LOCALLY OPTIMUM AND SUBOPTIMUM DETECTOR PERFORMANCE
IN A NON-GAUSSIAN INTERFERENCE ENVIRONMENT

A. D. Spaulding*

Since the normally assumed white Gaussian interference is the most
destructive in terms of minimizing channel capacity, substantial improve-
ment can usually be obtained if the real-world interference environment
(non-Gaussian) is properly taken into account. In this report, the
performance of the locally optimum Bayes detector (LOBD) is compared with
the performance of various ad hoc nonlinear detection schemes. The
known results are reviewed and then it is demonstrated that these
theoretical results may be misleading due to the assumptions that are
required in order to derive them analytically. For a particular type
of broadband impulsive noise, the critical assumptions of "sufficiently"
small signal level and large number of samples (large time-bandwidth
product so that the Central Limit Theorem applies) are removed; the
first, analytically, and the second, by computer simulation. The thus
derived performance characteristics are then compared, especially as
the signal level increases. One result is that there are
situations where the bandpass limiter outperforms the LOBD as the
signal level increases; that is, the locally optimum detector may not
remain "near optimum" in actual operational situations.
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1. INTRODUCTION

The real-world noise environment is almost never Gaussian in character, yet
receiving systems in general use are those which are optimum for white Gaussian
noise (i.e., linear matched filter or correlation detectors).

It is well known that Gaussian noise is the worst kind of noise in terms of
minimizing channel capacity or in its information destroying capability. This means
that very large improvements in the performance of systems can be achieved if the
actual statistical characteristics of the noise and interference are properly taken
into account, and there have been various significant efforts in the last few years
in this area (Spaulding and Middleton, 1977; Middleton and Spaulding, 1983).

When confronted with real-world noise, the earlier and usual approach was to
precede the "Gaussian receiver" by various ad hoc nonlinearities (e.g., clipper,
hole punchers, hard limiters, etc.) in order to make the noise look "more Gaussian"
to the given receiver. Later, optimum systems were derived (e.g., Spaulding and
Middleton, 1977; Hall, 1966) using models of the actual noise. These systems are
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adaptive in nature and usually very difficult to realize physically. If, however,
the following two assumptions are made:

1) the desired signal becomes "sufficiently" small ["sufficiently small"

is defined in Middleton and Spaulding (1983)*], and

2) the time-bandwidth product is large, so that a large number, N, of

independent samples from the interfering noise process can be used

in the detection decision process,
then a "locally optimum" detector, generally termed a "locally optimum Bayes
detector" or LOBD, can be obtained. Under some rather strict conditions, these
LOBD detectors approach true optimality (asymptotically) as the above two assumptions
are met, and usually take the form of the "normal" Gaussian receiver preceded by one
or more particular nonlinearities.

In this report, we want to briefly review the derivation of the LOBD, primarily
for the case of binary coherent phase shift keying, CPSK, and then review the com-
parison of the LOBD performance with the performance of the hard-limiter (or other
nonlinearity) performance. We do this to point out and have available the results
we need to refer to later. In actual use, the desired signal may be "small," but
not "small enough," and/or the time bandwidth product may not be particularly large.
One of the main objectives, then, of this report is to remove the above two assump-
tions to investigate the "truth" of the standard LOBD and hard-limiter performance
estimates. This is done for one typical example of broadband impulsive noise. For
this example case, the first assumption (sufficiently small signal) is removed
analytically and the second (large N so that Central Limit Theorem arguments can be
used) is removed by computer simulation. Another main objective of this report is
to summarize the results from an extensive set of Monte Carlo computer simulation
results for the CPSK system, using various nonlinearities (including the LOBD
nonlinearity) and also using Rayleigh fading signals as well as constant signals.

We start in the next section by reviewing the pertinent standard analytical results
for the LOBD and then proceed to remove the assumptions used to obtain the "standard"
performance estimates. An appendix contains the computer algorithms used to obtain

the Monte Carlo simulation results.

*
See Sections 2.4, 6.4, and Appendix A.3 of Middleton and Spaulding (1983).



