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3. NOISE/INTERFERENCE MODEL 

 

3.1 Description of Model 

 Based on the case studies, a simple model of wideband HF noise/interference has 

been developed. The model is capable of describing the first-order statistics of all the 

aforementioned noise/interference data, and consists of three components: 

 

• Gaussian noise 

• Narrowband interferers (sine waves) 

• Impulsive noise (filtered delta functions) 

 

The presence of these three components is not unexpected, and is in accord with intuition. 

Within a bandwidth on the order of 1 MHz one expects contributions to the 

noise/interference from many independent sources, and hence, via the central limit theorem, 

a Gaussian component. On the other hand, one also expects many narrowband interferers, 

and if one or a few of these interferers are dominant, the central limit theorem no longer 

holds, so that these interferers must be included as a separate component of the model. 

Finally, it is well known that HF noise can be impulsive, due to atmospheric noise and other 

broadband manmade noise which is neither narrowband nor Gaussian, and must therefore be 

included as a third component of the model. 

 To make this precise, let x(t) denote the noise/interference signal at rf, and let the in-

phase and quadrature components of the baseband signal be denoted by I(t) and Q(t), 

respectively. Then x(t) can be written as 

 ttQttItx 00 sin)(cos)()( ωω +=  (1) 

where ω0 is the carrier frequency. The measured data correspond to I(t) and Q(t), which are 

the quantities we wish to model. 

 A sine wave of frequency ω can be written in the form of (1) by using the 

identity 
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where ∆ω = ω-ω0 and φ is an arbitrary phase. The baseband components I and Q are the 

coefficients of cos ω0t and sin ω0t, respectively. 

 Similarly, the baseband components of an impulse which arrives at time t = t0 can be 

obtained by applying (2) to the Fourier integral representation of a delta function and 

transforming the variable of integration from ω to ∆ω: 
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Since we wish to model measured I and Q components which have been low-pass filtered, 

the upper and lower limits of the integrals in (3) should be replaced by ±2π B, where B is the 

band-pass in Hz. The last integral in (3) vanishes because the sin ∆ω(t-t0) is an odd function 

of ∆ω; evaluating the integral of cos ∆ω(t-t0) and expanding cos ω0(t-t0) enables one to 

express a filtered impulse δf(t-t0) as 
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Again, the I and Q components correspond to the coefficients of cos ω0t and sin ω0t, 

respectively. Combining results, the baseband components of the noise/interference model 

can be written as 
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where gI(t) and gQ(t) are independent, identically distributed zero-mean Gaussian processes, 

Ni is the number of narrowband interferers in the frequency band of interest, and Nj is the



56 

number of impulses which occur during the time interval over which the noise/interference is 

being modeled. 

 Still to be specified are what fraction of the total noise/interference power is 

associated with each of the three components, how the narrowband interferers are 

distributed in amplitude, phase, and frequency, and how the noise impulses are distributed 

in amplitude and time.  To do so, the results of the various case studies discussed above 

were examined. 

 It was concluded that the frequency and phase distributions of the narrowband 

interferers are uniform. As discussed in Section 2.3.1, the amplitude distribution of the 

narrowband interferers can be obtained from the cdf of the power envelope in the frequency 

domain.  This has been shown by Lemmon (1989) to be well described by a combination 

of a Gaussian process and an impulsive process defined by a model developed by Hall 

(1966).  It may seem inappropriate to use a model of impulsive phenomena to describe 

narrowband interferers; however, narrowband interferers are impulsive in the frequency 

domain, and it is the amplitude distribution of these frequency domain impulses that must be 

described.  Thus, it was concluded that the pdf for the amplitudes Ai can be modeled by the 

amplitude pdf of the Hall model: 
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The model has two free parameters, θ and γ.  Roughly speaking, the value of θ determines 

the slope of the power cdf at high power levels, where the cdf is approximately linear (on 

log-log scales), and the value of γ determines the overall power scale. 

 A possible objection to modeling the amplitude distribution as a pure "Hall" process 

is that although the power cdf in the frequency domain is well described by a combination of 

Gaussian and Hall processes, and although the noise/interference in the time domain is 

assumed to consist of a combination of a Gaussian process and narrowband interferers (in the 

absence of impulsive noise), it has not been shown that the Gaussian process in the time 

domain corresponds to a Gaussian process in the frequency domain. Thus, it has not been 

shown that the narrowband interferers in the time domain correspond to a Hall process in the 

frequency domain. 
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 That this is indeed the case, however, can be seen by the following argument. The 

Rice representation for zero-mean Gaussian noise (Rice, 1944 and 1945) in a time interval of 

length T and in a frequency band from -B to B can be written as 
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where the Fourier coefficients an and bn are independent random variables which are 

Gaussian distributed with zero means. Here the distribution of a given coefficient (fixed 

value of n) refers to the distribution of values of that coefficient obtained from an ensemble 

of noise records.  Note that an and bn correspond to the real and imaginary parts, 

respectively, of the Fourier transform of g(t). 

