
s /,// - . \\\ ™~ N N
7 . Pre ~ g N
’ 7 - S =dp+d ~ AR
/ Vi U ~. \~\ . N
// ' // ) N \ \
y A N \\
/ ms ] of\ .
7, 7 N .
*K{‘ /! N
// \{(,
, N > \
Desired facility
(elevation fixed) \\

\
R
Y
AY
Undesired facility

(elevation variable)

Figure ARG, Problem A6, geomelry skelch (nol draom Lo seale),
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PARAMETERS FOR ITS PROPAGATION MODEL IF~77
77/07/13. 22.16.15. RUN

DESIRED STATION IS LOCALIZER
SPECIFICATION REQUIRED

AIRCRAFT (OR HIGHER) ANTENNA ALTITUDE: 7250. FT (2210.M) ABOVE MSL
FACILITY (OR LOWER) ANTENNA HEIGHT: 5.5 FT (1.68M) ABOVE FSS
FREQUENCY: 110. MHZ

SPECIFICATION OPTIONAL

ATRCRAFT ANTENNA TYPE: ISOTROPIC
POLARIZATION: HORIZONTAL
EFFECTIVE REFLECTION SURFACE ELEVATION ABOVE MSL: 1000. FT (305.M)
" EQUIVALENT ISOTROPICALLY RADIATED POWER: 24.0 DBW
FACILITY ANTENNA TYPE: 8-LOOP ARRAY (COSINE VERTICAL PATTERN)
POLARIZATION: HORIZONTAL
HORIZON OBSTACLE DISTANCE: 2.88 N MI (5.33 KM) FROM FACILITY*

ELEVATION ANGLE: -0/ 2/09 DEG/MIN/SEC ABOVE HORIZONTAL*
HEIGHT: 0. FT (0.M) ABOVE MSL
REFRACTIVITY:

EFFECTIVE EARTH RADIUS: 4586. N MI (8493.KM)¥*
MINIMUM MONTHLY MEAN: 30l1. N-UNITS AT SEA LEVEL
SURFACE REFLECTION LOBING: CONTRIBUTES TO VARIABILITY
SURFACE TYPE: AVERAGE GROUND
TERRAIN ELEVATION AT SITE: 1000. FT (305.M) ABOVE MSL
TERRAIN PARAMETER: 0. FT (0.M)
TIME AVAILABILITY: FOR INSTANTANEOUS LEVELS EXCEEDED

* COMPUTED VALUE

Notes: 1) The aircraft is 25 n mi (46.3 km) from desired facility, on the

desired facility course line, and on an extension of the undesired
facility course line, i.e., the course lines are directed toward
each other.

2) These parameters, except as specifically modified in problem state-
ments, also apply to the undesired facility.

3) Although the configuration assumed here may be taken as worst case
in that a station separation sufficient to provide protection at
the critical point considered (i.e., point C of fig. 43 with
¢ =0 and ¢ =180°) would probably provide sufficient protection at
other critical points, difference in terrain and/or facility anten=-
na gains associated with these points could make a more extensive
analysis necessary (see sec. 3.2 ORIENTATION discussion, fig. 35).

4) Parameter values (or options) not indicated are taken as the as-
sumed values (or options) pro&ided in the general parameter speci-
fication sheet (table 2).

3) To simulate computer output, only upper case letters are used.

Dual units are not provided on actual computer output.

Figure A27. Problems A6 through A3, parameter sheet, ILS.
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Solution: Examination of figure A26 shows that the aircraft
is at a constant elevation with respect to both mean-sea level
(ms1l) and the desired ILS site surface for all three parts of the
problem, but that aircraft elevation with respect to the undesired
ILS site surface changes for each part of the problem. Lower air-
craft altitude with resvect to the undesired facility means that
the undesired signal level at the aircraft is expected to he
lower for a particular undesired facility-to-aircraft distance
which will translate in the context of this problem to a decreasc
in the station separation requirement. Conversely, a higher air-
craft altitude with respect to the undesired facility would be
expected to result in a larger station separation requirement.

