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7.5 Brief Remarks on Figures 7.1-7.30:
Figures 7.1, 7.2 show the (zero-memory) dynamic characteristics of the
LOBD's for several specific Class A and Class B noise cases. Both Class A

and B noise require a combination of linear amplifier, and clipper-suppres-
sion (negative gain) for the larger amplitudes. The Class A character-
istics are, however, somewhat more complex, with a second amplifying-limit-
ing region, cf. Figure 7.1 vs. 7.2. In the Class B cases the character-
istic is a clipper-suppressor which is rather insensitive to the nongauss-
ian nature (mﬁu) and to the source distribution and propagation conditions
(v o) of the noise.

Figures 7.3-7.6 are essentially self-explanatory: increasing variances
(032) lead to smaller error probabilities and larger probabilities of cor-
rect signal detection, with smaller false alarm probabilities (GF) requiring
larger 032, all of which is entirely expected. Similarly, the tighter the
controls the better the performance, as shown in Figures 7.5, 7.6.

In Figures 7.7-7.10 all these Class A nongaussian noise statistics
ng), L£4), etc., approach their respective limiting gaussian values as
Ay, as expected (T3>0); i.e., L{2a1, L{¥a2, L(22)s6, L{E)s, cf. (7.16).
Moreover, when AA+0, TA+O, we also obtain th; gaussian limits, as expected,
due to the nonvanishing gaussian component op>0 (1.6.; PA+®). And, of
course, the more highly nongaussian is the noise AA = ¢(>0) the larger is
the magnitude of the statistic in question.

The behavior of the corresponding Class B statistics (Figures 7.11-7.24)
is similar, although plotted differently. For A (RA )+=, the curves for Léz)
etc., fold back on each other, approach1ng Zero db for L( ) , 3 db for

L(4)+L, etc., cf. (7.16). Similarly, as Aa+0 (i.e., A +0) with oé>0, one
2

again has a gauisian pdf, cf. (7.11a), which becomes w1(;)G=e'x /YT, as
expected, with x+X/oGJ§B, (7.10). Smaller values of a represent more effec-
tively nongaussian interference; i.e., larger values of Léz), etc., consist-
ent with the more radical departures of the pdf form gaussian behavior as
x|+ [cf. Figure 3.4(II) of [6], for the APD Py (e>e )].

The processing gains (per independent sample), as shown in Figures
7.15,7.16, for signals with partially incoherent structure (Qh=10, n>>1)

show the same type of behavior as the various nongaussian noise moments
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(2) (2)
LA s LB i
coherent threshold reception, see Figures 7.7,7.11.]

Figures 7.17-7.22 show various bounding values for minimum detectable

etc., in Figures 7.7-7.14, and for the same reasons. [For

signals under the equal variance condition (I), Sec. 6.4, for coherent and
incoherent reception; see also Figure 6.1 and the discussion of III, Sec. 6.4
above. In general, as the noise becomes more gaussian, these bounds become
1oos§r, and vice versa as the interference becomes more nongaussian; e.g.,
AA, Aa’ FA
more nongaussian the noise, the smaller, i.e., the tighter the upper bound on

;in permitted under the AO or

, a, etc. This is consistent with our general observation that the

the maximum minimum detectable signal <a§>
equal variance condition.

Figures 7.23a-7.24 compare suboptimum performance against the corre-
sponding optimum performance measures, with the degradation factor, ¢§, as
parameter. These curves are entirely canonical in that they apply for any

nongaussian (and gaussian) noise, common mode of reception (i.e., coherent,
incoherent, or composite), cf. (6.48), and (6.84) vs. (6.90), as long as
sample size (n) is large and the AO condition (equal-variance conditions)
is obeyed. Thus, once @E is properly determined, specific performance
measures are at once obtained from these figures.

Figures 7.25,7.26 show typical pdf's at x=o for Class A and B noise,
needed in the calculation of the performance of clipper-correlators and
comparisons with other optimum and suboptimum threshold detection algorithms,
cf. Table 7.1 above.

Finally, Figures 7.27-7.30 show typical Asymptotic Relative Efﬁciencies2
(ARE'S)% viz. @E's, of suboptimum detectors vs. the optimum for the noise
in question and the particular mode of observation, in these threshold situ-
ations, discussed throughout this study. Characteristically, since the
simple correlator is optimum in gaussian noise, as the noise becomes more
gaussian, the ARE's for the simple correlator in both Class A and B noise
becomes larger (i.e., closer to unity), cf. Figures 7.27,7.28, including
o+2 in the latter (i.e., larger o means less nongaussian, with a fold-over
effect in Class B noise as £a+m (not shown in the figures). The ARE's for

the clipper-correlator, however, display a fold-over effect as' the noise
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becomes more nongaussian, until for small AA’ O(ij"‘), close to the maxi-
mum value (0 db) is attained. This maximum cannot be reached here, of
course, since the clipper-correlator is never optimum in Class A as gauss
noise, although the difference is small, viz., == -2 db, cf. Eq. (6.66).
A similar behavior is also noted for the clipper-correlator in Class B
noise, cf. Figure 7.30, although the range of the fold-over effect as the
noise goes from very nongaussian to gauss is much smaller, on the scale of
a 10th the amount of the corresponding Class A effect. This shows that
the super-clipper (i.e., clipper-correlator) is much less sensitive to
impulsive noise (Class B) than to the "coherent" (Class A) noise. Thus,
the clipper-correlator makes a comparatively robust processor against
Class B noise, and can be fairly close 0(4 db to 1.5 db) to the optimum
processor in performance, cf. Figure 7.30.