 Now consider a single noise record and the distribution p(a) of the set of values of 

an for n= 1,2,...,BT.  We wish to determine under what circumstances p(a) is a Gaussian.  

Note that p(a) can be viewed as the probability that a given an is.sampled, times the pdf of 

an for that value of n, summed over n. The probability that a given an is sampled is 1/BT. 

Thus, p(a) can be written as 
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where σ(an) is the standard deviation of the pdf of an.  Since Gaussians with different 

standard deviations are linearly independent, and since (9) is a sum of Gaussians, it is easy 

to see that p(a) is a Gaussian if and only if the σ(an) are equal to one another for all n.  A 

similar argument holds for the bn. Therefore, the Fourier transform of a (real) Gaussian 

process g(t) is a (complex) Gaussian process in the frequency domain if and only if g(t) is 

white Gaussian noise, that is, Gaussian noise whose spectral properties (i.e., the an and bn) 

are independent of frequency. 

 The argument can be generalized to include the case of a complex Gaussian process 

g(t). Thus, the Fourier transform of a complex Gaussian process is a complex Gaussian 

process in the frequency domain if and only if g(t) is white.  Although we have no proof that
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the Gaussian component of actual noise/interference is white, the power spectra shown in the 

previous examples strongly suggest this to be the case. 

 It is of interest to see that modeling the noise/interference as a combination of 

Gaussian and "Hall" processes in the frequency domain leads to a nonuniform phase 

distribution in the. frequency domain, even though the Gaussian and Hall processes 

individually have uniform phase distributions. Let G(ω) and H(ω) denote the in-phase 

components. of a complex Gaussian and a complex "Hall" process, respectively, in the 

frequency domain, and let their corresponding quadrature components be denoted by G~  (ω) 
and H~ (ω). Then the joint pdf )~,(~, xxp xx  for the combined process X = G + H, 

HGX ~~~ += can be written as a double convolution integral: 
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where HHp ~,  and GGp ~,  denote the joint pdfs for the Hall and Gaussian processes, 

respectively.  An expression for HHp ~,  has been derived by Hall (1966): 
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Since G and G~  are independent, identically distributed Gaussian processes, GGp ~,  can be 

written as 
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Substituting (11) and (12) into (10) gives 
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Making a transformation of variables from )~,( xx  to (V,φ) via 

 222 ~ Vxx =+  (14) 

 222 ~ Vxx =+  (15) 

 222 ~ Vxx =+  (16) 

results in the joint pdf pv,φ in amplitude V and phase φ for the combined process: 
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Finally, the phase distribution pφ is obtained from the joint distribution pv,φ by integrating 

over V, 
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so that 
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Although no attempt has been made to evaluate the triple integral in (19), it is clear that 

pφ is not uniform, but is φ-dependent, and has a period of 2π. 

 Turning now to the impulsive noise, it was concluded from examination of the power 

cdf’s in the time domain that the amplitude distribution of the impulses can also be 

described by that of the Hall model for amplitudes Bj which are less than some maximum 

value Bmax. At larger values of amplitude, the distribution appears to be cut off (relative 

to that of the Hall model).  Whether this is due to some intrinsic property of the noise 

pulses or is due to the limited dynamic range of the receiving and data acquisition systems 

remains unclear at this time; the resolution of this question will require additional data
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obtained with a system that has greater dynamic range.  In any case, based upon these 

observations, it is proposed that the amplitude distribution p(B) of the impulses in the time 

domain be modeled by that of a cutoff Hall model: 
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The expression in the first line of (20) differs from that in (7) because cutting off the 

distribution results in a different normalization constant. 

 As discussed in Section 2.3.5, in the one noise record which clearly exhibits impul-

sive noise, the noise impulses do not occur randomly in time, but tend to occur in a quasi-

periodic fashion. However, quantitatively modeling the arrival time distribution requires 

investigation of the noise pulse spacing distribution, and this, as well as investigation of the 

other higher-order statistics, is beyond the scope of the present work, and will not be further 

discussed in this report. For the present purposes of modeling the first-order statistics, the 

pulse arrival distribution will therefore be assumed to be uniform. 

 

3.2 Comparisons of Model with Measurements 

 To demonstrate the usefulness of the model for simulation purposes, 

noise/interference has been simulated, analyzed, and compared to the corresponding 

analyses of measured data for two particular noise/interference environments: the case 

study discussed in Section 2.3.1, which is typical of the data examined in the 42 noise 

records, and the case study discussed in Section 2.3.5, which exhibits impulsive noise, in 

addition to the Gaussian and narrowband components. The purpose of these comparisons is 

not to exhibit simulated results which are identical to the corresponding measured results, but 

rather to demonstrate that the model generates noise/interference with the same statistical 

characteristics as the measured data. 

 In the first case, the simulated noise/interference consists of a combination of 

Gaussian noise and 40 sine waves. Each sample of the Gaussian noise was generated by 

summing 12 random variables, uniformly distributed between -0.5 and 0.5. Since the mean 

and variance of each of the random variables are 0 and 1/12, respectively, the mean and 

variance of the composite process are 0 and 1, respectively. The central limit theorem



61 

implies that the composite process is (approximately) Gaussian, as discussed, for example, 

by Mihram (1972). Moreover, because each sample was generated independently of the 

others, the autocorrelation function of the process is impulsive; thus, its Fourier transform 

(the power spectrum) is flat, and the noise is therefore white. 