Site surface elevations for various parts of the problem are
drawn as dashed lines in figure A26 and are extended from facility-
to-facility to show that use of different site elevations is not
compatable with the use of a smooth earth for all of the terrain
between the facilities since different elevations result in dif-
ferent earth radii. Desired and undesired signal levels are
computed independently for the parameters applicable to each
facility so that this difficulty is not recognized by the pro-
grams, but must be considered in using the computer output. One
way to do this is to assume that each site elevation is valid at
least to the smooth earth horizon distance for its facility an-
tenna and that the computed results are invalid when terrain at
the higher site elevation is visible to the other antenna. These
conditions are illustrated in figure A28 and result in a minimum
station separation (Smin) for which predictions are valid. Values
for Smin can be estimated from

S i = \IZaHD +\ﬁaHAe +V 2aH (A1)

U

where

effective earth radius,

= height of desired or undesired
facility antenna above its site
surface elevation

a

Hpu
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and !LQ = Magnitude of the difference in site eoleva-
LA B S

Fach term of (Al) is a smooth earth horizon tvpe distance as il-

lustrated in figure A28.

Figures A29 throug

L&

h A31 were developed for this problem and

the station separation reguirements resulting ‘rom them are tahu-

o

tated Below along with Sm‘r values ohtained frem
) min

Site Elevation Required Station 5
Above msl 1EUT Separatrion
Above msl Figure Separat

[ft (m)] n mi (km}} n mi (km)]

N

Desired Undesired

2,000(610) AZ9 100 {185)

5)
A5)  1,000(305) A30 107 (198) Not Apnlicable
5)

0 A31 113 (209) 45 (83)

o L N T A )
RN L PO APNELT T8 SO eE .

[
st $
LA

Geomatry
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ILS, Separations, Surface Constants
Problem A7: For the geometry illustrated by the equal site ele-

vation portion of figure A26 and the ILS localizer parameters of

figure A27, determine the station separation required to obtain
a 23 dB desired-to-undesired localizer signal ratio at the air-
craft with a time availability of 95 percent when the surface con-
stants (table 5) are taken as those associated with (a) poor
ground, (b) average ground, (c) good ground, (d) fresh water, or
(e) sea water

Solution: Figures A32 through A36 were developed for this
problem, and the station separation requirements listed below

were taken from them.

Station Separation

Surface Type Figure [n mi (km)]
Poor ground A32 107 (198)
Average ground A33 107 (198)
Good ground A34 107 (198)
Sea water A35 107 (198)

Fresh water A36 107 (198) .

Hence, for this problem, surface type is not an important para-
meter. Other situations where vertical or circular polarization
and large (> 1°) grazing angles (¢ of fig. 40) are involved would
be expected to show greater dependence on surface type [49, figs.
ITI.1 through IIT.8]. Even then the dependence may be masked by
surface roughness (probs. A5 and A8), which makes the specular

reflection coefficients smaller as roughness increases.
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ILS, Separation, Terrain Parameter

Problem A8: For the geometry illustrated by the equal site ele-

vation portion of figure A26 and the ILS localizer parameters of
figure A27, determine the station separation required to obtain
a 23 dB desired-to-undesired localizer signal ratio at the air-
craft with a time availability of 95 percent when the terrain
parameter is selected as (a) smooth, (b) smooth plains, (c) rol-
ling plains, (d) hills, (e) mountains, and (f) extremely rugged
mountains.

Solution: Figures A33 and A37 through A4l are applicable to
this problem, and the station separation requirements taken from
them are listed below along with the terrain parameter (sh) value )

used for each terrain type (see table 7):

Terrain Parameter Station Separation

Terrain Type Figure [ft (m) ] [n mi (km)]
Smooth A33 0 (0) 107 (198)
Smooth plains A37 40 (12) 108 (200)
Rolling plains A38 195 (59) 106 (196)
Hills A39 375 (114) 93 (172)
Mountains A40 740 (226) 70 (130)
Extremely rugged A4l 2625 (800) >125 (>232),

mountains .