7.6 Numerical Examples (Threshold Detection):

In this (sub) Section, we present a few numerical examples to illustrate
the use of the general results of the preceding text. Typical Class A and
B noise parameters and scenarios are selected; our attention here is given
mainly to the on-off-cases, for comparative simplicity. Thus, we have

i s . [ - -5 - )
Class A Interference: AA = 0.35; FA 5 x 10 (7.39)
(canonical, [9])
Class B Interference: A = 1.0; a = 1.2; @ = 0.00207, (7.39b)

o )
("Saipan Noise," [33])T

with the various other parameters of observation being n = 104, pB = 0.90,
P = 10"4, af = 10'4, typically; symmetrical channels are also assumed:
p=gq=1/2, K} o = 1. Typical results follow below.

fThe value of L(z) in [33] is 4.5 db higher as a result of different
intensity normalization and scaling.
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I. Optimum Detection

Example 1:

Performance Probabilities:

From Figures 7.3,7.4 we find at once for the values of P%, P;,

ag above that

2
1.0

0*

- 10-%
(af =

= 17.3 db (p;

10 7,

= 1074y, o*? = 14.2 db
O In.P
A - (7'40)

Y = 0.9); n>>1

These results apply directly, also, to suboptimum detectors (og, etc.),

for values of Pe
(n>>1) and that o
(7.13) remains valid).
Related to the above
For the performance

Pe

L]
=g

-

2
0

etc.

etc., again, provided the sample size is large

the equal variance condition holds (so that Eq.

are the results of Figures 7.5,7.6, for /B¥ = C¥,
measures of our example above, we find at once that

(7.41)

VB* = Cf , = 5.6db (= 3.63) 5 Cf o= 7.2 db (= 5.25)
Example 2: Coherent Detection in Class A Noise:

Here we wish to
associated with the above

(7.39a) above embodies the interference.

directly

2:>*

<}0 min-coh
operating conditions when the Class A noise of

From (6.10) in (6.11a,b) we get

establish the minimum detectable signal

B*

A

ax\ 2. . 3 (1-n
<o>m1n-coh nLiZS ) )]

1

2 /7
a, [ a; 3 0 <n<1). (7.42)

-n

For no or shallow fading,

(_S-i =

/Z), the upper bound,

i.e., n 0, but complete signal coherence

<< XBA on the permitted values of minimum

X
max

detectable signal which still preserve the A0 character of this optimum
threshold algorithm is given by (6.71)
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v
X

o = X -15db V% = 10 log 3 x 107> = -45 db (Fig.7.17), (7.43)

OA

so that the upper bound here is xmax = -45-15 .= -60 db. [The "<<" in

xmax<<X6A is usually taken to be 15 db.] 2)

Next we use (7.42), X = 40 db, with Lp 41.5 db from Figure 7.7 and
g* = 11.2 db for the N.P. detector from (7.41), so that

*
<§§>m1n-coh

which is substantially below the x_.. bound (-60 db), so that the AQ con-
dition is amply satisfied. Likewise, from (7.41) for the I.0. we obtain

*
()
0 .
min-coh 1.0.

If the fading is moderately deep, €.9., 1 = 0.99, (1!n) = -20 db, then
the ng obtained from (6.71) using L(z) and L(2,2) from Figures 7.7 and 7.9,

(2) 2 (2,2) - - . ¥ .
L 41.5 db, L = 90 db, is x¥, = 2.8 x 1077 Or X = -45.5-15 = -60.5

db. Again from (7.41) and (7.42), with (1¥n) = -20 db, we obtain

Xz\i
<: Oﬂ;in—coh N.P.

and (7.44c)
*
<§2\
0/min-coh

which are above the Xesax boundsso that the estimate of <%§>* may be
min

n

= 11.2 -40-41.5 = -70.3 db, (7.44a)
N.P.

= 14.4-40-41.5 = -67.1 db. (7.44b)

11.2-40-41.5+20 = -50.3 db,

14.4-40-41.5+20 = -47.1 db ,

1.0,

suspect.

Example 3: Coherent Detection in Class B Noise: &

For this example we repeat the calculations of aﬁ)ﬁin e
- *
(7.42), in the manner of Example 2, but now with the values of Lg !, Xo

appropriate to our particular Class B case (7.39b). From Figures 7.11 and
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7.13 we get Léz) 25 db and L(2 2) - 56 db. For no or shallow fading

(n=0), x; = -25 db (Figure 7. 20), and for moderate or deep fading

0.99), ¥* = -28.2 db. From (7.41) in (7.42), with n = 10%, we obtain,

(n> :
for no or lTittle fading
2™ _ _
i - L, T 11.2:40-25 = -53.8 db, (7.45)
2*
<% > = 14.4-40-25 = -50.6 db, (7.45b)
min-coh
1.0
with xmax = -25-15 = -40 gb. With even moderately deep fading [0(20db)],
v _ 2 _ 3
Xnay = ~43-2dband a . . =-33.8 dband -30.6 db, respectively, for

N.P. and I.0., so that even moderate fading cannot be tolerated.

Example 4: Incoherent Detection in Class A Noise:
We parallel Example 2, for the conditions as before, but now
using (6.24) and (6.25) in (6.27), or (7.19a) with (7.20a) above in conjunc-
tion with (6.27), to write for the minimum detectable signal in Class A
noise, when threshold detection is incoherent:

2 (2)° 7
< >h1n -inc 8 B*/n 1 - 4 (Qn-1) (7.46)

Now, from (6.58)' we have for coherent sinusoidal waveforms

2

Q = %.(510w fading) ; Q, (rapid fading). (7.46a)

i 5 (1-n)

For incoherent signal waveforms, Qn - 1= 0. Accordingly, for the large

samples (n>>1) required for (AO) threshold detection, (7.46) reduces to
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(i) coherent signals:

2y (2)
a-p . . v8B*/nL ;
<0 min-inc [,
and (7.47a)

2*
<?o min-inc

/LB (1n), BO1-n)2>1

rapid

2
cince LAA®) 2 0(1). (In fact, from Figures 7.7 and 7.8, L(2) = 41.5 ab,

2
L{*) = 86 db, so that L@ - 3 g
With incoherent signal structure (Qn = 1), (6.46) reduces, for both
slow and rapid fading, to

(i1) incoherent signals:

<§2 L S CO (7.47b)

o/min/inc

Specific numerical results may be obtained at once for the postulated
observation conditions above. We have [cf. (7.41)]:

< > n-
>
0

min-inc | coh.sig.

rapid
N.P.

