
 

APPENDIX A: THEORETICAL PSD OF DP AND DS SIGNALS 

 
A general expression for the power spectral density (PSD) of ultrawideband (UWB) signals 
using a fixed time-base dither was provided in Section 3 of [2]. This section provides the 
derivation of the expression and uses it to evaluate the PSD of DP and DS signals. 
 
UWB signals that modulate pulses to convey binary data can be expressed as 
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where yk is the channel symbol, e.g., y0 represents a zero and y1 represents a one, T is the nominal 
symbol period, n is the symbol period index, and βn is a random variable that defines the 
dithering as described by the dither function q(β). αkn chooses the appropriate symbol for each 
information bit according to 
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This formulation can be altered to map any two distinct information bit values, e.g., {1, -1}, with 
no change in the final PSD expressions. Note that an and βn are independent and identically 
distributed (iid). 
 
The PSD is the Fourier transform of the autocorrelation function, i.e., , 

where the expectation operator, defined as 
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{ } ∫=Ε dxxxqX )( , is distributive and for independent 
random variables the expectation of the product is equal to the product of the individual 
expectations. The complex conjugate * can be dropped because u(t) is a real function, and the 
autocorrelation function is expressed as  
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Note that summations involving n and/or m imply a range ±∞ , summations involving k and/or l 
imply a range from 0 to 1, and integrals with unspecified limits imply the limits ±∞ . 
 
Evaluation of Ruu(t1, t2) involves summation of the function  
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where the expectation was moved inside the summation operators and split into the product of 
expectations of the independent random variables. The expectation of the product of the channel 
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symbols is difficult to simplify in a meaningful way. To avoid this difficulty, the following 
variable is introduced 
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However,  because the symbols are not independent in the same 

symbol period. Since both quantities are easily evaluated along the diagonal, is 

subtracted and  is added to formulate the expression in a way that can be evaluated 

analytically, i.e., 
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As will be demonstrated, this approach has the added benefit of distinguishing between the 
discrete and continuous spectra of the resulting PSD. 
 
Consider the first term of equation (A-2), ∑
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,
21 ),(γ̂ . Ε{αkn} is evaluated as  
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Hence, Ε{αkn} = ξk is independent of n and can be moved outside ∑

n
, yielding 

 
Expanding the expectation into integral form and introducing ∑ −=

n
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where ∗   is the convolutional operator. Defining the function ∑=

k
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where the periodic function ψ(t) can be expressed as a Fourier series 
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This allows for the convolution in equation (A-3) to be expressed as 
 

( )

,

)()()(

/2

/2/2/)(2

∑

∑ ∫∫∑

⎟
⎠
⎞

⎜
⎝
⎛Ψ=

Ψ=Ψ=∗ −−

m

Tmtj
m

m

TmjTmtj
m

m

Ttmj
m

e
T
mQ

deqedqetq

π

βππβπ ββββψ

 
where Q is the Fourier transform of q. The Fourier coefficients in terms of ξk and yk are  
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where change of variable, t' = t – nT, was used to simplify and Yk is the Fourier transform of yk. 
Substitution into equation (A-3) and changing the independent variables to τ = t2 – t1 and t = t2 
yields 
 

 
(A-4) 
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The next term in equation (A-2) to be considered is 
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The term in square brackets may be expressed as the sum of delta functions using the identity 
 

 
.12 ∑∑ ⎟

⎠
⎞

⎜
⎝
⎛ −=−

nn

fnTj

T
nf

T
e δπ (A-5) 

 
 
 

43  
 



 

Simple evaluation of the f2 integral, changing the independent variables to τ = t2 – t1 and t = t2, 
and consolidating the k and l terms yields 
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The last term to be evaluated in equation (A-2) is 
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ence, Ε{αknαln } = ξk δkl, where δkl is the Kronecker delta function. Expanding the expectation 

tilizing equation (A-5) to evaluate the f2 integral, changing independent variables to τ = t2 – t1 
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Equations (A-2), (A-4), (A-6), and (A-7) combine to give an expression for the autocorrelation 
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valuating this integral involves the integral identity  

 
here k is an integer. Hence, the time average of equation (A-4) is non-zero only for n = -m, and 

