LOCALLY OPTIMUM AND SUBOPTIMUM DETECTOR PERFORMANCE
IN A NON-GAUSSIAN INTERFERENCE ENVIRONMENT

A. D. Spaulding*

Since the normally assumed white Gaussian interference is the most
destructive in terms of minimizing channel capacity, substantial improve-
ment can usually be obtained if the real-world interference environment
(non-Gaussian) is properly taken into account. In this report, the
performance of the locally optimum Bayes detector (LOBD) is compared with
the performance of various ad hoc nonlinear detection schemes. The
known results are reviewed and then it is demonstrated that these
theoretical results may be misleading due to the assumptions that are
required in order to derive them analytically. For a particular type
of broadband impulsive noise, the critical assumptions of "sufficiently"
small signal level and large number of samples (large time-bandwidth
product so that the Central Limit Theorem applies) are removed; the
first, analytically, and the second, by computer simulation. The thus
derived performance characteristics are then compared, especially as
the signal level increases. One result is that there are
situations where the bandpass limiter outperforms the LOBD as the
signal level increases; that is, the locally optimum detector may not
remain "near optimum" in actual operational situations.

Key words: optimum detection; non-Gaussian noise; communication system
simulation; parametric signal detection; Class A, B noise

1. INTRODUCTION

The real-world noise environment is almost never Gaussian in character, yet
receiving systems in general use are those which are optimum for white Gaussian
noise (i.e., linear matched filter or correlation detectors).

It is well known that Gaussian noise is the worst kind of noise in terms of
minimizing channel capacity or in its information destroying capability. This means
that very large improvements in the performance of systems can be achieved if the
actual statistical characteristics of the noise and interference are properly taken
into account, and there have been various significant efforts in the last few years
in this area (Spaulding and Middleton, 1977; Middleton and Spaulding, 1983).

When confronted with real-world noise, the earlier and usual approach was to
precede the "Gaussian receiver" by various ad hoc nonlinearities (e.g., clipper,
hole punchers, hard limiters, etc.) in order to make the noise look "more Gaussian"
to the given receiver. Later, optimum systems were derived (e.g., Spaulding and
Middleton, 1977; Hall, 1966) using models of the actual noise. These systems are

- :
The author is with the U. S. Department of Commerce, National Telecommunications
and Information Administration, Institute for Telecommunication Sciences,
Boulder, Colorado 80303.



adaptive in nature and usually very difficult to realize physically. If, however,
the following two assumptions are made:

1) the desired signal becomes "sufficiently" small ["sufficiently small"

is defined in Middleton and Spaulding (1983)*], and

2) the time-bandwidth product is large, so that a large number, N, of

independent samples from the interfering noise process can be used

in the detection decision process,
then a "locally optimum" detector, generally termed a "locally optimum Bayes
detector" or LOBD, can be obtained. Under some rather strict conditions, these
LOBD detectors approach true optimality (asymptotically) as the above two assumptions
are met, and usually take the form of the "normal" Gaussian receiver preceded by one
or more particular nonlinearities.

In this report, we want to briefly review the derivation of the LOBD, primarily
for the case of binary coherent phase shift keying, CPSK, and then review the com-
parison of the LOBD performance with the performance of the hard-limiter (or other
nonlinearity) performance. We do this to point out and have available the results
we need to refer to later. In actual use, the desired signal may be "small," but
not "small enough," and/or the time bandwidth product may not be particularly large.
One of the main objectives, then, of this report is to remove the above two assump-
tions to investigate the "truth" of the standard LOBD and hard-limiter performance
estimates. This is done for one typical example of broadband impulsive noise. For
this example case, the first assumption (sufficiently small signal) is removed
analytically and the second (large N so that Central Limit Theorem arguments can be
used) is removed by computer simulation. Another main objective of this report is
to summarize the results from an extensive set of Monte Carlo computer simulation
results for the CPSK system, using various nonlinearities (including the LOBD
nonlinearity) and also using Rayleigh fading signals as well as constant signals.

We start in the next section by reviewing the pertinent standard analytical results
for the LOBD and then proceed to remove the assumptions used to obtain the "standard"
performance estimates. An appendix contains the computer algorithms used to obtain

the Monte Carlo simulation results.

*
See Sections 2.4, 6.4, and Appendix A.3 of Middleton and Spaulding (1983).



2. LOCALLY OPTIMUM DETECTION
The techniques for deriving the locally optimum detector for various signaling
situations are well known and covered in detail in Spaulding and Middleton (1977)
and the references therein. Here, we simply review the results in order to indicate
where the two assumptions above come into play. Our problem, for binary CPSK, is to
decide optimally between the two hypotheses:

Hy X(t) = S](t) + Z(t) Dxt=T
(1)
Hy X(t) = Sz(t) + Z(t) Il S
In (1), X(t) is our received waveform in detection time T and this waveform contains

either the completely known signal S](t) plus the noise Z(t) or the completely
known, equi-probable, signal Sz(t) plus Z(t). To obtain our receiver structure we
follow the standard procedure of replacing all waveforms by vectors of N samples

from the waveforms (X(t) + X = {x; 1, etc.) and forming the Tikelihood ratio A(X):

P(_UHZ) pz(l = §2) <
RECIC A= e (2)

When Z(t) is non-Gaussian, we operate so as to generate independent noise samples,
Zis i =1, N in time T, so that only first order pdf's are required. We now use the
LOBD or threshold operation which we know becomes asymptotically optimum as our
signal S(t) becomes sufficiently small and N - = (Middleton and Spaulding, 1983).
Increasing N corresponds to increasing the detection time T, since we cannot for any
noise process sample more rapidly than the bandwidth and maintain independence.

