Finally, white Gaussian noise is a special case, and the performance of
digital systems in white Gaussian noise has been treated in great detail.
Here, we will occasionally refer to the well-known results of system perfor-
mance in white Gaussian noise for comparison. The pdf for the instantaneous
amplitude for Gaussian noise (mean noise power = 1) is:

2
-z7/2
py(z) = e (7)
Vo
and for the corresponding envelope
2
Pa(r) = re™" /%, and (8)
2
Po(r) =e " /7 (9)

3. SYSTEM PERFORMANCE CALCULATIONS

In this Section we want to present the results which are most advantageous
for our use. We want to develop system performance algorithms which do not
require particularly sophisticated numerical analysis techniques and which can
be used on small scale computers.

We start with the simplest. For arbitrary additive interference which is
independent from an integration period (bit length) to the next and which has
uniformly distributed phase, Montgomery (1954) has shown that the probability
of binary bit error, Pe’ for NCFSK (non-coherent frequency shift keying) is
given by:

Pe = %—Prob [noise envelope > rms signal level]. (10)

While Montgomery's result for NCFSK is in terms of the noise and signal envelopes
at the input to an ideal discriminator, it has been shown (White, 1966) that the
result is also applicable to most common FSK receivers (bandpass-filter discri-
minator receivers and matched-filter envelope detection receivers). Using (10),
then, the performance for NCFSK can be obtained instantly from the APD measure-
ments, once the APD has been normalized to its rms level. For example, if the two
NCFSK waveforms are given by



1

S](t) VZS  cos (w]t + ¢), and

(11)

1]

Sz(t) /2S5  cos (wzt +¢),

where ¢ is the unknown (uniformly distributed) phase (i.e., incoherent signaling),
wy and w, are the two frequencies, and S is the signal power, using (9) and (10),
performance in Gaussian noise is, therefore,

_ 1 -S/2
Po=7e (12)
For Class A noise, using (4) and (10),
(o) m 2
_ 1 -A E:A -S/20 13
Pe‘-z*e fﬁTe m 5 ( )

m=0
The above, of course, is for the binary symmetric channel. That is, S](t) and
Sz(t) are equally probable. In short, the performance can be obtained by inspec-
tion from the normalized APD. If, for example, the probability that Ry=1 (0 dB)
is exceeded is Py» then, for the signaling set given by (11), p, for a SNR of
2(3 db) is PO/Z, and so on, for any SNR, HNote the 3 dB "shift" for NCFSK. No
algorithm is given in the Appendix for NCFSK, since all that is required is a
normalized APD, and the normalization procedure is included in other system
performance algorithms. Also, in any case, the APD measurement device, DM-4,
would normally present the measurements in normalized form, although we do not
make that assumption in this report in order to maintain as much generality as
possible.

In the bi-phase, DCPSK (differentially coherent phase shift keying) system,
the receiver compares the phase ¢ of a noisy signal with a reference phase ¢, to
decide whether the corresponding pure signal relative phase ¢ was O or = (y = O,
corresponding to the signal v2S cos wot, is selected if lo-¢|<n/2, and y=m,
corresponding to -v2S cos (wot), otherwise.) The reference phase is obtained from
the previously received signals; usually it is just the phase of the previous
signal. Thus the analysis of this system is complicated by the fact that both

10



¢ and ¢ are affected by noise. This system also has adjacent symbol dependency,
and, therefore, the occurrence of paired errors and other error groupings cannot
be obtained easily, even with independent noise. Halton and Spaulding (1966) have
given results for this system, including the occurrence of various error groupings.
However, it can be shown that for binary DCPSK, the elemental probability of
error, Pe, is the same as for NCFSK, with 3 dB less signal energy required. That
is, for a given Pe’ DCPSK requires 3 dB less SNR than does NCFSK for arbitrary
additive interference that is independent from one bit time to the next. [For a
geometrical derivation of this result see Arthurs and Dym (1962).] For example,

therefore, for Gaussian noise for binary DCPSK;
P o=Le (14)
5 .