2. LOCALLY OPTIMUM DETECTION
The techniques for deriving the locally optimum detector for various signaling
situations are well known and covered in detail in Spaulding and Middleton (1977)
and the references therein. Here, we simply review the results in order to indicate
where the two assumptions above come into play. Our problem, for binary CPSK, is to
decide optimally between the two hypotheses:

Hy X(t) = S](t) + Z(t) Dxt=T
(1)
Hy X(t) = Sz(t) + Z(t) Il S
In (1), X(t) is our received waveform in detection time T and this waveform contains

either the completely known signal S](t) plus the noise Z(t) or the completely
known, equi-probable, signal Sz(t) plus Z(t). To obtain our receiver structure we
follow the standard procedure of replacing all waveforms by vectors of N samples

from the waveforms (X(t) + X = {x; 1, etc.) and forming the Tikelihood ratio A(X):

P(_UHZ) pz(l = §2) <
RECIC A= e (2)

When Z(t) is non-Gaussian, we operate so as to generate independent noise samples,
Zis i =1, N in time T, so that only first order pdf's are required. We now use the
LOBD or threshold operation which we know becomes asymptotically optimum as our
signal S(t) becomes sufficiently small and N - = (Middleton and Spaulding, 1983).
Increasing N corresponds to increasing the detection time T, since we cannot for any
noise process sample more rapidly than the bandwidth and maintain independence.

Using a vector Taylor expansion about the signals, Sj, j=1, 2 here, we get

N
ap,(X)
py(k = S5 = p(0) - D —5— Sy
i=1



In this expansion, for coherent signaling, all signal terms of degree two and higher
are discarded. This is the normal "small signal assumption." 1In general, simply
discarding higher order terms can lead to receiver structures which are not locally
optimum, or in the 1imit of infinitely large sample sizes (N + =), are not asymptoti-
cally optimum detection algorithms (AODA's). The proper algorithms require a correct
bias (obtainable from proper treatment of the higher order terms)*. The problem is,
that without the proper bias, the higher-order terms in the expansion of A(X) can

be discarded only when the sample size N is small. But N must be made large in

order to obtain the required small probabilities of error for weak signals. This,

of course, defeats the whole concept of a canonical and comparatively simple algo-
rithm. One may as well use A(X) itself, which is optimum for all signal levels.
Sufficient conditions that the LOBD is an AODA as well as a LOBD (N < =) are given

in Middleton and Spaulding (1983), Sec. A.3-3.

For binary symmetric CPSK, and for independent noise samples (3) leads to

A(i) 5 i=] i 1 1, (4)

which gives the well-known receiver structure shown in Figure 1. In Figure 1, we
see that the receiver is the standard memoryless Gaussian (i.e., degenerate matched
filter) preceded by a particular nonlinearity given by

2x) = - %; n py(x) . (5)

Note that this is a completely canonical result in that we have not yet specified
(in the above derivation) what pz(z) is or what the signals S](t), Sz(t) are except
that they are completely known. Figure 1 is our receiver, which is adaptive in that
it must change according to (5) for changing noise conditions. The receiver takes
our received waveform samples X; and uses them as shown to determine our decision
variable §. Now, in order to determine performance we need the pdf of 6. The pdf
of & is almost always impossible to obtain, however, unless we can invoke the
Central Limit Theorem.

* For.cases of threshold signal detectors that are neither locally optimum or asymp-
totically optimum detection algorithms, see Lu and Eisenstein (1981).
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Figure 1. LOBD for binary symmetric purely coherent signals.

Xj = L(x;)

Although the nonlinearity 2(x) does not "Gaussianize" the noise, it does Timit
the amplitude excursions of the noise. Because of this, it is common to require N
to be large (normally N must be relatively large to achieve any kind of processing
gain over normal receivers as will be demonstrated later via simulation) so that we
can apply the Central Limit Theorem. This means that we only need to compute the
mean and variance of & under each of the two hypotheses. We start with Yis the out-
put of the nonlinearity for input X; - Suppose H1 is true, then

p7(z)
= EZ—(?)— DZ(Z-S]_i) dz.

E[yilH]]

and

2 ® pi(z) :
E[.Y1|H]] = f m DZ(Z - S-H) dz .

In evaluating the above two integrals, the usual approach is to expand the

pz(z - S]i) and then discard all terms in SH of degree 2 and higher. (As mentioned
earlier, one of the objects is to investigate the effect of using this small signal
assumption this second time.) Doing the above, we obtain

ELy; [H,] = - S.L, where (7)
= [py(2)]°

L = f W dz, and (8)

ELyfIHy T 2 L (9)



The parameter L determines (for "small"signal) the processing gain achievable for

any pz(z), including Gaussian noise (for which L = 1).