Using a vector Taylor expansion about the signals, Sj, j=1, 2 here, we get

N
ap,(X)
py(k = S5 = p(0) - D —5— Sy
i=1



In this expansion, for coherent signaling, all signal terms of degree two and higher
are discarded. This is the normal "small signal assumption." 1In general, simply
discarding higher order terms can lead to receiver structures which are not locally
optimum, or in the 1imit of infinitely large sample sizes (N + =), are not asymptoti-
cally optimum detection algorithms (AODA's). The proper algorithms require a correct
bias (obtainable from proper treatment of the higher order terms)*. The problem is,
that without the proper bias, the higher-order terms in the expansion of A(X) can

be discarded only when the sample size N is small. But N must be made large in

order to obtain the required small probabilities of error for weak signals. This,

of course, defeats the whole concept of a canonical and comparatively simple algo-
rithm. One may as well use A(X) itself, which is optimum for all signal levels.
Sufficient conditions that the LOBD is an AODA as well as a LOBD (N < =) are given

in Middleton and Spaulding (1983), Sec. A.3-3.

For binary symmetric CPSK, and for independent noise samples (3) leads to

A(i) 5 i=] i 1 1, (4)

which gives the well-known receiver structure shown in Figure 1. In Figure 1, we
see that the receiver is the standard memoryless Gaussian (i.e., degenerate matched
filter) preceded by a particular nonlinearity given by

2x) = - %; n py(x) . (5)

Note that this is a completely canonical result in that we have not yet specified
(in the above derivation) what pz(z) is or what the signals S](t), Sz(t) are except
that they are completely known. Figure 1 is our receiver, which is adaptive in that
it must change according to (5) for changing noise conditions. The receiver takes
our received waveform samples X; and uses them as shown to determine our decision
variable §. Now, in order to determine performance we need the pdf of 6. The pdf
of & is almost always impossible to obtain, however, unless we can invoke the
Central Limit Theorem.

* For.cases of threshold signal detectors that are neither locally optimum or asymp-
totically optimum detection algorithms, see Lu and Eisenstein (1981).
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Figure 1. LOBD for binary symmetric purely coherent signals.

Xj = L(x;)

Although the nonlinearity 2(x) does not "Gaussianize" the noise, it does Timit
the amplitude excursions of the noise. Because of this, it is common to require N
to be large (normally N must be relatively large to achieve any kind of processing
gain over normal receivers as will be demonstrated later via simulation) so that we
can apply the Central Limit Theorem. This means that we only need to compute the
mean and variance of & under each of the two hypotheses. We start with Yis the out-
put of the nonlinearity for input X; - Suppose H1 is true, then

p7(z)
= EZ—(?)— DZ(Z-S]_i) dz.

E[yilH]]

and

2 ® pi(z) :
E[.Y1|H]] = f m DZ(Z - S-H) dz .

In evaluating the above two integrals, the usual approach is to expand the

pz(z - S]i) and then discard all terms in SH of degree 2 and higher. (As mentioned
earlier, one of the objects is to investigate the effect of using this small signal
assumption this second time.) Doing the above, we obtain

ELy; [H,] = - S.L, where (7)
= [py(2)]°

L = f W dz, and (8)

ELyfIHy T 2 L (9)



The parameter L determines (for "small"signal) the processing gain achievable for

any pz(z), including Gaussian noise (for which L = 1).

Using the above we obtain, for binary symmetric signal with S]
L
i=1
N

2 2.4
LS]i - L S]i)'

]

Var[§|H,] = Var[s|H;] = 4

(
i=1
An estimate of performance is then given by

Pe = Prob[§ < 0] = %—erfc {Jﬁléjl——-}
vevar[é]

If our two signals are, for example,

S](t) V2s cos(mot), e L |

and

Sz(t) - 25 cos(wot), 0<t<T

so that S is the signal power, then

2SLN, and

ASLN - 6S°L2N.

]

E[s]
Var[6]

(

t)

=8

ol

t) (CPSK),

(11)

(13)
(14)

Since all our noise models are normalized so that the noise power = 1, S is also

our signal-to-noise ratio. We note that SL must be such that the variance is posi-
tive. Since L is usually large (i.e., m103 - 104), (14) defines, in a sense, the
meaning of "small" signal in the above LOBD analysis. [Very detailed definitions of
"small signal" are given in Middleton and Spaulding (1983), cf. Sections 7.4,A.3.]

If SL << 1, then (11) becomes approximately

Po 2 1/2 erfc (VSNL/Z)

(15)



For LOBD's, the performance parameter L is >1, and is equal to 1 iff the noise is
Gaussian.