The performance of DCPSK can be obtained directly from the APD of the additive
interference. If, for example, the probability that Rg = 1 (0 dB) is exceeded is
PO, then for the above signaling set, Pe for a SNR of 1 (0 dB), is PO/Z, and so on
for any SNR. Figure 3 shows Pe versus SNR for the noise of figure 1 for both
NCFSK and DCPSK, while Figure 4 shows Pe versus SNR for the Class B noise of
Figure 2 for these two systems. Performance for Gaussian noise is also shown for
reference.

We next consider coherent binary systems. The performance of these systems
can be obtained from the pdf of the additive interference envelope by means of the
result:

[ee}

Po = JT— [pR(r) Cos—] (é) dr . (15)

K

For the derivation of this result see Spaulding (1964), and for various other ap-
proaches which led to (15), see Arthurs and Dym (1962). For antipotal signaling
(CPSK, coherent phase shift keying), the binary signal set is,

S](t) /2S5 cos (mot), and

(16)

1l

S,(t) -/ZS cos (‘”ot)’

11
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and in (15), K = /S.
For coherent, orthogonal signaling, the signal set is,

S1(t) = /25 cos (wot), and
(17)
SZ(t) = V2S sin (wot) 5
and in (15), K =/S/2.
For ON-OFF coherent signaling,
S](t) = V/2S cos (wot), and
(18)

Sz(t) =0 ,

and in (15), K = VS/4, where we use the convention that the SNR is based on the
average signal power of the two signals, S](t) and Sz(t). This average is, of
course, S/2, for a symmetric channel.

The performance of a coherent Neyman-Pearson signal detection system can
also be obtained via the integral in (15). We have two hypotheses:

>
—
“+
~
1]

Z(t) + S(t), and
(19)
H]: X(t) = Z(t).

The received waveform, X(t), is composed of noise plus the completely known
signal to be detected (HO), or it is composed of noise alone (H]). The Neyman-
Pearson detector, which is optimum if Z(t) is Gaussian, decides between Hg and
Hy by presetting a probability of false alarm (deciding Ho> when H, is true) a.
Performance is then given by the probability of detection (deciding HO when HO
is true), Py» and the probability of a miss (deciding Hy when Hg is true), Py

and PD=1-P Performance for additive interference is given by (15), where

.
K= /5 - /7 erfc” (20), (20)

for a desired signal of power S. The complimentary error function is given by

14



0. -tz
erfc(x) = 772?/8 dt. (21)
X

Use of the K given in (20) in (15) gives the probability of a miss, PM' This
is

o

PM = %f pR(r) Cos"] (é) dr, (22)

K

and Py = 1-Py, K given by (20).

Table 2 below gives erfc'](Zu) for various probabilities of false alarm,

Table 2. Erfc_](Za) for Various o

o Erfc—](Za)
1072 1.645
1073 2.185
1074 2.630
107° 3.015

For the above coherent systems in Gaussian noise,

1

P, = 7 erfc(K), (23)
where K = VS for antipodal signaling, K = ¥/S/2 orthogonal signaling, and
K = vS/4 for ON-OFF signaling. For the signal detection system in Gaussian

noise,
Py = %—erfc(K), (24)

where K = VS - V2 erfc_](Za) .



Likewise, for Class A noise, we can obtain,

oA m
Po = = fe (K
e m! érrc /Om)

|J>

3
1l
o

Equation (25) gives the P when the K given by (20) is used.