 

inally, taking the Fourier transform of

function in terms of τ and t. The statistics for Ruu(τ, t) are periodic with period T. Such processes
are commonly referred to as cyclostationary. For these processes, it is useful to calculate the 
average over all possible observation times within a period. The time average over one period
denoted as follows 
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the time average of equations (A-6) and (A-7) are non-zero only for n = 0. The time-average 
autocorrelation function reduces to 
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where Q(0) is the integrated probability density function q(β) equal to 1.  
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which is comprised of discrete and continuous components that depend on the symb
and the Fourier transform of the density function used to randomize the signal. 
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A.1. DP-UWB 
 
For DP signals, q(β) is uniformly distributed (and more importantly symmetric); hence, the 
signal can be expressed according to the general expression (A-1). The DP channel symbol y1 is 
a time advanced version of y0 defined as  
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where βmax is the dither fraction and pDP(t) is the pulse shape. Assuming equiprobable DP 
information bits, i.e., ξk = ½, and knowing that time shift translates to a phase shift in the 
frequency domain results in 
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Substitution in equation (A-8) yields  
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Figures A-1 – A-4 illustrate the power spectral densities of DP-01 – DP-04, respectively. The 
magnitudes of the spectra were normalized to the peak of the continuous spectrum. For DP-01 – 
DP-04, q(β) is uniformly distributed over half of the pulse period. Consequently, βmax = 0.5 and 
Q(f ) = sinc(πβmaxTf ). This sinc function has nulls at frequencies equal to 2k/T (k = ±1, ±2, …), 
which zeros out every other spectral line and causes the spacing between discrete spectral lines 
to be 2/T. In these plots, the vertical shaded regions in the top plots correspond to the DTV 
channel displayed in the bottom plots. Notice that in all cases the spectral lines were either below 
the continuous spectrum or outside the DTV channel. 
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Figure A-1. Theoretical discrete and continuous spectra of DP-01. 
 

Figure A-2. Theoretical discrete and continuous spectra of DP-02.
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Figure A-3. Theoretical discrete and continuous spectra of DP-03. 
 

Figure A-4. Theoretical discrete and continuous spectra of DP-04. 
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A.2. DS-UWB 
 
DS channel symbols are not dithered, i.e., Q(f ) = FT{q(β)} = FT{δ(0)} = 1. They are defined as 
the convolution of a codeword and the DS pulse shape (pDS), i.e.,  
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where L is the codeword length with values of {1, 3, 6, 12, or 24}, cl is the lth codeword chip 
with values {-1, 0, 1}, and Tchip is the chip period. Assuming DS information bit values are 
equiprobable, the negative relation between y1 and y0 makes  
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and causes the discrete component of the DS-UWB PSD to be zero. The other sum in equation 
(A-7) evaluates to  
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and substitution into equation (A-8) yields 
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Figures A-5 and A-6 illustrate |C(f)| for DS-04 and DS-06, respectively. In these plots, the 
magnitudes of the spectra were normalized to their peak, and the vertical shaded regions in the 
top plots correspond to the DTV channel displayed in the bottom plots. Notice the resemblance 
between the |C(f)| and the measured PSD of DS-06 illustrated in Section 2.3.3. This agreement is 
because |PDS(f)| is flat over the frequency range 3.7 – 4.2 GHz as illustrated in Figure 3 of Part 1 
[6]. Not shown in this appendix are frequency flat sparse codes for DS-01, DS-02, DS-03, and 
DS-05, which produce the flat measured PSDs shown in Section 2.3.3. 
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Figure A-5. |C(f)| of the DS-04 code word. 
 

Figure A-6. |C(f)| of the DS-06 code word. 
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