4.5+5.6-40-41.5 = -71.4 db, (7.48a)

coh.sig.
slow
N.P.

-71.4-(1¥n) db, and (7.48b)

<éo>b1n—inc inc.sig. - 4.5+5.6-20-43 = -52.4 db . (7.48c)

any
N.P.

The corresponding results for the I.0. are 1.6 db greater (=7.2-5.6) from
(7.41). As expected, incoherent signal waveforms result in truly incoherent
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detection, with a /n -dependence on sample size vs. the n-dependence
obtainable with coherent waveforms. Thus, a channel which destroys signal
coherence greatly reduces the detectability of the resultant signal

(0(20 db) here), as is well-known.

To complete our analysis, we need to establish the bound y_._ <<y%*

max Yo’
From Figure 7.19 for coherent waveforms, and Figure 7.18 for the incoherent

waveform cases, we get respectively for y;,

yﬁA coh-sip = -52.5 db ; yaA hoseai = -54 db . (7.49)
Our results (7.48a,c) above for the coherent signals fall acceptable below
Vi = -52.5-15 = -67.5 db, as long as the rapid fading is not too deep,
but for the incoherent signals sample-size is not sufficiently Targe to
put ag);in-inc below yg to insure the AO character of the algorithm (and
that the performance measures are themselves the required good approxima-
tions). Thus, this last result, (7.48c), really represents a suboptimum
threshold algorithm, with a suspect estimate of ag —

Finally we note the "anomalous" behavior here of (optimum) coherent

, and performance.

. . ¥* AN .
4 s > . §
versus incoherent detection: <§g>m1n—coh <§0 min-inc TOr otherwise the
same reception conditions . For a discussion of this effect, see Section

6.4,I11 and Figure 6.1.

(2)

T We note that the "anomalies" are not due to the particular values of LA B
but rather reside analytically in the quantities Bﬁ p oOr Bf 0.} i.e., from
(7.42) and (7.47a),

<?2 F <§2 o - (8* - /85%) /L) (1-n) .

o/min-coh = \ ofmin-inc
From*Figures 7.5 and 7.6 we see that B* - /8B* < 0, i.e., <%§>;in-coh <
<?§>min-'nc , for those P% or p} where C*=/B¥ </B = 4.5 db, i.e., when
Px>2x107%, or when pE<0.62(ax=10"). Physically, as discussed in Section
6.4, 1II, this "anomalous" behavior stems from the different amounts of
signal and noise information Tost and gained for incoherent vis-a-vis

coherent detection.
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Example 5: Incoherent Detection in Class B Noise:
The analytic results (7.47) apply equally well here, with now
L(Z) = 25 db and Lé4) = 53.5 db from Figure 7.12. From Figures 7.21,7.22

B
we get the Timits

y* = -35.5 db (inc.sig.) ; yx. = -36.6 db (coh. sig.) . (7.50)
0B 0B

We summarize the results for the corresponding minimum detectable signals:

<a§>* = -54.9 db (coh.sig. ,sTow,N.P.),
= -54.9 - (1!n) db (coh.sig.,rapid,N.P.), (7.50a)
= -36.1 db (inc.sig.,any,N.P.),

again with the 1.0. results 1.6 db greater. With ymax<<y68’ or

Fovare ™ -50.5 db for coherent signal structures, the minimum detectable is
acceptably below - On the other hand, larger sample sizes are needed
to make the minimum detectable signals fall within acceptable A0 Timits

when the signal waveform is incoherent.

Example 6: Composite Detection in Class A and B Noise:
From the results of Section 6.5 (6.88a,b) we may write for the
minimum detectable signal when an (optimum) composite threshold detection
is used, the following special results for coherent signal waveforms:

Z2\* + VBB* - 4 (1-n) 2

<é0>min-comp " Sl - o 5 B*>>2(1-n)" , (7.57a)
2\ - J/BBF - 4

<éo>ﬁin—comp Irapid ~ nL(2jz¥:;5" B*>>2, Q>>1 . (7.51b)

[For incoherent signal waveforms (ngoh+0), the composite detector, of course,

reduces to the purely incoherent detector of (7.47a), discussed in Examples
4,5 above. ]
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. . 2\
Comparing (7.51a,b) with (7.47a) we see that éo)min_comp<( >('§m o
here: Co

Moreover, it is easy to demonstrate this; for example, let x=B*, so that
(7.57a) vs. (7.47a) becomes

always for slow or rapid fading: there is no "anomalous" behavior

Bx-4(1-n) & £

g g ke +16(1-n)%, all x>0 ,
= (1-n)? -
and similarly for (7.51b).

One important feature of the composite (threshold) detector to be
noted is its insensitivity to slow fading, vis-a-vis the coherent detector,
j.e., (7.51a) vs. (7.42). A second is the possibly strong superiority over
either the coherent or incoherent detector, as expressed by smaller minimum
detectable signals, particularly when there is significant fading. This
superiority vs. the incoherent detector is ol1.5db) and is 0 (3 db) vs. the
coherent detector with no fading, as the numerical results below indicate,
and is 0 (10-20 db) when there is moderate fading (n=0.99).

For the specific noise and signal examples assumed here we have for no

{7.52)

fading:

gNF 2.83 x 3.63 - 4
. . = = = -73.6 db P, 7.53
w <ao min-comp ]04 “ ] .4_[ » 104 73 6 (N P ) ( a)

with the corresponding result for the I1.0. of -71.1 db.

"3 N 2.83 x 3.63 - 4
Class B: é : = = -57 db (N. P.)
— o/min-comp ]04 % 316 X ]02

(7.53b)
-54.7 db (I.0.)

il
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These figures are to be compared with (7.44a,b) and (7.45a) for the corre-
sponding coherent detector results and with (7.48a) for the corresponding
incoherent detector results.

