APPENDIX A: THEORETICAL PSD OF DP AND DS SIGNALS

A general expression for the power spectral density (PSD) of ultrawideband (UWB) signals
using a fixed time-base dither was provided in Section 3 of [2]. This section provides the
derivation of the expression and uses it to evaluate the PSD of DP and DS signals.

UWRB signals that modulate pulses to convey binary data can be expressed as

u(t) = iaonyo(t—nT—ﬂn)+amy1(t—nT—ﬂ,,)=i D,y t—-nT=B) , (A1)

=—0 n=—o k=0

where y, is the channel symbol, e.g., y, represents a zero and y, represents a one, 7 is the nominal
symbol period, z is the symbol period index, and f, is a random variable that defines the
dithering as described by the dither function ¢(f). o, chooses the appropriate symbol for each
information bit according to

l-—a, (k=0) d 0 (with probability &)
a = a =
o a, (k=1 " |1 (with probability & =1-¢&,)

n

This formulation can be altered to map any two distinct information bit values, e.g., {1, -1}, with
no change in the final PSD expressions. Note that a, and 5, are independent and identically
distributed (iid).

The PSD is the Fourier transform of the autocorrelation function, i.e., R, (¢,,t,) = E{u(t,)u"(t,)},

where the expectation operator, defined as E{X } = J.xq(x)dx , s distributive and for independent

random variables the expectation of the product is equal to the product of the individual
expectations. The complex conjugate can be dropped because u(?) is a real function, and the
autocorrelation function is expressed as

R, (t,t,) = E{u(t1)u(t2)} = E{Zzaknalmyk (t,—nT - )y (t, —mT — ﬂm)}

n,m k.l

Note that summations involving n and/or m imply a range oo, summations involving k and/or /
imply a range from O to 1, and integrals with unspecified limits imply the limits +oo.

Evaluation of R,,(¢,, t,) involves summation of the function
Yum (G151y) = ZE{aknalm }E{yk(tl -nT =)y t,—mT — ﬂm)} )
k.l

where the expectation was moved inside the summation operators and split into the product of
expectations of the independent random variables. The expectation of the product of the channel
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symbols is difficult to simplify in a meaningful way. To avoid this difficulty, the following
variable is introduced

Vo (t51,) = ZE{akn }E{alm }E{yk(tl —nT - ﬂn)}E{yz(tz -mT — ﬁm)}

Z Vo5t = z 7. (t,1,) because the symbols are independent in different symbol periods.
However, Z Vo (t,t) # Z 7..(t,,t,) because the symbols are not independent in the same
symbol period. Since both quantities are easily evaluated along the diagonal, Z Vout51,) 18

subtracted and Z 7. (t,,t,) 1s added to formulate the expression in a way that can be evaluated

analytically, i.e.,

Ry (t,t,) = 1 () =D P (tsty)) + D [ (61 1) = P (t1012)] (A-2)

n,m n,m n

As will be demonstrated, this approach has the added benefit of distinguishing between the
discrete and continuous spectra of the resulting PSD.

Consider the first term of equation (A-2), Z 7. (t,t,). E{a,} is evaluated as

n,m

Ela, | =Ela,}=(0)& + ()& =&

Ela,, }=E{l-a,}=E{l}-Ela, = ¢,

Hence, E{o,,} = & is independent of # and can be moved outside Z , yielding

n

> Pomltity) = {Z@ > E{y, (t, —nT —/3,1)}}{25,2E{y, (t, —mT - /)’m)}}

n,m

Expanding the expectation into integral form and introducing ¢, (¢) = Z v, (t—nT) gives
S Ey (t=nT =B =D [y, (t=nT = B)g(B)dp = [ $,(t= Ba(B)dB = (¢, *a)t)

where * is the convolutional operator. Defining the function w(¢) = Z &9, (1) gives
k

Zy (t512) = [ =g )]y +g)e)] (A-3)
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where the periodic function y(7) can be expressed as a Fourier series