It now remains to develop efficient computer algorithms based on (15).
The result (15) uses the pdf of the interference envelope, and the measurements
are of the APD. Actually, the measurements at 31 levels of the APD also give
an equally valid estimate of the pdf as well. Also if we attempt to modify
(15) to a form that uses the APD directly, i.e., uses PR(r) rather than pR(r),
we obtain computational complexities. For example, (15) can be transformed to:

ol

= dr, (26)
Pe

3|—

K
N ok
fR(,r) g ——

1 K 1 .
Pe = F[PR (F) - dr. (27)
0

Both (26) and (27) are improper integrals, and while this creates no problem

~

or

analytically, very sophisticated numerical integration routines are required in
order to obtain any accuracy for Pe’ especially when PR(r) is given only 1in
sampled data form. It turns out that it is much better to use (15) "directly"
along with pR(r) estimated from the measured PR(P).

The main algorithm presented in the Appendix is called SYSAPD. This
program takes the 31 measured APD data points, normalizes the APD to its rms
level, obtains the pdf, and then evaluates the integral (15) for the appropriate
K. The program SYSAPD uses Gauss-Laguerre quadratures to evaluate (15) (Kopal,
1961). The Gauss-Laguerre quadrature formula is

n

[e'xf(X)dx Z Hif(z;) (28)
0

J=1
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the points at which the integrand must be evaluated, yj, and the corresponding
weight, Hj, are obtained via the Laguerre polynominals. The program SYSAPD used
a fifteenth order quadrature [(n=15 in (28)]. The above means that the integral
(15) is put in the form

P [ PR(y+K) ey Cos“] (&E”K)] eVdy (29)

-1
e m

0\8

for evaluation.

Consider first the Class A "measurement" data of Table 1. Table 3 gives
Pe versus SNR for CPSK obtained from the program SYSAPD which uses (29). Note
that in using the data (see program listing in the Appendix) arbitrary 3 dB
levels are used. For Class A noise, (25) gives the "correct" theoretical
performance. The program SYSCOR computes (25) and Table 3 also gives these
results so that the approximation from the "measurements" can be compared with
the "“true" answer. Another program that is given in the Appendix is SYSGL.
This program uses (29), but pR(r) is obtained from the Class A model mathe-
matical expression (4) rather than from the corresponding "measurement" data.
The Pe versus SNR for CPSK from this program is also given on Table 3. This
shows the accuracy of the integration routine when these results are compared
with the "true" results. It also indicates the accuracy of the normalization,
pdf determjnation, and interpolation techniques used in SYSAPD. Finally,
Figure 5 shows the results of Table 3 along with the standard performance in
Gaussian noise (23) for further comparison.

The above results are for the Class A example. For the Class B case, the
simple Gauss-Laguerre quadrature used above does not give sufficient accuracy
when the Class B "measurements" are used in the program SYSAPD or when the
corresponding mathematical model for Class B noise is used with program SYSGL.
[The result of using the Class B example in SYSAPD (or in SYSGL) 1is shown
by the dashed curve on Figure 6.] Because of this, a different integration
routine must be used. This is given by program SYSWR, which used Weddle's
Rule (Kopal, 1961) to perform the integrations. This integration routine uses
(15) directly and, of course, is somewhat more sophisticated than the Gauss-
Laguerre quadrature used previously, but it is still appropriate for small
scale computers. For the Class B case, we have no "theoretical" results to
use to check the accuracy of the integrations performed by SYSWP.
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Table 3.

CPSK System Performance for Class A Noise

SNR (dB)

P> SYSCOR

Pas SYSGL

Pea> SYSAPD

-3.0C080E+C1
~2.,755C00E+ 01
=2.,50000E4061
-2.2500CE+C
=2.3C00L0E+C
-1.7508CE+C1
-1.5({00CE+01
=1,250C0E+(1
-1.06000E4+02
=7.5C0800E+CC
-5.C0{000E+GC
=2.50000E+0CC
2.5000CE+C0
5.0000CE+0C
7.5C004CE+0C
1.0000CE+CL
1.250306E+%1
1.50000E+C1
1.75800E+01
2.00GC0CE+DL
2.25000E+041