The following comments concerning these results are appropriate:
(a) the station separation increase for the smooth to
smooth plains case is caused by a decrease in the reflection co-
efficient associated with the undesired facility which increases

the undesired signal level,

(b) the station separation decrease that occurs from smooth
plains through mountains is caused by a decrease in the line-of-
sight range associated with the undesired facility which decreases
the undesired signal level,

(c) the large station separation increase for the moun-
tains to extremely rugged mountains case 1s caused by a decrease

in the line-of-sight range associated with the desired facility
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which decreases the desired signal level, and

(d) the exclusive use of Ah to describe terrain could easily
result in station separations that are not appropriate for speci-
fic paths. Actual horizon information should be used whenever it

is available.

ILS, Separation, Terrain Profile

Problem A9: For geometry similar to the equal site elevation por-
tion of figure A26 and the equipment parameters of figure AZ7,
determine the station separation required to obtain a 23 dB de-
sired-to-undesired localizer signal ratio at the aircraft with a
time availability of 95 percent when terrain parameters are de-
termined using (a) topographic maps and (b) the Electromagnetic
Compatibility Analysis Center (ECAC) terrain file. Sites should
be selected to have equal elevations as shown by topographic maps,
and the terrain between them should be '"severe'.

Solution: Locations at Seattle (47°15'00"N, 122°22'47"W)
and Portland (45°33'22"N, 122°30'25"W) were selected for the de-
sired and undesired facilities, respectively. These locations
were selected based on the problem requirements for equal site
elevations and severe terrain from paths for which topographic
profile data are available on computer cards [39, fig. 2.22]. It
is unlikely that these particular locations would ever actually
be selected as localizer sites.

In calculating the desired signal level at the aircraft, only
terrain characteristics associated with the desired facility are
used, and beyond the facility horizon obstacle the terrain is ta-
ken as smooth with an elevation equal to the effective reflecting
surface elevation for the desired facility. Similar considera-
tions are involved in the calculations of the undesired signal
level. Hence, actual terrain between the facility horizon ob-
stacles is not involved in station separation calculations since
only terrain between each facility and its horizon obstacle 1is
utilized to determine key terrain characteristics.
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Figures A42 and A43 were developed for this problem, and the
required station separations obtained from them are given below
along with site and horizon parameters for the two sets of terrain

data used:
Terrain Data From

Topographic ECAC Terrain
Parameters* Maps File
Required station separation
(n mi (km)] 72 (133) 75 (139)
Figure Ad?2 A43

Desired Facility (Seattle)

Effective reflection

surface elevation [ft (m)] 19.7 (6) 98.4 (30)
Horizon distance [n mi (km)] 2.6 (4.9) 31.56 (58.44)
Horizon height [ft (m)] 325 (99) 3,199 (975)
Site elevation [ft (m)] 19.7 (6) 98.4 (30)
Terrain parameter [ft (m)] 394 (120) 692 (211)

Undesired Facility (Portland)

Effective\reflection

surface elevation [ft (m)] 19.7 (6) 200 (61)
Horizon distance [n mi (km)] 34.6 (64.0) 34.67 (64.21)
Horizon height [ft (m)] 4,268 (1,301) 3,930 (1,198)
Site elevation [ft (m)] 19.7  (6) 200 (61)
Terrain parameter [ft (m)] 1,654 (504) 1,470 (448)

*A surface refractivity referred to mean sea level value of

279 N-units was used (see fig. 51). Equipment related parameters

are as given in figure A27.
The larger required statlon separatlon for the ECAC terraln

case is caused by the greater site elevation and lower horizon
height associated with the undesired facility which increases the
undesired signal level. Both required separations are at least

25% less than the actual great-circle site separation of 101.7 n mi

(188.4 km).
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APPENDIX B.

LIST OF SYMBQLS

This list includes most of the abbreviations, acronvms, and
symbols used in this renort. Many are similar (o those proviously
used in other reports [24, 27, 37, 49]. The units given for sym-

bols in this 1ist are those reguired by or resulting from equa-
tions as given in this report. Except where otherwise indicated,
equations are dimensiconally consistant so that :(ppropriate units
can he selected by the user.