T/2

) 1 )
l//(t) — Z\PmeJZITmt/T , \Pm — ? '[l//(t)e—JZHWIt/Tdt
m -T/2

This allows for the convolution in equation (A-3) to be expressed as

(l// * q)(z‘) = J.Z\.Pmeﬂﬂm(t—ﬂ)/Tq(ﬂ)dﬁ — Z\Pmeﬂﬂmt/Tjq(ﬁ)e—jZHmﬁ/Tdﬂ
m .
— Y o e]Z/Z'mt/T ,
2 WQ( Tj
where Q is the Fourier transform of g. The Fourier coefficients in terms of &, and y, are
— 1 N, —j2xmt' /T g1 _ 1 m
Y, —;Zklfkfyk(t )e dt _?Zklgkyk i

where change of variable, t'= ¢t — nT, was used to simplify and Y, is the Fourier transform of y;.
Substitution into equation (A-3) and changing the independent variablestot=1t,— ¢, and 1= ¢,
yields

> Fn(@t) = %Z {Zk: EY, (%ﬂ {Zk“ EY, [?ﬂQ(%)Q[%jejz”[<m+n>f_m]/T A

n,m n,m

The next term in equation (A-2) to be considered is

St = X &4 [ v —nT — Bra(BYap) [ .t ~nT - praprdp)

= Z $iS J.J. Y (SDY, ()OO ){Z e 2rtim } ejzﬁ(ﬁtﬁfﬂﬁdﬁdfz 5
kI n
where [y, (t=nT = B)g(B)dp = [V, (/)Q(f)e > e df .
The term in square brackets may be expressed as the sum of delta functions using the identity

arpr _ 1 _r ]
e —Tgé[f Tj . (A-5)

n
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Simple evaluation of the f; integral, changing the independent variables to =1, — ¢, and 1 = ,,
and consolidating the £ and / terms yields

Z};nn (ll,lz) = %ze.fzﬂnt/TJ.|:Z égkYk (f):| |:z lel(% — fji|Q(f)Q(%_ f}e-’z”'f"df
X[ Sl o Doer @ lgene )]
T - l

(A-6)
where J.Yk (%_ f}ejlﬁfrdf =y, (_T)ejZmn'/T )

The last term to be evaluated in equation (A-2) is

27"" (t,,1,) =ZZE{aknakn }E{yk (t,—=nT =B,y (t, —nT _ﬂn)}

n k,
E{oy,a,} is independent of #, that is

Ela,,a, | = Ela? |= (0)&, +(1)*& = ¢,
E{aOnaOn } = E{(l - an)z }= E{l}_ 2E{an }+ E{aj}: &

E{a0naln } = E{VanOn } = E{(l -a,la, } = E{an }_ E{ai }: 0

Hence, E{oy,a,, } = & 0w, where 0y, 1s the Kronecker delta function. Expanding the expectation
into integral form, taking the double Fourier transform, and consolidating » and f terms yields

D (1) =D E D [ 3,6 =nT = BYy, (6, —nT = B)g(B)dp

= Z £ ” Y ()Y, (f, ){Ze—jzmﬁm)nr } [J'q(ﬁ)e—ﬂﬂ(ﬁ+f2)ﬁdﬂ]ej2ﬂ(fltl+fztz)dfldf2

Utilizing equation (A-5) to evaluate the f; integral, changing independent variables to t =1, — ¢,
and ¢ = t,, rearranging terms, and recognizing the Fourier transform with respect to 7 yields

1 2t T —j2nfr
Zn:%m(fat):?zn:e'/ Q(%jjzk:écYk(f)Yk[%_fje st df

:%ZejZITnI/TQ[%jZ§kyk(T)*(yk(_z,)ejZIInT/T) ) (A_7)
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Equations (A-2), (A-4), (A-6), and (A-7) combine to give an expression for the autocorrelation
function in terms of 7 and ¢. The statistics for R,,(z, ) are periodic with period 7. Such processes
are commonly referred to as cyclostationary. For these processes, it is useful to calculate the
average over all possible observation times within a period. The time average over one period is
denoted as follows

<Rw<r)>=%IRW(r,r>dr

Evaluating this integral involves the integral identity

%j:ejZEkt/Tdt _ {1 (k=0)

0 0 (otherwise)

where £ is an integer. Hence, the time average of equation (A-4) is non-zero only for n = -m, and
the time average of equations (A-6) and (A-7) are non-zero only for » = 0. The time-average
autocorrelation function reduces to

2

o= Zfen(7) 7]
+—{Z§kyk(r)* Y1) - {[kayk(r)j [Zklfkyk(—r)ﬂ*[q(r)*q(—f)]} ,

2
j2znt/T

where Q(0) is the integrated probability density function g(f) equal to 1.