For moderate slow fading (n=0.99), (7.51a) gives:

2\ 2.83 x 3.63 - 4(.01) '
Class A: . = = 7 . 7.53
== <%o/h1n—comp 107 % 1.41 x 108 1.4 db (N.P.) ( c)

with the corresporiding result for the I.0. of -69.8 db.

*
Class B: /az> . _2.83 x3.63 - 4(.01) _ _54.9 db (N.P.)

o/min-comp 4 2
\ 10% % 3.16 x 10 (7.53d)

n

-53.3 db (I1.0.)

The corresponding fading results are given by (7.44c) for the coherent
detector (Class A).

In general, the composite detector is to be recommended for its com-
parative insensitivity to slow fading. Observe that the stricter of the
two possible bounds (x* y*) is that for incoherent detection, i.e., from
examples 2,3 and (7. 49) 7 50) we have yOA = -52.5 db (coh.sig. structure)
and yOB = -36.6 db, similarly. The results (7.53a ,b) are accordingly
within the limits y = -52.5 - 15 = -67.5 db, and y -36.6 - 15
= -51.6 db.

Still other numerical examples can be readily constructed along these

max-A max-B

Tines.

II. Suboptimum Detection and Comparisons:
Here let us use the results of Section 7.4, especially (7.25)-(7.38)
and Table 7.1. We shall consider only a few examples here, by way of

illustration.
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For the two specific Class A and B noise cases, and reception condi-
tions postulated here above, we begin by obtaining specific degradation
*
factors (¢d) and ARE's from Fiqgures 7.27-7.30 for coherent waveforms.

Class A: " - -41.5 db (Fiqure 7.27, simple correlator), (7.54)
o% = - 3.5 db (Figure 7.29, clipper correlator),

Class B: QE = -25.0 db (Figure 7.28, simple correlator), (7.55)
o4 =-1.34db (Figure 7.30, clipper correlator).

Now, ¢y measures the increase required for the (input) minimum detectable
signal (n>>1) in suboptimum coherent threshold detection to obtain the
same performance as the corresponding optimum threshold detector. Thus,
we see that simple correlators are strongly degraded in Class A noise:

41.5 db in <§2 for our particular example. On the other hand, the

o/min-coh
degradation is a much less severe, though a noticeable 3.5 db.when the sub-
optimum clipper-correlator is used. Similar behavior is noted in our Class
B example here: 25.0 db and 1.3 db, respectively.

When incoherent reception (of coherent signals) is employed, the
degradation in <§§)&1n is halved (in db) cf. (6.53), viz. -20.8, -1.8 db
(Class A), and -12.5 db, -0.7 db (Class B), respectiveiy, again for the
same performance and sample sizes.

On the other hand, the more limited ARE's, (Sec. 6.3.3), (III,

Sec. 7.4), (6.60), and Table 7.1, show that (ARE). = (ARE)Z, = % ...
(for coherent signal waveforms). For example, in the coherent cases, ARE
of clipper-correlator to optimum = %{—3.5) = -1.8 db, cf. (7.54) in Class A
noise, and is -0.7 db in our Class B noise above, cf. (7.55). In contrast,
the ARE of the simple correlator is -20.8 db, and -12.5 db, respectively,
in Class A and B interference [cf. (7.54),(7.55)]. Of course, the more
complete and revealing measures of performance are the error probabilities
(P;,Pe) and the probabilities of correct signal detection (pB,pD) themselves,
or the associated minimum detectable signals (which are implicit functions
of these probability controls, through B* or B, cf. (7.41), or (6.11b), and
Figures 7.5, 7.6.
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Other related comparisons may be made the same way. For example,
for the same minimum detectable signal and probability control [Case III,
Sec. 6.3] we can determine how much longer data acquisition must be for
various suboptimum algorithms vis-a-vis the corresponding optimum algorithm
(i.e., how much larger sample size n is vs. n*). For our particular
example above (coherent detection) we find that:

(i.) Optimum vs. Simple-Correlator:

_ _ (2)
Neoh = "con/%d = "CohlA,B (7.56)
or
_ 4
Moy = 1.41 x 107 x n* (Class A) ,
and (7.56a)
= 2
Moo ™ 3.2 x 10" x néoh (Class B)
Likewise,
(ii.) Optimum vs. Clipper-Correlator:
Wi ™ 2.24 x n;oh (Class A),
and (7.56b)
Ao 1.35 x "th (Class B).

Again, the simple-correlator is much inferior to the corresponding optimum
processor, requiring a much larger sample (or observation time), whereas
the clipper-correlator is considerably closer to optimum, requiring only
about a factor of two (or less) increase in sample size (n). Similar
behavior is encountered in the noncoherent cases, cf. (6.56),(6.57), where
we must implement Egs. (7.31)-(7.38) for specific numerical results.

Many other comparisons between optimum and suboptimum threshold algo-
rithms can be carried out in similar fashion based on the .analytic and
computational results in this study. We reserve such to a subsequent
investigation.
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8. SUMMARY OF RESULTS AND CONCLUDING REMARKS:

Here we briefly summarize the principal general results of this study,
reminding the reader that the detailed quantitative, analytic results are
developed principally in Sections 2 through 7, and in the various Appendices
following, as a review of the Table of Contents reveals.

Sections 2 through 4 are mainly an overview of recent earlier work,
needed for the subsequent developments of Sections 6 and 7, containing
some new material on suboptimum detection algorithms. Section 5 focuses
on the structural form of the various optimum threshold detectors, which,
like the analytic theory herein described, is canonical; i.e., independent
of specific signals and noise. The principal result here is the observa-
tion that these threshold algorithms require a double matching process--the
earlier, and more familiar linear matched filter for the signal, against a
nonlinear transformation of the input noise (and possibly weak signal)--and
an initial matching of the receiver to the noise itself: namely, the above-
mentioned nonlinear transformation of the (sampled) input data x. The
specifics of this transformation dynamics depends, of course, d;*the pdf of the
noise. The overall character of the receiver is adaptive--to the noise,
and to the desired signal, as we note more fully below in (11).