The above reviews the LOBD approach. Suppose now that we have a LOBD detector
based on the assumption that our interference is 52(22, and the actual interference
is pz(z). We can carry out the above analysis using pz(z) in place of pz(z) where
appropriate to determine the effects of "mismatching" the interference, or we can use
this to determine the sensitivity of the LOBD performance to changing interference.
This approach also gives results which can be easily used to evaluate the small
signal performance of any ad hoc nonlinearity. The result is that L is replaced by

L]

a parameter L .., for "L effective," where, Leff = L%/LE,

7 p52)

L] ='/ - pi(z)dz, and (16)
Jw | P7(2)
WPBQ(Z) 2

L2 = J/- - pz(z)dz : (17)
Jo | P7(2)

If pz(z) = pz(z), then Ly = L, = L = L,ce .
We can quickly compute the performance of any arbitrary nonlinearity, 2(x),
used in the detector of Figure 1. For example, for the hard-limiter, 2£(x) = 1, if

x > 0and 2(x) = -1, if x < 0. We can solve the resulting expression
S .
R(x) = = g &0 py(x) , (18)

to obtain the corresponding p-,(z) to compute L via (16) and (17) above. For the
Z eff

hard-Timiter case, we obtain

o 2
Leff = 4 p(0). (19)
where pz(z) is the actual interference. Performance is given by (15), so that the
degradation caused by using the hard-limiter is simply the difference between L for
our actual interference (LOBD performance factor) and Leff for the hard-limiter (or
similarly, for any other nonlinearity).



Up to this point, we have not specified any "model" for the real world non-
Gaussian noise and interference environment. Recent work by Middleton has Ted to
the development of a physical-statistical model for radio noise. This model has
been used to develop optimum detection algorithms for a wide range of communications
problems (Spaulding and Middleton , 1977). It is this model which we use here for
our signal detection problem. The Middleton model is the only general one proposed
to date in which the parameters of the model are determined explicitly by the under-
lying physical mechanisms (e.g., source density, beam-patterns, propagation condi-
tions, emission waveforms, etc.). It is also the first model which treats narrow-
band interference processes (termed Class A), as well as the traditional broadband
processes (Class B). The model is also canonical in nature in that the mathematical
forms do not change with changing physical conditions. For a large number of com-
parisons of the model with measurements and for the details of the derivation of the
model, see Middleton (1977,1983) and Spaulding (1977). MWe only summarize the results
of the model which we need here.

For our received noise process Z(t), the probability density function (pdf)
for the received instantaneous amplitude, z, is:

‘;)|N

2
-z /0 = m 2
_e Z (=1)" sm. ( matl ( mo. | ’ )
PZ(Z) E -n'\/ﬁ m! ADLF ( 2 )"F] = 2 3 1/23 » (20)
m=0

8

-w<z<w
where ]F] is a confluent hypergeometric function. The model has three parameters:

Bl Aa, and 2. [A more detailed and complete model involving additional parameters
has been developed, but (20) above is quite sufficient for our purposes]. The pa-
rameters o and Aa are intimately involved in the physical processes causing the
interference. Again, definitions and details are contained in the references. The
parameter Q is a normalizing parameter. In the references, the normalization is

@ = 1, which normalizes the process to the energy contained in the Gaussian portion
of the noise. Here we use a value of © which normalizes the process (z values) to
the measured energy in the process. We cannot normalize to the computed eneragy,
since for (1), the second moment (or any moment) does not exist (i.e., is infinite).
This is a typical problem with most such models for broadband impulsive noise. While
the more complete model removes this problem, use of (20) in conjunction with meas-
ured data, will in no way 1imit us. However, when we discuss the simulation results,
we will see an interesting result of using "infinite energy” models.



The result corresponding to (20) for the envelope cumulative distribution (APD)

is:

7 2 @

-E~/Q E m

g 0 "o (-1) m
P(E > Eo) =g 1 - a Tl Aa (21)
m=1
mo me, ,. O
X l"(] + “?‘ -IF] .I = _2a 25 Q
0 < E<e

It is the envelope distribution in the above form which is usually measured and
which we use for validation of the model by comparison with measurements.
The corresponding expressions for the Class A, narrowband "impulsive" noise are

o m 2 s 8
Pylz}) = & I S U (22)
m= 2
m! nom
where
2 A+T”
of = MH_IE_ , (23)
and, for the envelope,
25
o m -E- /o
PE > E,) = e Z FAn—l g o8 (24)
m=0

The Class A model has two parameters: A and I'". A is termed the overlap index,
and as A becomes large (v10), the noise approaches Gaussian (still narrowband) and
I'" is the ratio of the energy in the Gaussian portion of the noise to the energy in
the non-Gaussian component.

The Class A model is appropriate for interference caused by collections of
intentionally-radiated signals (e.g., as in the crowded HF band) and has also found



application in various acoustical (e.g., sonar) problems. The Class B model is
appropriate for broadband impulsive noise processes such as atmospheric noise,
automotive ignition noise, etc.

Figures 2 and 3 show the comparison of the Timiting small signal performance
for the LOBD with the corresponding performance for the hard limiter. Figure 2 is
for the Class B Middleton model for a wide range of the parameters o and Aa, and
Figure 3 is for the Class A model for various values of the parameters A and T~.

A couple of example values for L are also shown on the figures. On Figure 2, the
point shown (a = 1, Aa = 1) will be used and referred to later.

