Figure 14 shows, as N increases, the performance results look more and more like
the standard result for Gaussian noise due to the Central Limit Theorem (which, as
noted earlier, only applies to random variables with finite moments ).

Figure 15 shows the linear receiver, constant signal, results along with results
for the bandpass Timiter and the LOBD nonlinearity. First, note that as before,
use of nonlinearities for N = 1 gives no improvement over the linear receijver, but,
of course, does give improvement for N = 10 and 100. For N = 100, this improvement
is only 6 dB, as predicted by L. Note that the LOBD nonlinearity here also is only
slightly superior to the bandpass limiter. From Figure 9 for N = 100, the Tinear
receiver operating in Gaussian noise (optimum) requires approximately a SNR of
-13 dB for P = ]0'3 and from Figure 15 the LOBD receiver (locally optimum) requires
approximately -20 dB SNR for Pe = 10'3. This is a 7 dB difference and the limiting
difference predicted by L was 6 dB. Next, from Figure 10, N = 100, Hall 8 = 2
noise, a SNR of -53 dB is required for Pe = 10'3. This is the "31 dB difference"
(approximately) between the two Hall noises mentioned above and given by the two

corresponding L values (37 dB versus 6 dB). This shows that we cannot arbitrarily say,

by inspection, that a noise process which is "tremendously" non-Gaussian can result

in "tremendous" improvement over the corresponding Gaussian or linear receiver

situation.

Finally, Figure 16 compares performance for a constant signal and a Rayleigh
fading signal for N = 10. Note, that while for the 8 = 2 case and N = 10, the
bandpass limiter began to outperform the LOBD nonlinearity for both constant
signal (Figures 6 and 10) and Rayleigh fading signal (Figure 11) as SNR increased.
Here (6 = 4) the LOBD nonlinearity appears to be "always" slightly superior to the
bandpass limiter.

5. CONCLUSIONS AND DISCUSSION

In the derivation of the LOBD, two essential assumptions are made. That the
desired signal is suitably small (see Middleton and Spaulding, 1983 ) and that the
number of independent noise samples increases without 1imit. The usual means of
estimating the performance, once the detectors have been derived, again make use
of these two simplifying assumptions. This results in performance measures that
are strictly true only in the 1imit. It has been the purpose here to investigate,
via particular examples and computer Monte Carlo simulation, how the LOBD's will
actually perform in actual possible operational situations. The results are varied,
but in general, the “"standard" limiting performance estimates do provide correct
performance measures under appropriate conditions (large N and S sufficiently small).
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The simulation results demonstrated that the LOBD's actually perform as advertised.
One example was shown where the LOBD departed from being "close to optimum" as the
signal level increased (N = 10) and was eventually outperformed by the ad hoc
bandpass Timiter. In all cases, the LOBD outperformed (in the T1imit) "reasonable"
nonlinearities, e.g., the hard-limiter, only by a small amount (<3 dB) for Class B
interference. The corresponding situation for Class A interference still needs to

be investigated. Also, it was demonstrated that one cannot be assured of always
obtaining "great" improvement over the linear receiver by using nonlinear

processing. One Class B, highly non-Gaussian example (6 = 2), gave 37 dB improvement
whereas another Class B, highly non-Gaussian example (6 = 4), gave only 6 dB improve-
ment.
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