Sections 6 and 7, along with the appendices, contain the bulk of the
many new results, in particular for incoherent and composite detection.

Let us now briefly list the principal general results:

(1) The optimum coherent threshold detector is superior (in the sense
of smaller minimum detectable signal, etc.) to the corresponding incoherent
detector when the signal waveform is incoherent, as often happens, for
instance, when there is a doppler spreading produced in the channel. On the
other hand, for coherent signal waveforms, these coherent and incoherent
detectors are essentially comparable in threshold detection [cf. Section 6.4,
I11; Examples 2-5, Section 7.6].

(2) Threshold optimum systems are superior to (threshold) suboptimum
systems, as expected. The former can be very much better 0(20 db or more)
than conventional detectors, optimized against gaussian system noise; e.g.,
simple correlation detectors. They are less dramatically superior 0(2-6 db
or so) to clipper-correlation detectors (which employ hard limiters). The
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degree of superiority is also greater for Class A noise than it is for the
“impulsive" Class B interference (cf. Section 7.6). These results support
the use of simple, approximate detector structures, like the clipper-corre-
lation detector, vis-a-vis the exact characteristics (cf. Figures 7.1,7.2a,b)
in many instances, because of the much greater complexity of the latter.

(3) We remark that the optimum threshold detectors themselves become
suboptimum for input signal levels above some limiting value, where the
condition for asymptotic optimality (AO), namely, (approximately) equal
variances of the test statistic under H0 and H], is no longer satisfied.

It is then not guaranteed that they will remain superior to the aforemen-
tioned (or any other) suboptimum detector. However, performance, on an
absolute basis, improves for both as the input signal level rises. This
means, of course, that even if the A0 condition no longer holds, we can
still adequately use the originally optimum threshold algorithm.

(4) For these threshold detectors to maintain their optimality for
the large data sample sizes (n>>1) needed to achieve adequately small
decision error probabilities for the very small input signals which are en-
countered, it is critical that the algorithm include the proper bias term, g;.
This bias is obtained by terminating (under Ho) the basic expansion of the
generally optimum likelihood ratio about the null signal (6=0), cf. Section 2.

This bias is solely a function of rms input signal Tevel (a2), sample size
(n), the basic noise statistics and second order s1gna1 stat1st1cs In fact,
it is shown that B* is - ; var g* = 2 L <3H1;kf (?* H aiks: 032, ot
Appendix, Section A 3-6. w1thout this proper bias term® (1ack1ng in most
analyses of the threshold detection problem [48], performance can be far
from optimum [cf. end of Section 6.3].

(5) For best operation, the composite detector is proposed: this is

the sum of the coherent and (purely) incoherent algorithms [cf. Section 6.5].
When it is possible to take advantage of the coherent mode as well as the
incoherent one, the result is an improvement in performance 0(2 db or more)
over incoherent reception, and markedly so 0(10 db+, n=0.9+) against fading

to which (sTow or rapid) the coherent detection is particularly vulnerable,
as is the incoherent detector to rapid fading, cf. Example 6, Section 7.6.
These observations apply generally to both the optimum and suboptimum
threshold detectors.
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(6) A very important feature of the analysis generally is its
canonical character: this is true equally of the statistical-physical

noise models employed and of the (optimum) threshold forms of detection
algorithm. The formal structure of both algorithm and performance measure
is independent of specific physical models. This gives the threshold
theory its very considerable breadth: it is possible to indicate the basic
functional elements of the algorithms' operations without having to choose
a specific physical, numerical example.

(7) Another important feature of the present approach is its
definition and use of the concepts of minimum detectable signal and

processing gain [cf. Section 6.2 et seq.]. These, in turn, require a

nonvanishing input signal, which is certainly the case practically. The

A0 condition [cf. (3)] is really a condition of small but nonzero input
signals, sometimes referred to as "vanishingly small": we call it here
"practically small"; i.e., small enough that the A0 condition is practically

approximated; e.q., Xmax,ymax = ¥3,§3 - 15 db, say, so that
2 = L2 2 2 . 2 2
03" = o*”, where of” = o¥" + F(n,®) and .". ]F(n,8)|<<(0;) or |Fn|/cg <<l ,

cf. Sections 6.2, 6.4. The minimum detectable signal and processing gain

permit a variety of useful system comparisons, both between optimum detectors

in different modes of operation and between optimum and suboptimum receivers.
(8) The concept of Asymptotic Relative Efficiency (ARE), cf. Section

6.3, IV, though useful here, is not a complete nor necessarily reliable measure
of system comparisons. A more effective measure is the degradation factor,

S _coh® %-inc® etc.» which specifies the increase needed in the minimum .
detectable signal of suboptimum (threshold) detectors to achieve the same
performance as the corresponding optimum detector [cf. Section 7.6, II, also].
Since the minimum detectable signal is an implicit function of the performance
probabilities, as well as sample size, noise statistics, etc., it is itself

a "complete" performance measure also, while the ARE is not. Error proba-
bilities (and/or probabilities of correct signal detection) are likewise the
corresponding "complete" measures of performance, vis-a-vis signal-to-noise

ratio, and the ARE, which is of the same level of statistical incompleteness.
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(9) The r6le of discrete vis-a-vis continuous sampling is also
examined here, in sufficient detail to explain the often "anomalous"
behavior of incoherent threshold detectors (for the same P; or pﬁ and
sample size, n), giving smaller minimum detectable signals than the corre-
sponding coherent threshold detectors, under discrete sampling, cf. Section
6.4, III. Although these effects are noticeable, they are small 0(1-3 db).

(10)  Another canonically important feature of the threshold theory
is that it provides both structural and performance limits in the optimum
cases. Such limits are critical if one is to decide what practical
(usually rather suboptimum) systems are to be employed, within the available
economy. Often the sacrifice of a few db in <%§>inc is more than compen-
sated for by the resulting simplicity and comparative inexpensiveness of the
realization of the algorithms.