In the following 1list, the English alphabet precedes the
Greek alphabet, letters precede numbers, and lower-case letters
precede upper-case letters. Miscellaneous symbcls and notations
are given after the alphabetical items.

™ P
i
4

a Fffective earth radius used in {Al)

a, An adjusted effective eart!
figure 40 [24, (44)].

radius shown in

a, Earth radius (fig. 41).

APODS ’ A program name (table 1).

ARD Aviation Research and Development.

ATADU A program name {table 1).

ATC Air Tratfic Control,

ATLAS A program name (tabhle 1).
ATOA A program name {(table 1).

A Effective receiving area [dB-sag m] of an
isotropic antenna used in {1}.

cm Centimeters (1072 m).
CCIR International Radio Consultative Committee.

CDC 6600 Control Data Corporation’s 6600 digital
computer.
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CRPL

dB

dBi

dBW
dB-sq m
dB-W/sq m

DD

Delta R

DME
DOC
DOT
DUDD

DURATA

Central Radio Propagation Laboratory.
Great-circle distance between facility and
aircraft. For line-of-sight paths, it is
calculated as indicated in figure 40. It is
related to central angle by (7) and (8).

Decibels, 10 log (dimensionless ratio of
powers) .

Antenna gain in decibels greater than iso-
tropic.

Power in decibels greater than 1 watt.
Effective area in decibels.

Power density in decibels greater than 1 watt
per square meter.

Degrees.

Desired facility-to-aircraft distance shown
in figure 42.

Undesired facility-to-aircraft distance shown
in figure 42.

Facility to reflection point distance shown
in figure 40 and plotted in figure 15.

Reflection point to aircraft distance shawn
in figure 40.

Used for dD (table 1).

Path length difference (ATr) or extent by
which the length of the reflected ray exceeds
that of the direct ray (fig. 40) and calcu-
lated using (2).

Distance Measuring Equipment.

United States Department of Commerce.

United States Department of Transportation.

A program name (table 1).

A program name (table 1).
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Desired facility-to-aircraft distances shown

D
A,B,C,D,E in figure 43.

D/U Desired-to-undesired signal ratio [dB] avail-
able at the output of an ideal (loss less)
receiving antenna.

eqn. Equation.

ECAC Electromagnetic Compatibility Analysis
Center.

EIRP Equivalent isotropically radiated power
[dBW] as defined by (11).

EIRPG EIRP [dBW] increased by the main beam gain
[dBi] of the receiving antenna as in (12).

ERP Effective radiated power [dBW] as defined in
the section 4.1 discussion on EIRP.

ESSA Environmental Science Services Administra-
tion.

f Frequency.

fss Facility site surface (table 2).

ft Feet.

fd Lobing frequency [Hz] with distance from (4).

ff Egﬁquency fraction for half-bandwidth (fig.

fh Lobing frequency [Hz] with height from (6).

fR Lobing frequency [Hz] from (5).

FAA Federal Aviation Administration.

FAR Facility-to-aircraft ray.

FORTRAN FORmula TRANslating system, a family of pro-
gramming languages.

ETS Federal Telephone System.

g Normalized voltage antenna gain from (10).

GAIN Sum [dBi] of transmitting and receiving an-

tenna main beam gains.
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GCPP Great-circle path plane.

GHz Gigahertz (10° Hz).

GOES Geostationary Operational Environmental
Satellite.

GPO Government Printing Office.

GR Gain [dBi] of the receiving antenna main
beam for (12) or (13).

GT Gain [dBi] of the transmitting antenna main

beam for (11) or (13).

hr [Tour.

HIPOD A program name (table 1).

Hz Hertz.

H1 Facility antenna height above fss or msl.

HZ Aircraft altitude above msl.

HD U Height of degired.or undesired facil;ty an-

’ tenna above its site surface. Used in (Al).

Hl,Z Antenna elevat@ons_abOVe the reflecting
surface shown in figure 40.