Using the above we obtain, for binary symmetric signal with S]
L
i=1
N

2 2.4
LS]i - L S]i)'

]

Var[§|H,] = Var[s|H;] = 4

(
i=1
An estimate of performance is then given by

Pe = Prob[§ < 0] = %—erfc {Jﬁléjl——-}
vevar[é]

If our two signals are, for example,

S](t) V2s cos(mot), e L |

and

Sz(t) - 25 cos(wot), 0<t<T

so that S is the signal power, then

2SLN, and

ASLN - 6S°L2N.

]

E[s]
Var[6]

(

t)

=8

ol

t) (CPSK),

(11)

(13)
(14)

Since all our noise models are normalized so that the noise power = 1, S is also

our signal-to-noise ratio. We note that SL must be such that the variance is posi-
tive. Since L is usually large (i.e., m103 - 104), (14) defines, in a sense, the
meaning of "small" signal in the above LOBD analysis. [Very detailed definitions of
"small signal" are given in Middleton and Spaulding (1983), cf. Sections 7.4,A.3.]

If SL << 1, then (11) becomes approximately

Po 2 1/2 erfc (VSNL/Z)

(15)



For LOBD's, the performance parameter L is >1, and is equal to 1 iff the noise is
Gaussian.

The above reviews the LOBD approach. Suppose now that we have a LOBD detector
based on the assumption that our interference is 52(22, and the actual interference
is pz(z). We can carry out the above analysis using pz(z) in place of pz(z) where
appropriate to determine the effects of "mismatching" the interference, or we can use
this to determine the sensitivity of the LOBD performance to changing interference.
This approach also gives results which can be easily used to evaluate the small
signal performance of any ad hoc nonlinearity. The result is that L is replaced by

L]

a parameter L .., for "L effective," where, Leff = L%/LE,

7 p52)

L] ='/ - pi(z)dz, and (16)
Jw | P7(2)
WPBQ(Z) 2

L2 = J/- - pz(z)dz : (17)
Jo | P7(2)

If pz(z) = pz(z), then Ly = L, = L = L,ce .
We can quickly compute the performance of any arbitrary nonlinearity, 2(x),
used in the detector of Figure 1. For example, for the hard-limiter, 2£(x) = 1, if

x > 0and 2(x) = -1, if x < 0. We can solve the resulting expression
S .
R(x) = = g &0 py(x) , (18)

to obtain the corresponding p-,(z) to compute L via (16) and (17) above. For the
Z eff

hard-Timiter case, we obtain

o 2
Leff = 4 p(0). (19)
where pz(z) is the actual interference. Performance is given by (15), so that the
degradation caused by using the hard-limiter is simply the difference between L for
our actual interference (LOBD performance factor) and Leff for the hard-limiter (or
similarly, for any other nonlinearity).



Up to this point, we have not specified any "model" for the real world non-
Gaussian noise and interference environment. Recent work by Middleton has Ted to
the development of a physical-statistical model for radio noise. This model has
been used to develop optimum detection algorithms for a wide range of communications
problems (Spaulding and Middleton , 1977). It is this model which we use here for
our signal detection problem. The Middleton model is the only general one proposed
to date in which the parameters of the model are determined explicitly by the under-
lying physical mechanisms (e.g., source density, beam-patterns, propagation condi-
tions, emission waveforms, etc.). It is also the first model which treats narrow-
band interference processes (termed Class A), as well as the traditional broadband
processes (Class B). The model is also canonical in nature in that the mathematical
forms do not change with changing physical conditions. For a large number of com-
parisons of the model with measurements and for the details of the derivation of the
model, see Middleton (1977,1983) and Spaulding (1977). MWe only summarize the results
of the model which we need here.