(11)  In the larger sense, as well as in the particular, these
threshold detection algorithms represent adaptive systems: the often very

considerable superiority of the optimum algorithms over their various
corresponding suboptimum alternatives stems from the fact that the former
are basically adaptive. The principal area of adaptivity is the noise. In
practice this takes the form of establishing (i), the class of noise--Class

A vs. Class B, for example; and (ii), the three (or more) statistical-physical
parameters of the particular noise environment of the class in question. Of
course, in practice only estimates based on finite samples are possible, so
that it is also important to determine how sensitive both the algorithms

and their performance are to departures from the actual (infinite-sample)
values of the parameters. This involves a robustness study. Preliminary
analysis [42],[45] indicates a reasonable lack of sensitivity to small and
moderate changes in parameter estimates. A second area of adaptivity lies

in the signal domain: estimation of various signal parameters (amplitude,
waveform, frequency, etc.) which may only be known statistically at the
receiver, or even estimation of such statistics themselves. Some preliminary
work employing locally optimum Bayes estimators (LOBE's), which are also A0,

is now available [51].
A concise (and incomplete) overview of the material of this report is
given in [49]; a much more comprehensive, invited review paper is scheduled [50].
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Many further topics need to be studied in the context of the present approach:
for example, along the lines of using appropriate estimator-correlators to
simplify the realizations of these A0 LOBD's, [52], including the proper
biases (4) above; and the effects of weakly-dependent noise samples,

cf. [53], but along the present lines of “parametric" models, rather than
non-parametric ones, [21]-[24]. A parallel derivation for A0 LOBE's of
specific signal elements, extending the work of [51] in detail, is also needed.
Finally (but not necessarily only), is further work along the lines of [54],
specifically addressed to multiple-element arrays and beam-forming in
nongaussian noise fields. Still other, associated threshold reception
problems will suggest themselves in the course of the above, among them

the further development of analytical and numerical results for the binary
signal cases, which are initiated here.
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GLOSSARY OF PRINCIPAL SYMBOLS

ARE Asymptotic Relative Efficiency

AA,B overlap indexes

Aa Class B parameter

AO (peak) signal amplitude

a fading amplitude

<?2>r <}2 " minimum detectable signals

o/min’ \ o/min

30, dp> ag normalized signal amplitudes

o,0* (conditional) probability of false alarm; o, also, a

Class B noise parameter, cf. (3.14c?
a, AO/A1 = ratio of radii
*
g(*) probability control = (C,C*)2
z'\.* .

Bn,Bn,B; biases

b]a Class B noise parameter

B, B* (conditional) probability of false signal detection
C binomial coefficient
m”n

€,C* probability controls

3 signal epoch

Fn(xle) pdf of (signal and) noise

F. detector characteristic
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%

6, (¢)
9(5).9*.

.

I'\I
HysHgsHysHoy

hys

u=p/q

n,n] z,n*
: |

Class B noise parameter

beam pattern

detection algorithms

propagation law (exponent)

ratio of intensities of gauss to non-gauss components
hypothesis states

weighting function of matched filter

source signal intensity

average noise intensity

thresholds

(1st-order) statistics of the noise
likelihood ratio

likelihood ratio

transfer characteristic, cf. (4.2a)
distance

boundaries of source domain

second-moment function of signal amplitudes

ratio of a priori problems; also, power law
of source distribution, cf. Eq. (3.5).

number of (independent,time) samples
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[Pl pb

g

2
2 2 2 ~ 2 %
a* *9°%n>%:? %1

sgn X

s$,5,5"

intensity of nongaussian component (Class A,B) noise

doppler "source"

doppler shift

probability of correct signal detection
error probabilities

processing gains

a priori probability

degradation factor

mean noise intensity

phases

signal structure factors

a priori probability

normalizing distance
second-moment function of signals

function of signals at (ti’tj)

jJauss intensity
variances
"sign of"

normalized signal waveforms

data interval
error function
signal-to-noise ratio

normal signal waveform parameter
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pdf of noise

pdf of noise
normalized data sample
coherent bound

incoherent bound
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APPENDICES

Part I Optimal Threshold Detectors

(David Middleton)

APPENDIX A-1

Optimum Threshold Structure and Bias Terms: The "On-Off" Cases:

Here we develop the general LOBD structure, including dependent samples,
leading to Eq.(2.9) and its various coherent and incoherent special forms
(2.11), (2.12). We focus our attention initially on the "on-off" (H] vS.

Ho) cases, as the extension to the binary signal situation (H2 Vs. H])
follows immediately from these results, cf. (2.13) ‘et seq. We:consider
only the general, and usual,case of additive signals and noise, cf. Sec.
A.3-4) ff. however, so that

4 (x18) = uGu WMy (X)y 5w = p/as X = D] = D/l (A1)

is the likelihood ratio to be expanded according to the threshold concept
described in Sec. 2.2.

Al-1: The General LOBD:
We begin by expanding the numerator in appropriate powers of

8= [aOJSJ]' cf. (2.9a), through 0(94), to obtain
?: > 3“"n 1 zn < )1 a2wn
A = w(l- 8. + 5 8.0.) —
n - (1 wnax1 2! ij 173wy ﬁxiaxj
3 4
9 w 3 W
] i | 1 n
- = 0. + 6.0.6,8 —_—.. )
31Jk<1 k> X ax axk .1E<1Jk > 3X; « - 3X

(A.1-2)
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where

i
aw W
_ 9 1 n n K
Y: Sx——logw, = —=—5— 3}
i Bxi n Wn Bxi W,
azwn w;j 82109 W, w;wg
W_oX.0X: W 3X.9X 3 = Zij+yiyj 2 (A.1-2a)
n it i°7%5 W,
i.e ?
32 1 a3wn w;jk
Z.:. = —— logw_, with — = , etc.,
ij axiaxj n W axiaxjaxk wo
e.qg.
4
3mwn B w;’z L ( )
e , etc. A.1-2b
X5 e BX W
Our next step is to expand log As using (A.1-2) and the relation
Tog(1x)= x - (&72) +(<%/3) (/4. .5 [x]<1:
- (1), 1_(2) 1 A(3) A (4)
= + - o =
Tog 4y = Tog u + Tog [1-A(4}* 27 A(iy)- 37 Aliii* 4T Aligie) -] (A1-3)

= log u + [A(” A(Z) 1 A(3) A(4) ]

<0¢e*)
1M1 @2 0@ e ) @)
5 [A 212A s o Sl o +“'J§0[e41
3 ., (1)%,(2)

+1 aA(”+——2-,——3A A ...