1.60710E-01
le4kbL02E-01
1.42528E-01
l.40644E~01
1.38309E-01
1.35202E-01
1.310732-01
1.256028-01
1.18388E-01
1.08950E-01
A.67394E~-02
Be15€82E-02
6e33627E-02
4,33408E-02
2.42702E-02
9.99877E-03
2.H9063E-03
Lol BBT7TOE-04
4. 05121E-05
1.39231E-06
1.32516E-08

le&710E-SL
1.4372€5-171
1.424%16E-01
1.406€95=-01
1.38342E-01
1.35244E5-01
1.31128E~-G1
1.256€ELE=-21
1.,13458:--171
1.068034c-101
3.68926E-(2
8416HKR7E=-D2
be3UBLBE=T2
40 36 341E-72
2o l43Hl4E-(2
1.,0€03€e7E-52
2470273E-303
L,4RI7HE-04
Ly U7TLG2E=-15
1.39308c=-36
1,321 43E-1338
20 (9713Z~11

1.39511E-01
1.38669E-01
1.32755¢E-01
1.726052E-01
1.34258E-01
1.30981E-01
+26556E-01
1.20784E-01
1.13917E-01
1.04748E-01
3.24013E-02
7.53L63E-02
5.82815£-02
4o 15365E-02
2.21760E~-02
F.42682E-03
2.H8102E-03
Le70352E-04
LeH3872E-05
2.07374LE-06
5.27832E-09
0.

Table 4.

CSPK System Performance for Class B Noise

SNR (dB)

p., SYSWR Model
e

Pas SYSWR Data

-32.0
-25.,0
=-20.0
-15.90
—13.0
-5,0

Ne 0

560
10.0
1540
20.0
2540
30.0
35.0
4040

1.69496E-01
7.04404E-02
2.90375E-02
1.36975E=-02
6.72071E-03
3.34009E-03
1.56805E6-03
8.34675E-04
4.18022E-04
2.09434E-04
1.04948E-04
5.25944E=05
2.63586E-05
1.32103E-05
6.62078E=06

1.730828-01
7.50642E£-02
3,07851E-02
1.43575E-02
7.02565F-03
3.48468E-03
1.73837E-03
8.67205E-04
4+33207E-04
2.15453F-04
1.06017E-04
5.07207E~05
2.44030E-05
1.06R07€-05
3.52328E-06
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The accuracy was checked by using another integration routine, appropriate only
for large computers, in which the desired accuracy can be specified in conjunc-
tion with the Class B mathematical model. Program SYSWP was found to give very
good accuracy for all signal-to-noise ratios. Table 4 and Figure 6 show the
results of the use of SYSWR with the "measurements" of Table 1. Two subroutines,
both termed FUNT, are given. One for the "measurement" data and program SYSWR
and one for the mathematical Class B model for use with SYSWR.

In order to evaluate the integral (15) the pdf of the noise envelope is
very easily obtained from the APD for Class A noise given in (4). However, ob-
taining the pdf for the envelope of Class B noise corresponding to the APD
given by (6) is somewhat more involved. By differentiating (6) we eventually
obtain the following, which has been put in a form suitable for numerical
computation:

[@e]

-1)"a" 2
2r -r2/Q (-1)7A, na o, o
Prlr) = =g e E; o F(”z)[ﬁ(]z’z’a

The Appendix 1lists the appropriate programs and all the required sub-
routines used in the above example calculations.

4. CONCLUSIONS

This report has developed simple computer algorithms which use measure-
ments of the APD of an interfering waveform (or a corresponding mathematical
model) to determine performance of various "normal" digital data systems. As
can be seen from the examples above, we obtain very good estimates of system
performance using SYSAPD and DM-4 Class A simulated noise measurements and by
using SYSWR and DM-4 Class B simulated noise measurements. Of course, the
Class A measurements can also be used with SYSWR. The algorithms developed are
for binary digital systems (and the coherent Neyman-Person signal detection
system), however, the performance of other systems (e.g., M level systems, and
minimal shift keying systems) can usually be obtained by appropriate extensions
of the techniques developed here.
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