While the hard-limiter may not be the suboptimum nonlinearity one would choose
for all Class A cases, the results show that the Class A LOBD nonlinearity can sub-
stantially outperform the hard-limiter (Figure 3). The results for Class B noise
would seem to indicate that one may as well use a hard-Timiter rather than attempt-
ing to implement the much more difficult Class B LOBD nonlinearity. The results,
however, are limiting results for a suitably small signal (>0) and N » =,

Note that if we use the receiver optimum for Gaussian noise (no nonlinearity),
the 1imiting performance (N + =) is identical for all types of noise (i.e.,

L
eff
limit, we also know that performance of systems, using the Gaussian receiver in

=1 from (16) and (17) for ggi_pz(z)). While this is certainly true in the

non-Gaussian noise, can be quite different, even for very small signals. This
means that, in this case at least, the 1imiting performance may not give a good
estimate for real-world small signal situations, especially for relatively small N.
For large N, and any noise process, we expect the performance to approach the same
characteristic performance as for Gaussian noise due to the Central Limit Theorem.
However, we have no means of locating this "Gaussian performance curve" in terms
of signal-to-noise ratio. [For our CPSK case, we will see that the parameter L is
a measure of the difference (in the 1imit as N + =) between the LOBD "Gaussian per-
formance curve" and the linear receiver "Gaussian performance curve," where both
are operating in the same non-Gaussian noise environment.] Figure 2 shows that

the Class B LOBD nonlinearity and the hard-limiter nonlinearity behave similarly
(only small degradation); however, these results may be true only in the Tlimit.

In the next section, we investigate this question.
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3. REMOVAL OF ASSUMPTIONS

In the last section, the performance of the LOBD and various suboptimum non-
Tinearities (e.g., the hard limiter) was evaluated using the Central Limit Theorem
in that only the mean and variance of the detection variable & needed to be evalua-
ted and also using the sufficiently small signal assumption to then evaluate the
required integrals (6). We now want to remove these assumptions to see what effect
they may have on estimating the performance of actual systems.

There are two possible approaches. The first is direct computer simulation to
obtain Monte Carlo performance results comparing the various nonlinearities. The
Middleton models are such that it would be difficult to rapidly generate the random
noise samples required. The second approach is to use the Central Limit Theorem,
but evaluate the integrals (6) directly without the small signal assumptions. This
js also a formidable task, in general, due to the mathematical complexity of the
noise models. There is one Class B situation, however, where both the above methods
can be used. For Class B noise with a = 1, Middleton (1976) has shown that the
model (20) reduces to the following,

2A, v
2

PZ(Z) ~

m(4z° + nAg )

with the corresponding envelope APD given by

p(E>E) = . : (26)
: J1 T
0 o

The expressions above are models of the Hall (1966) type (Hall parameter & = 2),

so the Middleton models can give some physical basis for the Hall model. The
above [(25) and (26)] are only good approximations at the high amplitude "tails"
and then only for relatively large values of Aa(Au > 1). Figure 4 shows the Hall
model envelope distribution from (26) and the Middleton envelope distribution from
(21) for @ = 1 and Aa = 1. Also shown on Figure 4 is the Middleton model for a = 1
and Aa = ]0"3. As can be seen, the approximation given by (26) is only valid for
large amplitudes and that (26) can be used to approximate the entire distribution
only for the larger values of Aa. We are, of course, assuming that the physical -
statistical model of Middleton is the appropriate model to "match" the actual envi-
ronment (this has been reasonably well substantiated) and are using the Hall model



with the Hall model, 6 = 2.
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via (25) and (26) to obtain a simple mathematical form for a special case of
Middleton's model.
For the Middleton model (o = 1, A = 1), L = 32.1 dB (Figure 2). The general

o
Hall model has two parameters, 6 and y, and is given by

8/2
(%) 7 [2 4

For 8 = 2 and y = AGJEVZ, the Middleton approximation (25) is obtained. The corre-
sponding general Hall APD form is

pz(z) =

6-1
PIE > €] = ~ Y ) (28)

(Eg . Y2)(e-1)/2

When (27) is used in the "L integral” (8), we obtain

2.6 6-1
e 8 F(?) i 2°

- a4z .. (29)
(F)m ] (#ee) e

-00

ro| @

The parameter vy is a "normalizing parameter" equivalent to & in the Middleton model.
For our case (a = 1, Aa =1), vy = /&/2. For 8 = 2, (29) then gives

L =2/ . (30)

The parameter @ is defined as 2/(envelope rms)2 (since the envelope power is twice
the actual noise power), and the envelope rms must be computed from the model. In
obtaining the results of Figure 2, the Middleton model was assumed to saturate at
80 dB above the Gaussian level or at an exceedance probability of 10'6, whichever
came first. That is, we must use a truncated model since the rms for the actual
model does not exist. For the Middleton model (Au =1, o = 1), this gives

Q = 3.99959 x 10'4. For the corresponding Hall model (for any large truncation
point), we obtain for 6 = 2 and truncation at 80 dB, corresponding to the Middleton

example,

15



10%

2
2 ] E .
0.5 x (Envelope rms)“ = 5 y i 2)3/2 dE = 1, (31)
0 b
N -2
or = vE X ]0 3

resulting in [from (26) and (28)] o = 4 x 10'4 : almost precisely the normaliza-

tion value obtained earlier for the Middleton example. Therefore, for the Hall
model, 6 = 2, properly normalized, L = 5 x 103 or 37 dB. For the Middleton example,
L = 32.1 dB and for the corresponding Hall model. L = 37 dB even though the impulsive
tails are essentially identical. This points out that the value of L depends on the
relationship between the low level Gaussian portion of the distribution and the rms
level of the entire distribution. As can be seen from Figure 4, when the two dis-
tributions are "matched," the Hall distribution has a "lower" Gaussian level,
resulting in a somewhat larger L. From now om we will restrict our attention to
(26), L = 37 dB (or @ = 4 x 107%).