3 1 T ot

1,
- = [A Fia

7l ]fp(e4) (A.1-3b)
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2 Ok
s log An = log u - A(1)+ JET[A(Z)-A(]) ]- ;—![A(”— %:_ A(1)A(2)+ 3!g ]

2 2 4
¢ it 27 AV g1 ADAC A 2 e

(A.1-3c)
which becomes, more compactly
‘e Tog A = Tog u - Z<B>y t 5T I {<919 )(yy+z ) (8; >(9 Dy i3}
05 + 0, + 0((95)) , (A.1-4)
where now, specifically
,on 1Jk
0q = - §T-i§k (CH: Bk> - 3<ai)<bjek>yi(yjyk+zjk)
+2y1yjyk(ei><bj><ek>} (A.1-4a)
1Jk£
) y
@4 =T " {<B19J9k8g> 3(9133-) (9kei>(zjjw’fy§)(zk2+yky£)
sz
-840 ¥5(05080) *13(9 20395048 (Z gty yy)
-6(e1> € ) (ek) <e >y Yi¥Y¥e) - (A.1-4b)

For coherent reception, as expTainedin Sec. 2.2 aboye, we retain only- those
terms in Qﬁ) which are 0((8)) and replace terms 0(<ez>) by the resulting
average (of ﬁ) over Ho’ e.g. the LOBD here is now
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géoh = [Tog u + 57 ): {<8 .><‘y1"yj+z'ij>Ho - <91><ej><inj>Ho}]'§(e1>.Y1'

. (A.1-5a)
= [Tog u + o7 Z (v [(e58 - (e )y + (9 -)<Z,-j)HO}J-1Z<B1-)y1- ;
(A.1-5b)
where the expressions in the square brackets arenow the bias term, B;#c‘

Similarly, for purely incoherent reception, we require (e )
and (o6 ;8 = 0, at least,* for the LOBD, so that 65 = 0, and the LOBD
now becomes

(ijke)
W
OFyc = [log u + 3‘;' <91938k62,> y ama 3[{(5193)(_)( Y5243 2> J

1 n
+'2—!_1EJ (9163){y]yJ+Z1J}3 (A-]'G)

where the terms independent of the data Qﬁ) constitute the bias, B;—inc’
here.
To summarize, then, we have the LOBD's for coherent and incoherent

detection, respectively

n
B¢ 12 @Yy = BE - Dy » (A.1-7)

with

B:—c= log w# %T<§ LPB-<§><§>1¥+<§E§£>HO’ Lo 5<9§) > <619j>s (A.1-7a)

This second condition, (e k) =0, is certainly satisfied for narrowband signals,
S =2 cos[w (t -€)- -5 1 when'the first condition (e ) =0 holds. For broad-band
s1gna]s, however we require that <P ekeg =0, as well as (e > =0, for this
so-called "purely" incoherent reception.
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and

1
9Fne = Bp-ine * §T£¥ oY, ﬁt§%§>] ’ (A.1-8)

where
W (13k2)
- “n
B; inc log u + 77 4' < X (e1 J k £>

-3[{ (918J>(yy 2”)3% : (A.1-8a)

which are the results exhibited in Sec. 2.2 above. Here we have explicitly

azlog W
4
(igke) o " (A.1-9)
n axiaxjaxkax2

The results above hold for dependent or uncorrelated samples, e.g.

n
Wn (y(i)-]]-w(x1 Ya
generally.

A.1-2: Independent Sampling:

When the noise samples are independent(but not necessarily stationary)-
the Timiting situation.of ourrpresent aratysis- wery comsiderdple simplifications
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in our general results (A.1-7), (A.1-8) above are possible. Now we have

n
“n (N = (xIH,) = U1 ¥ (X; IHo) (A.1-10)
b=
so that
~
3 9 109 w_i
Vi = o 109 Wy > g = g
1 i
2 32
-8 U 9% . ‘
25 = ax.ox; 109 (Wywy) = [ =5log wilsss = 24645 3
T 3X] P
wn 2 w' 2
a (_—’) = -5 ]Og W o+(—)_ = 9's. .+05 s
u(33)
Py = NMotkZ. . = L. 8., . -
R (M I R E J (A.1-11)

Accordingly, the LOBD's (A.1-7), (A.1-8) become now

n n

1

= * - -, = g 1 -
9 = Bh-c g 21"<,ei>  Ofne = Biinct 70 23 [Einj+1151j]<619j> » (A.1-12)

cf. (4.1), (4.2), (4.4).
Our next task here is to obtain the biases (A.1-7a), (A.1-8a), for
these independent samples. We begin with the coherent case (A.1-7a) and

observe that
2 .
Voasysydy = Y anyS), + Vas (. o (A.1-13a)
i3 ijvivj H0 § 11< 1>H0 I3 1J< 1>H0< J>H0
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since X;sX; (i#j) are independent, so that

1.%_ aij<-y1'yj>H0 - 12 aii<y1?>H0

@

=0, (A.1-13b)

(y >H I!.whdx =f Wygdxg = Wyy

(regardless of whether or not w, is symmetricall). This last follows from
the necessary condition on the proper pdf Wy that w](*m) = 0 always.