Hl/S Significant wave height of table 6.

H . ' Magnitude of the difference in site eleva-
tions. Used in (Al).

in Inches.

IEEE Institute of Electrical and Electronic En-
gineers.

IF-73 ITS-FAA-1973 propagation model.

IF-77 ITS-FAA-1977 propagation model.

ILS Instrument Landing System.

ITS Institute for Telecommunication Sciences.

IRE Institute of Radio Engineers.

JTAC Joint Technical Advisory Committee.
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kHz

LOBING

Lb(956)

mhos
min
mm
ms1

MHz

nsec
NBS

NDLF
NHLF
NOAA

NTIS

Kilohertz (103 Hz).

Kilometer (103 m).

Knots [n mi/hr].

Common (base 10) logarithm.

A computer program (table 1).

Basic transmission loss [dB] level not ex-
ceeded for 95% of the time.

Meters.

Unit of conductance or siemens.

Minutes.

Millimeters (10°3 m).

Mean sea level.

Megahertz (106 Hz).

A power used in the ionospheric scintilla-
tion frequency scaling factor discussion of
section 4.1.

Nautical miles.

Nanoseconds (10°° sec).

National Bureau of Standards.

Normalized distance lobing frequency used
in (4).

Normalized height lobing frequency used in

(6).

National Oceanic and Atmospheric Administra-
tion.

National Technical Information Service.
Minimum monthly mean surface refractivity

(N-units) referred to mean sea level from
figure 51 or 52.
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N-units

Prob.

TR
rad

rms

RTA-2

sec

SHF

SRVLUM

Minimum monthly surface refractivity
[N-units] (sec. 4.1, refractivity discus-
sion).

Units of refractivity [4, sec. 1.3] corres-
ponding to (refractive index -1) x 10°6.

Prohlem.

Power available [dBW] at the output of an
ideal (loss less) isotropic receiving antenna
from (1).

Total radiated power [dBW] used in (11).
Radians.

Root mean square.

Direct ray length shown in figure 40.

Segments of reflected ray path shown in
figure 40 and components of Ti,-

‘Reflected ray path length as shown in figure

40.

A TACAN facility antenna type.
Seconds.

Square meters.

Statute miles.

Station separation shown in figures 42 and
43, and calculated from (9).

Super-High Frequency (3 to 30 GHz),
A program name (table 1).

Facility separation shown in figures 42 and
43.

Minimum valid station separation calculated
from (Al).

Power density at receiving antenna [dB-W/sq m]
used in (1).
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TACAN

THz
TWIRL
UHF
VHF

VOR

®A,B,D,D,E
Ah

AT

TACtical Air Navigation, an air navigation
aid used to provide aircraft with distance
and bearing information.

Terahertz (10'2 Hz or 10® MHz).

A program name (table 1).

Ultra-lligh Frequency (300 to 3000 MHz).

Very High Frequency (30 to 300 Mllz).

VHF Omni-Directional Range, an air navigation
aid used to provide aircraft with bearing
information.

Volts per volt.

Magnitude of aircraft radial velocity for

(4).

Magnitude of aircraft vertical ascent rate
for (6).

Angles identified in figure 43.

Terrain parameter used to charcterize ter-
rain, from table 7 or figure 53.

Path length difference for rays shown in fig-
ure 40 and calculated using (2).

Angle between direct ray and reflected ray
at the facility as shown in figure 40.

Ray elevation angle used in (10).

Direct ray elevation angle shown in figure
40.

Half power beam-width of facility with JTAC
antenna pattern, used in (10).

Beam tilt above horizontal of facility an-
tenna, used in (10).

Central angle shown in figure 41 and used in
(7) and (8). ,

Root-mean-square deviation of surface excur-
sions within the 1limits of the first Fresnel
zone in the dominant reflecting plane from
table 6.
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Wavelength.

Time lag [nsec] of reflected ray with re-
spect to the direct ray, from (3).

Angles defined in figure 43.
Grazing angle shown in figure 40.
Degrees, e.g. 12°.

Degrees celsius.
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