By using (25) for our pdf of the interfering noise, the integrals (6) can be
directly integrated with no small-signal assumption. We obtain from (6) and (25)

E[yi|H]] =

and

1]
n
2
N

(=8

N

w

w

E[y§IH1]

The two integrals are most easily evaluated by contour integration using residues.
After a rather extensive amount of algebra, we obtain
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ELyy ] = =1

> ; (34)
ST
and
2
5 2(3511 + Q)
E[yi]H]] = 5 ¥, 3 (35)
(575 + 2)
so that
Var[y; [H] = o2 — (36)
S+ @

Therefore, for the detection variable § (Figure 1),

2
(/M1 = -EL6]H,] . il 7)
EL&|H = -E{6|H,] = 4 . (37

] 2 ;E; T
i=] 14
and
N 5?1
Var[GIH]] = Var[§] Hy] = 8 5 (38)
£ Sy ¥
i=1 D

Of course, for S =+ 0, the above (37) and (
(10) (2 = 2/L and LS << 1).

The hard-limiter result obtained earlier (19), that is

38) reduce to the results obtained earlier

i
“err = 47 (0) ,

(39)
is a Timiting result (S - 0). For the Hall approximation (25)
b & 02 = 02T L (40)
eff -2 = d
m Q

so for the Hall model the hard-limiter, accordin

g to (40), will result in 0.912 dB
degradation, while

for the corresponding Middleton model, the hard-1imiter (in the
Timit) will result in a 1.5 dB degradation (Figure 2).
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In terms of the actual signal samples, the suitably small signal approach

gives
so that for the detection variable &,

ELS[H,]

"
I
m
(o |
(o]
—_—
(%]
| —
|=
|oo
M=
w
-
—
w

and (42)

Var[6|H],2] .

1
B
M=
w
- N
-
I
p—
N'O"\
=2
w
—_
-
b

Without this small-signal assumption, the integrals (6) eventually give,

E[6|H,] = E[|H,] = 2 I i)
1 vy 2 it e

il
and (43)

N S . 2
- = 2 4 2 =1 11
Var[5|H1’2] = 4 z : 3 511' - :2 SH [Tan (_-/ﬁ )]

i=1

Of course, as before as S - 0, the results (43) approach those of (42). Also note
that in (42) the variance quickly becomes negative as S increases, but in (43) the
variance exists for all signal levels (but -~ 0 as S » «=).

For the signaling set given by (12), we can generate our signal samples as
follows:

——
(o
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|}
wy
i
(@]

o
w
S |
_—
-
]
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| (T
-
—_
S
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~—

where

ot
[
_—
-
1
p—
S
[s1]
b=
o
L0
i
E
(=]
._|
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We now use (44), (37,38), (42), or (43) in (11) to estimate performance for various
signal-to-noise ratios S and number of samples N. (Also, for the coherent case con-
sidered here, it is just as valid to make all the signal samples the same, namely,
S14 = /S . In fact, this was done for the computer Monte Carlo simulations covered
next. )

The comparison of the results using (44), (43), and (42) for N = 100 are shown
in Figure 5. On Figure 5, three curves are given: the standard result (S - 0) from
(13,14), the result using (37,38) (S 0),and the hard limiter result from (43)
(SA—=0). The signal samples were generated via (44). Also shown on Figure 5 are
simulation results (to be covered in the next section) for the LOBD nonlinearity
(bandpass) and the bandpass limiter, and we see that the calculated results are
quite close to the simulated results in all cases. Note that removing the small
signal assumption makes only about 1.5 dB difference (the same is true for the
hard-limiter). Since N = 100 here, we expect the Central Limit Theorem approxima-
tion to be quite adequate, and we see that it is.

Figure 6 shows results for N = 10. First, we note that performance cannot be
calculated from the normal result (13,14) since the variance quickly becomes negative.
This is noted by the dashed curve (S = 0). The hard-limiter calculation from (43)
(S=0) matches the simulation results only for small signal levels and departs
rapidly as the signal increases. The LOBD calculated results from (37,38) (Sd-0)
follow the simulated results better. The differences are, of course, due to the
Central Limit Theorem approximation used for the calculated results not being valid
for N = 10, especially in the "tails." The most interesting result shown, .however,
is that the hard-limiter outperforms the LOBD as the signal level increases
(around SNR = -28 dB and Pe = 10'6 in this case). Even though N = 10 and the
simulation results go to Pe = 10'6, the simulation results shown are statistically
quite accurate. That is, the effect shown is real.

4. MONTE CARLO COMPUTER SIMULATION RESULTS

In the previous section, the assumption of suitably small signal normally
used in performance estimation was removed for one Class B example. However, the
Central Limit Theorem argument was still required. The only way to get around this,
since it is impossible to find the actual pdf of the detection variable & instead of
just its mean and variance, is by direct computer simulation. This means that we
must be able to quickly generate a large number of random samples. from the appropri-
ate noise and signal distributions. For example, if N = 100 and we want to deter-
mine performance in the range Pe = 10'6 and we decide that we need at least ten
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errors for statistical significance, then we need 100 x 10 x 106 = 109 random
samples for this one point. This problem of the large number of random samples
required has always been one of the drawbacks of Monte Carlo simulation, and,
obviously, the use of Middleton's model to generate random interference samples is
out of the question without resorting to some much simpler approximation. It turns
out that it is reasonably efficient to generate random noise samples from the Hall
model.