Finally, taking the Fourier transform of <RW (z')> yields
Y, (f)( oY 5(f - %j
+Hsz|mf>|2 [zan

(5., () = FT{R,, (1))} = =

2} , (A-8)

which is comprised of discrete and continuous components that depend on the symbol spectrum
and the Fourier transform of the density function used to randomize the signal.
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A.1. DP-UWB

For DP signals, g(f) is uniformly distributed (and more importantly symmetric); hence, the
signal can be expressed according to the general expression (A-1). The DP channel symbol y; is
a time advanced version of y, defined as

yl(H%j:J’o(O =ppp(®)

where [, 1s the dither fraction and p,x(?) is the pulse shape. Assuming equiprobable DP
information bits, i.e., & = 2, and knowing that time shift translates to a phase shift in the
frequency domain results in

2

24l S = %D [ por@e ] +]e7 T [ p,, <z>e‘ﬂ”ﬂdr\2} =[Pop (/)

=~ |Pop (N [1+cos(z 18, T)] -

-3
2

2
=P (P [ 7

‘Z@&U)

Substitution in equation (A-8) yields

1

(S, ()= T

1P (NOU I [1+ cos(z 1B, T 5(f—§j

+ %|PDP I {1 e+ C;S(”fﬁmaxT)]}

Figures A-1 — A-4 illustrate the power spectral densities of DP-01 — DP-04, respectively. The
magnitudes of the spectra were normalized to the peak of the continuous spectrum. For DP-01 —
DP-04, ¢(p) 1s uniformly distributed over half of the pulse period. Consequently, £, = 0.5 and
O(f) = sinc(wfmaxIf ). This sinc function has nulls at frequencies equal to 2k/T (k= +1, 42, ...),
which zeros out every other spectral line and causes the spacing between discrete spectral lines
to be 2/7. In these plots, the vertical shaded regions in the top plots correspond to the DTV
channel displayed in the bottom plots. Notice that in all cases the spectral lines were either below
the continuous spectrum or outside the DTV channel.
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Figure A-1. Theoretical discrete and continuous spectra of DP-01.
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Figure A-2. Theoretical discrete and continuous spectra of DP-02.
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Figure A-3. Theoretical discrete and continuous spectra of DP-03.

DP-04: PRF = 100 MHz, p
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Figure A-4. Theoretical discrete and continuous spectra of DP-04.
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A.2. DS-UWB
DS channel symbols are not dithered, i.e., O(f) = FT{q(f)} = FT{d(0)} = 1. They are defined as
the convolution of a codeword and the DS pulse shape (pps), 1.€.,

L1
@)=y, = chpDS(t_chhip) >
1=0

where L is the codeword length with values of {1, 3, 6, 12, or 24}, ¢, is the ™ codeword chip
with values {-1, 0, 1}, and T, is the chip period. Assuming DS information bit values are
equiprobable, the negative relation between y,; and y, makes

2

S a0 =3 [a@+ Crpenle =0

and causes the discrete component of the DS-UWB PSD to be zero. The other sum in equation
(A-7) evaluates to

2

SEN ) =

L1
Z ¢ J. Pps(t— ZTch[p )eijzﬁﬂdt
1=0

[-1 2

—j27fIT
St e

=0

=P (N[l

= |PDS (f)|2

and substitution into equation (A-8) yields
1 2 2
(S.. () :?|PDS(f e

Figures A-5 and A-6 illustrate |C(f)| for DS-04 and DS-06, respectively. In these plots, the
magnitudes of the spectra were normalized to their peak, and the vertical shaded regions in the
top plots correspond to the DTV channel displayed in the bottom plots. Notice the resemblance
between the |C(f)| and the measured PSD of DS-06 illustrated in Section 2.3.3. This agreement is
because |Pps(f)| is flat over the frequency range 3.7 — 4.2 GHz as illustrated in Figure 3 of Part 1
[6]. Not shown in this appendix are frequency flat sparse codes for DS-01, DS-02, DS-03, and
DS-05, which produce the flat measured PSDs shown in Section 2.3.3.
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Figure A-5.  |C(f)| of the DS-04 code word.
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Figure A-6.  |C(f)| of the DS-06 code word.
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