Similarly, we have

- 7N
T_Zj bij<zij>H0 113‘ <9 ><Pu1 iPH T E <a1.)J:wz1.dexi

- Z ( 2>(fm[ — - (—) ] w1dx)

©

(o2 ( ””1 0 i s wt ] -
z )f )1 , f Wik, =wj| =0, (A1-14)
since wi(i?) = 0, also, for a proper pdf. Writing”
L(2) = m(w1) wpdx; = 8D = (y®) (A.1-15)
i ") 1i i, il M -

. _ 2 _ /.2 2 . A
and observing that a4 = pg]ii-(ei> = <ei>'<bi> 2 bii = <bi> in the above,
we find that the bias (A.1-7a) becomes

*
Incidentally, note that ng) is equivalent to Fisher's Information
1., at 6=0, cf. Eq. (225),[12], i.e.,

1
- ke w]( i~%; )12 ws (X ]8.)dx. ,
Iile..g ) ’([ 38 ] 1%4194)%; 8=0
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B*

= Tlo e % (e >2L(2) = o - é* (A.1-16)
n-coh ¥ -3 AN Ul gu .

n-coh °

When the noise process {x} is stationaryi_w]i = Wys all i and <+ y; = ¥,

ngj = L(z), all i, etc., further considerable simplification occurs. We

obtain for the coherent LOBD, g% ., from (A.1-7), (A.1-16), 25 = 2;(x;)>2(x;)

and

n n
e Boh - [Tog u - |_(2) 1-21 -12-<a0.551>2]_ i§1<ao'is1'>£(x1')' (A.1-17)

Our next task is to evaluate the bias, (A.1-8a), for incoherent de-
tection, now with independent sampling. Let us consider the first term
of (A.1-8a), viz.

L (idke)

] (o868 )0 —u)
Jlad VIS Wy

1. (ifjfk#e):

(ijke) (i) (1) (k) (2)
. (" :> W DL FRORRL, . _ .
- < Wo Hy -<W-|1- ’ Wi ’ Wap ’ Ws >H0 - <£i>o<nj)o<nk>oé‘l>o =0,
cf. (A.1-13b) ; (A.1-18a)
II.  i=j(#k#e):
(ijke) (i) (k) (2) "
"n _ " . | . "1 _ fl =
< wo >H0 - < Wy Wi W >H0 - <(w1)>HO<£k>oéL>o =0,
cf. (a.1-13b) ; ' (A.1-18b)
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There are NCN-(E-]) combinations of the above, where N = no. of indexes

(= 4 here) and E no. of indexes that are equal, i.e. k=j, 2 E = 2, so that
ACaq = 4374 combinations of the above. (For I, E =1 (identity),
seqlag = Vad

III. i=j; k=t (igk):

N /M Wy i El. fl.- L 2 (e i
< "n >H0 ‘<w11 >o<w1k >o qw1)i:>o<"1)l>o <liéjj*g1'>‘°ékémmbo ’
cf. (A.1-11), (A.1-14). (A.1-18c)
Similarly, we have
IV. i=3=k(#):
(ijke) (ii1) (2) (2 |
Wy v 1 . l> ¥ > =0
L) = =0, = (=) )=(2
< Wi >H0 <w1'i >o<:12>0 s1nce<wu 0 <(w'l)£ 0 < >p"°
(A.1-18d)
V.  (i=j=k=2):

(13ke) 7 (8)

W W-I i o 4 3 .m )

<—‘_“nwn >H 2 <(—-—w] )1_ . = 0, since (J:mw]( )dX)i = w1(1.) I_w = 0. (A.1-18e)
0

Accordingly, the first term of (A.1-8a), (apart from log u) vanishes.
The second term, however, has a definite, nonzero contribution. We
distinguish the following combinations of terms, on expanding:
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(")

-3 (med A ik » o ppre g e+ M oone
(A.1-19)
(1). (i#k):
(")
<h /w]k> <w:; > <w1k > N (A.1-19a)
(2). (i=k
wh 2 =y, 2 (4) i oidnd
(i1, = (LG ) = oo = oy
cf. (A.1-18¢c); (A.1-19b)
(3). (i#j)#(k#e):
(i, b = €030 0o (i Do (2y)g = 05 (A.1-19¢)
(4). (i#d)s (k#e):
(a). .
a J#z} <”' 200 =0 (A.1-19d)
(b).( izks j=¢ (22a2) = (22), (4B, - (@) |
{ }E":’? ' ’ (A.19¢c)
it

i=g; j=k - <£1?>0<2k>0 - ng)Lﬁz) .

Combining (A.1-19a-e) we get for (A.1-19), and in fact, for the entire bias
term, finally, :
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2
- 10 (8) 7,252 0 (2)5 4232 (2), (2) 2
BX ipnc = 1091 -3 {g B (ei) -2L; (85) +2§%lﬁ L] <919j

Tog u + B; -inc ,

(A.1-20a)

and when the noise process is stationary, e.g. L§4) = L(4), L$2)= L(z),

etc. the simpler result

2
4 2 2
BX . = 109 - 8 2 (e1eJ> 2oL (4 g )? )8, +2L( )" 12109 }H’Bn inc*
(A.1-20b)

Accordingly, in the stationary cases the incoherent LOBD (A.1-8) now
becomes explicitly

1 2 4 2 2
g?nc = [log u- -gizj <a01aoJS1SJ> {(L( ) 2;_( ) )5 +2L( ) 1]
2‘ 2 (L 2 JL161J)<ao1 0Jj 55 J (A.1-21)
2, = L(xi) = %; log w](leo)‘x=xi y BECws

where the term [ ](= Bn 1nc) is the bias and L(Z) =<£2>0; L(4)= ((z'+n2)2> .
cf. (A.1-15), (A.1-19b).

A.1-3: Gauss Noise and Independent Sampling:
Our results (A.1-17), (A.1-21) for g* should reduce to the previously
obtained fonms when the noise is gaussian. Here we have (for independent

noise samples)
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