In using Monte Carlo simulation, the accuracy of the estimate must be specified
and this then usually determines the number of random samples required. A simple
explanation of the Monte Carlo concept and various techniques has been given long
ago by Kahn and Mann (1957) and an excellent survey has been presented by Halton
(1970). Halton especially covers the important area of "variance reduction." The
variance reduction technique appropriate to our problem is termed "Importance
Sampling." The general idea of importance sampling is to draw samples from a distri-
bution other than the one given by the problem and to carry along an appropriate
weighting factor, which, when multiplied into the final results, corrects for having
the wrong distribution. The biasing is done in such a way that the probability of
the samples being drawn from an "interesting" region is increased. If good Impor-
tance Sampling techniques can be developed for a problem, then many less (orders of
magnitudes less) random samples are required to achieve the same given level of
statistical significance. Unfortunately, it is usually difficult to develop such
techniques. A detailed example of using Importance Sampling quite effectively for
nonlinear channels and Gaussian noise has been given by Shanmugam and Balaban (1980).
Although substantjal effort was expended, we could not develop any significantly
"good" sampling methods for our problem at hand so that the results presented in
this section are based on straight Monte Carlo techniques.

In generating the random samples in order to obtain the input X (Figure 1) to
the system being simulated, bandpass processes are employed. That is, envelope and
phase representations are used as in Figure 7. In Figure 7, the signal sample is
/S, corresponding to the signals given by (12). Because of symmetry only S](t)

(VS) needs to be "sent." An error will occur whenever the resultant YA, after
modification by the nonlinear receiver, lies in the shaded region of Figure 7.
Actual detection is based on the sum of N such signal plus noise resultants. For

a constant signal, all signal samples are the same, namely, the /S. Flat fading
signal situations are obtained by using a constant signal throughout a detection
interval T, but then allowing this "constant" to vary from one detection interval to
the next according to some fading distribution. Results for flat Rayleigh fading

22



Figure 7. Signal phasors plus noise phasor for CPSK.

signals will be included here. Other fading situations can be simulated by allowing
the signal samples to vary within a detection interval. On Figure 6, each noise
sample Wi is obtained from the appropriate envelope (e.g., Rayleigh for Gaussian
noise) and each noise phase angle, ei, is obtained from a uniform distribution
0<6<2m

The details of generating random samples from arbitrary distributions is
treated by Bogdan (1981). The procedures start by generating a random sample (or
samples) from a uniform distribution in the interval (0,1] and then modifying this
sample according to the desired distribution. To do this usually requires taking
the inverse of the cumulative distribution function (which, of course, makes it
impossible to use Middleton's model). For example, for Gaussian noise, Rayleigh
envelope, if V is uniform on (0,1], then a Rayleigh distributed random variable, X,
is obtained from

2 1/2

X=1[-20" an (1 -V] ; (45)

where 02 is the real noise power. If we have normalized the noise envelope to its
rms value, i.e., envelope power = 1, then the real noise power, 02, is 1/2. For
the Hall model, random samples are obtained from

x = y(& 1 -2, (46)
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and we will give results for 6 = 2 (as in the last section) and for 8 = 4. Also, for
the Hall model, the LOBD nonlinearity is quite simple (see Figure 1),
Gx,i
Yi & ———p 3 (47)
i x? + Y2

In actual systems, the nonlinearity (47) operates on the magnitude of the complex
received waveform sample, that is, the magnitude of ?} is used. In the hard limiter
case, the bandpass version becomes a bandpass limiter. Physically, the bandpass
limiter is a hard Timiter followed by a zonal filter, so that no signal distortion
is obtained from the nonlinearity and the following correlation receiver remains
“matched" to the signal, as in the previous analysis. The behavior of the bandpass
Timiter when used with Gaussian noise and one CW signal has been analyzed in great
detail by Davenport (1953) (see also problem 13, page 311 of Davenport and Root, 1958).

A simplified analysis has also been given by Cahn (1961). This analysis shows that,
in terms of signal-to-noise ratios (SNR) in and out of the nonlinearity.

s\ _ (5) (S)
T = . I when (& = 1.
(N) o ¥ W/ N/

and (48)

(%) =2 (%) when (%) >> ]

vi/o Y 1

That is, Gaussian noise and the bandpass limiter results in 1.05 dB degradation for

small S/N and 3 dB degradation for large S/N. Using (19) to obtain L%L{ for the‘

hard-limiter and Gaussian noise, we obtain L cc = m/2 = 1.57, or 1.96 degradation.
The receiver structures that were simulated are shown in Figure 8. The

bandpass receivers (a,b,d, Figure 8) were used almost exclusively, but some results

for the others (c and e, Figure 8) were obtained, mainly for curiosity's sake and to

see how much difference resulted.

If the actual probability of error is Pe’ then an estimate of Pe is

th transmitted symbol is in error and zero otherwise and K is

where a; is 1 if the i
the number of transmitted symbol with detection based on N sample points for each of

the K symbols. The mean and variance of Pe are given by Pe and Pe(i - Pe)/K,
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respectively. For low probability of error, the normalized standard deviation is

)']/2. The simulation programs are designed so that either a

approximate]y‘(KPe
maximum number of symbols transmitted or a minimum number of errors detected will
terminate the execution.

The first simulation results are given on Figure 9. These are for Gaussian
noise for N = 1,10,100 using a linear receiver (optimum) and the hard-Tlimiter [(c)
of Figure 8] and the bandpass limiter. The object here is to make sure that the
simulation results correspond to the known theoretical results so that we know the
simulation programs are functioning properly. Results for a Rayleigh flat fading
signal and Gaussian noise are also given on Figure 9 (N = 1). As expected, we see
that the "hard limiter" is slightly inferior to the bandpass Timiter.