For our received noise process Z(t), the probability density function (pdf)
for the received instantaneous amplitude, z, is:

‘;)|N

2
-z /0 = m 2
_e Z (=1)" sm. ( matl ( mo. | ’ )
PZ(Z) E -n'\/ﬁ m! ADLF ( 2 )"F] = 2 3 1/23 » (20)
m=0

8

-w<z<w
where ]F] is a confluent hypergeometric function. The model has three parameters:

Bl Aa, and 2. [A more detailed and complete model involving additional parameters
has been developed, but (20) above is quite sufficient for our purposes]. The pa-
rameters o and Aa are intimately involved in the physical processes causing the
interference. Again, definitions and details are contained in the references. The
parameter Q is a normalizing parameter. In the references, the normalization is

@ = 1, which normalizes the process to the energy contained in the Gaussian portion
of the noise. Here we use a value of © which normalizes the process (z values) to
the measured energy in the process. We cannot normalize to the computed eneragy,
since for (1), the second moment (or any moment) does not exist (i.e., is infinite).
This is a typical problem with most such models for broadband impulsive noise. While
the more complete model removes this problem, use of (20) in conjunction with meas-
ured data, will in no way 1imit us. However, when we discuss the simulation results,
we will see an interesting result of using "infinite energy” models.



The result corresponding to (20) for the envelope cumulative distribution (APD)

is:

7 2 @

-E~/Q E m

g 0 "o (-1) m
P(E > Eo) =g 1 - a Tl Aa (21)
m=1
mo me, ,. O
X l"(] + “?‘ -IF] .I = _2a 25 Q
0 < E<e

It is the envelope distribution in the above form which is usually measured and
which we use for validation of the model by comparison with measurements.
The corresponding expressions for the Class A, narrowband "impulsive" noise are

o m 2 s 8
Pylz}) = & I S U (22)
m= 2
m! nom
where
2 A+T”
of = MH_IE_ , (23)
and, for the envelope,
25
o m -E- /o
PE > E,) = e Z FAn—l g o8 (24)
m=0

The Class A model has two parameters: A and I'". A is termed the overlap index,
and as A becomes large (v10), the noise approaches Gaussian (still narrowband) and
I'" is the ratio of the energy in the Gaussian portion of the noise to the energy in
the non-Gaussian component.

The Class A model is appropriate for interference caused by collections of
intentionally-radiated signals (e.g., as in the crowded HF band) and has also found



application in various acoustical (e.g., sonar) problems. The Class B model is
appropriate for broadband impulsive noise processes such as atmospheric noise,
automotive ignition noise, etc.

Figures 2 and 3 show the comparison of the Timiting small signal performance
for the LOBD with the corresponding performance for the hard limiter. Figure 2 is
for the Class B Middleton model for a wide range of the parameters o and Aa, and
Figure 3 is for the Class A model for various values of the parameters A and T~.

A couple of example values for L are also shown on the figures. On Figure 2, the
point shown (a = 1, Aa = 1) will be used and referred to later.

While the hard-limiter may not be the suboptimum nonlinearity one would choose
for all Class A cases, the results show that the Class A LOBD nonlinearity can sub-
stantially outperform the hard-limiter (Figure 3). The results for Class B noise
would seem to indicate that one may as well use a hard-Timiter rather than attempt-
ing to implement the much more difficult Class B LOBD nonlinearity. The results,
however, are limiting results for a suitably small signal (>0) and N » =,

Note that if we use the receiver optimum for Gaussian noise (no nonlinearity),
the 1imiting performance (N + =) is identical for all types of noise (i.e.,

L
eff
limit, we also know that performance of systems, using the Gaussian receiver in

=1 from (16) and (17) for ggi_pz(z)). While this is certainly true in the

non-Gaussian noise, can be quite different, even for very small signals. This
means that, in this case at least, the 1imiting performance may not give a good
estimate for real-world small signal situations, especially for relatively small N.
For large N, and any noise process, we expect the performance to approach the same
characteristic performance as for Gaussian noise due to the Central Limit Theorem.
However, we have no means of locating this "Gaussian performance curve" in terms
of signal-to-noise ratio. [For our CPSK case, we will see that the parameter L is
a measure of the difference (in the 1imit as N + =) between the LOBD "Gaussian per-
formance curve" and the linear receiver "Gaussian performance curve," where both
are operating in the same non-Gaussian noise environment.] Figure 2 shows that

the Class B LOBD nonlinearity and the hard-limiter nonlinearity behave similarly
(only small degradation); however, these results may be true only in the Tlimit.

In the next section, we investigate this question.
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