Figure 10 shows results using the Hall model (8 = 2) "normalized" as in the
previous section to represent Middleton's model. The result from Figure 10 for
N = 10 and 100 were discussed in the last section where they were compared to various
analytical results. Note the interesting results for the Tinear receiver. Identical
results were obtained for N = 1, 10, and 100. This is, of course, not physically
meaningful and is the result of using a model for which the moments do not exist.
This "infinite power" problem goes away whenever a nonlinearity is employed, as with
the other results of Figure 10. For a linear receiver, for N = 10 say, detection is
based on a "noise sample" which is the sum of the ten noise samples from the basic
underlying distribution. Except for Gaussian noise, the distribution of the "'sum
sample" is different from the distribution of each individual sample, and approaches
Gauss via the Central Limit Theorem. This makes it difficult to analytically deter-
mine the performance of linear systems in non-Gaussian noise for time bandwidth
products other than 1. The above is for "real" noise processes with finite moments.

Consider the Hall model for 8 = 2. The pdf is given by

SN, SR 50
p;(2) I (50)

so that the characteristic function is

This gives

26



"ASd) Adeulq Joy
leubLs juejsuod pue Burpey ybLa|Aey 404 3SLOU UBLSSNES Y3 LM SI[NSIJ uOLIe|NULS 6 aunbi4

b2 02 91 z1 8 3 0 b= 8-

T T
i

P'Ill] ]
!li'li'

0l

‘IHLL!J !

ISTION NYISSNY9 “4Sdd o
oL

—]ﬁ‘rumi‘ E:
=t
1
o
L

00L =N

I
=

)
|

T”ﬁ'

[IHII ! |
o
—

¥youy3 40 ALINIEYE0dd

o™
1

]
i

'HH'?'

]Il]l! ol

TYNIIS HOIITAVY
R ETVERELIRAELS

Y3LIWIT QYYH

0l

1

lrllll Lt 1

AV
YILIWIT SSYdANVE - &
o oL

—{'.Til. i

¥IAIIDIY YYINIT

10

L TYIT13Y03HL

L1 2 00 1 A O |

SEIITIR 0 N URTYIN NC OA CO0) 0RO G Y TG N O 0 S, A0 GO T N L. T 0 [ TR T ) N O

—
—

27



“|eubLs JuUB3SUOD PUB ‘2 = § “8SLOU | |BH YILM S3|NSBJ UOLIR|NWLS

0L @unbiL4

A "

gp “¥NS
5~ ol-  sl- 02~ 52- 0e-  §€-  Of- 54~ 05~ 55~ 09- 59
ITFF T T Ty T T e T T TR Ty U v T T T T T T T I T

LS / ]
L _ujkm ]
B Wm/

- X | l
- YILIWIT SSydanvg X /Ju / .
4 ALTHYINTINON x\ & e

WIWILAO ATT¥001 O \

) 2 2 j
: ¥IAT30TY wYANIT O 0L =N /M_ 001 = N / :
: X\

= ~~o =
i -UHM / D / " ]
"¥ILIWIT SSYdaNYE 0 % \ -
 “ALTYVANIINON Y. ,;:.;:;nu X \ g
[ WOHILAO ATT¥D0T ‘L = N TR ~ N .
] ¥IATIDTY WYANIT €*233 “00L°0L°L = N s F— ~ ~
» 2 =6 ° 3ISION T1vH L e 3
Ei bl ia s e by o) sanalesaal o daaal e b et per o laianly i i3

0l

0l

0l

0l

oL

40Yy3 40 ALITI8VE0Yd

28



2 f B cos uz dz = e" ¥ | (52)
m 2 2
0 (,y Iy )

-
~
—
c
—
n

So If
N
=

1

the pdf of Y is given by

py(y) = —— ; (54)
Tr[y + (Ny) ]

That is, Y has the same pdf as the individual Zi's, but is N times "bigger." This
explains the linear receiver results of Figure 10. In doing the simulation with
6 = 2 and the linear receiver, a truncated Hall model was also used. That is, all
values generated that were larger than some threshold were either discarded or
reduced to the threshold value. This procedure made no difference and the same
results shown on Figure 10 were obtained. That is, the mathematics given above
still dominated. Also indicated on Figure 10 for N = 1 are results using the LOBD
nonlinearity and the bandpass limiter. As indicated, these results were essentially
identical to those obtained for the linear receiver, demonstrating the known result
that for N = 1, no improvement can be obtained by using nonlinear receivers and in
order for nonlinearities to be effective, N must be greater than 1.

Figure 11 gives simulation results for the Hall, 6 = 2, noise and a Rayleigh
fading signal, N = 10. Note that as for a constant signal and N = 10 (Figure 6 and
10), the bandpass lTimiter outperforms the LOBD non1%nearity as the SNR increases.
This behavior is easier to see for a Rayleigh signal, since the Pe's are much higher
at the "crossover" point between the LOBD and the bandpass limiter.

To complete the simulation results for 6 = 2, Figure 12 shows what happens when
Gaussian noise is the actual interference and our receiver uses the LOBD nonlinearity
for § = 2. The solid curve is the theoretical performance for the linear receiver
in Gaussian noise (optimum) and the degradation caused by using the LOBD nonlinearity
(N = 10) is shown. Using (16) and (17) to compute Loggs We obtain the integrals

Z oo P
-2 /20 d

L Z

-28 P 2
¥ T /—/ i
02 2“02 J Zo iy
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and (55)

o 282 c 22 -22/202
Z  em 2" #yT)
Veng

The L] integral can be evaluated analytically but the L2 apparently cannot be.
Numerical integration of L] and L2 gives

Log = L9/L, = 0.0316 = -15.0 dB . (56)
The Leff tells us the degradation expected for “"small" S(>0) and N + «». The degra-
dation obtained for N = 10 using the simulation results is on the order of 10 dB
from Figure 12. Simulation results for N = 100 were not obtained.

As detailed in Section 3, the Hall model, & = 2, properly normalized was used
to approximate Middleton's model to "check" previous results based on suitably
small signal and Central Limit Theorem arguments. Simulation results were also
obtained for another Hall distribution, & = 4. Unlike the 8 = 2 case, the first
three moments exist for the 6 = 4 case. The pdf for 8 = 4 is

0 2y°
p;(z) = e sygn- o AU (57)
and the APD is
3
Prob E > E, = (Eg +YY2)3/2 (58)

If this is normalized to the envelope rms level (which now can be computed), then
y = ¥2/2. A quite interesting result is that for the Hall model, & = 4, the
"improvement factor” L is only 4 (6 dB). Figure 13 shows the APD (8 = 4) and this
noise is obviously highly non-Gaussian. Comparing Figure 13 (8 = 4) and Figure 4
(6 = 2 and for which L = 37 dB), the noise distributions do not appear to be "all
that much different," especially in the tails. Yet for 6 = 4, L is only 6 dB. As
we will see from the simulation results, this "31 dB difference" (37-6) is quite
real.

First, Figure 14 shows results for a linear receiver for both constant and
Rayleigh fading signal. Since we are now using a "real" noise process with finite
moments, we obtain "normal" results for the different time-bandwidth products. As
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Prob[E > Eo] =

5 Y
(£ + %2

40
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Figure 13. The Hall model APD for 6 = 4. The APD is normalized to the
rms envelope level.
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Figure 14 shows, as N increases, the performance results look more and more like
the standard result for Gaussian noise due to the Central Limit Theorem (which, as
noted earlier, only applies to random variables with finite moments ).

Figure 15 shows the linear receiver, constant signal, results along with results
for the bandpass Timiter and the LOBD nonlinearity. First, note that as before,
use of nonlinearities for N = 1 gives no improvement over the linear receijver, but,
of course, does give improvement for N = 10 and 100. For N = 100, this improvement
is only 6 dB, as predicted by L. Note that the LOBD nonlinearity here also is only
slightly superior to the bandpass limiter. From Figure 9 for N = 100, the Tinear
receiver operating in Gaussian noise (optimum) requires approximately a SNR of
-13 dB for P = ]0'3 and from Figure 15 the LOBD receiver (locally optimum) requires
approximately -20 dB SNR for Pe = 10'3. This is a 7 dB difference and the limiting
difference predicted by L was 6 dB. Next, from Figure 10, N = 100, Hall 8 = 2
noise, a SNR of -53 dB is required for Pe = 10'3. This is the "31 dB difference"
(approximately) between the two Hall noises mentioned above and given by the two

corresponding L values (37 dB versus 6 dB). This shows that we cannot arbitrarily say,

by inspection, that a noise process which is "tremendously" non-Gaussian can result

in "tremendous" improvement over the corresponding Gaussian or linear receiver

situation.

Finally, Figure 16 compares performance for a constant signal and a Rayleigh
fading signal for N = 10. Note, that while for the 8 = 2 case and N = 10, the
bandpass limiter began to outperform the LOBD nonlinearity for both constant
signal (Figures 6 and 10) and Rayleigh fading signal (Figure 11) as SNR increased.
Here (6 = 4) the LOBD nonlinearity appears to be "always" slightly superior to the
bandpass limiter.

5. CONCLUSIONS AND DISCUSSION

In the derivation of the LOBD, two essential assumptions are made. That the
desired signal is suitably small (see Middleton and Spaulding, 1983 ) and that the
number of independent noise samples increases without 1imit. The usual means of
estimating the performance, once the detectors have been derived, again make use
of these two simplifying assumptions. This results in performance measures that
are strictly true only in the 1imit. It has been the purpose here to investigate,
via particular examples and computer Monte Carlo simulation, how the LOBD's will
actually perform in actual possible operational situations. The results are varied,
but in general, the “"standard" limiting performance estimates do provide correct
performance measures under appropriate conditions (large N and S sufficiently small).
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The simulation results demonstrated that the LOBD's actually perform as advertised.
One example was shown where the LOBD departed from being "close to optimum" as the
signal level increased (N = 10) and was eventually outperformed by the ad hoc
bandpass Timiter. In all cases, the LOBD outperformed (in the T1imit) "reasonable"
nonlinearities, e.g., the hard-limiter, only by a small amount (<3 dB) for Class B
interference. The corresponding situation for Class A interference still needs to

be investigated. Also, it was demonstrated that one cannot be assured of always
obtaining "great" improvement over the linear receiver by using nonlinear

processing. One Class B, highly non-Gaussian example (6 = 2), gave 37 dB improvement
whereas another Class B, highly non-Gaussian example (6 = 4), gave only 6 dB improve-
ment.
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