 The model specifies that the amplitudes Ai of the sine waves are distributed 

according to (7). A set of amplitudes so distributed can be generated by integrating (7) to 

obtain the cumulative probability P(A), 
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inverting the result to obtain A(P), 
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and viewing the cumulative probability P as a random variable uniformly distributed 

between 0 and 1. Thus, random values of P, uniformly distributed between 0 and 1, were 

generated and substituted into (22) to obtain values of Ai.  The values of the parameters γ 

and θ were chosen to be γ = 0.3 and θ = 2.0. 

 The phases φi of the sine waves are uniformly distributed between 0 and 2π, and the 

baseband frequencies ∆ωi are uniformly distributed between -400 kHz and +400 kHz. 

 Plots of the I-channel data, both measured and simulated, over an interval of 4 ms, 

are shown in Figure 39. Although the measured and simulated data are qualitatively similar, 

the simulated data appears to have more high frequency noise than the measured data. 

However, this is due to the fact that the frequency of the dominant narrowband interferer 

in the simulated data happens to be higher than that in the measured data in this particular 

case. Because the frequencies and amplitudes of the narrowband interferers are treated as 

random variables in the simulation, it is unlikely that the measured and simulated data will 

exhibit identical sets of narrowband interferers. Nevertheless, the statistical properties of 

the measured and simulated data are quite similar, as can be seen by comparing the 

measured and simulated pdf’s of the I-channel data, the power envelope, and the phase, 

which are shown in Figures 40, 41, and 42, respectively. 
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 The level crossing distributions of the voltage envelope are shown in Figure 43. 

Again, the measured and simulated distributions are qualitatively similar, although the scale 

of the simulated distribution is nearly three times larger than that of the measured 

distribution. This is to be expected if the frequency of the dominant narrowband interferer in 

the simulated data is several times greater than that in the measured data. 

 That this is indeed the case can be seen by comparing the measured and simulated 

power spectra, shown in Figure 44. Whereas the frequency of the dominant interferer in 

the simulated data is approximately 350 kHz, the frequencies of the dominant interferers 

in the measured data tend to cluster around -125 kHz. Also note that the spectral lines 

corresponding to the dominant interferers have a finite width, even though they have been 

modeled by zero bandwidth sine and cosine waves. The reason is because the power 

spectrum is the square of the Fourier transform of a noise record of finite length (4 ms) 

and the Fourier transform of a complex exponential tie ω∆  of finite time duration is a linear 

combination of a filtered impulse and its Hilbert transform: 

 ( ) ( )[ ]{ }∫ −∆−−∆−
∆−

=∆−
T

titi TiTdtee
0

1cossin1 ωωωω
ωω

ωω  (23) 

Thus, the structure of the spectral lines in the power spectrum corresponds to the logarithm 

of the envelope 1/(ω-∆ω)2. 

 The cdf’s of the power envelope in the frequency domain and the pdf’s of the phase 

in the frequency domain are shown in Figures 45 and 46, respectively. The similarity of the 

measured and simulated power envelope cdf’s is to be expected, because the amplitude 

distribution of the sine waves in the simulation was chosen to reproduce the measured 

distribution. The simulated phase distribution is nonuniform, as expected based on the 

discussion in Section 3.1, and also is qualitatively similar to the measured distribution, 

although shifted in phase. However, a relative phase shift in the frequency domain 

corresponds to a relative time shift of the noise record, which is of no physical significance. 

 The noise/interference discussed in Section 2.3.5 was simulated by combining 

Gaussian noise, 40 sine waves, and 50 impulses. The Gaussian noise and sine waves were
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generated by the techniques discussed in the previous example, except that the Gaussian 

noise samples were multiplied by a factor of 0.12, so that gI(t) and gQ(t) each have a variance 

σ2=0.0144, and the parameters γ and θ in the amplitude distribution of the sine waves were 

chosen to be γ = 0.2 and θ = 2.0. 

 The amplitudes Bj of the impulses are distributed according to (20) and were 

generated by a technique analogous to that used to generate the Ai. Integrating (20) to obtain 

the cumulative distribution P(B), 
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and inverting to obtain B(P), 
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values of Bj were obtained by generating random values of P, uniformly distributed between 

0 and 1, and substituting into (25). The parameters were chosen to be Bmax=2x10-5, 

γ = 1.0x10-8, and θ = 1.2. 

 The arrival times tj of the impulses are uniformly distributed between 0 and 4 ms. 

 Plots of the I-channel data and pdf’s of these data are shown in Figures 47 and 48, 

respectively. The presence of impulses in the raw data results in the long tails in the pdf’s, 

which otherwise are typical of those of previous case studies. 

 The pdf’s of the power envelope, which are shown in Figure 49, also exhibit long 

tails, which are more readily apparent in the cdf of the power envelope plotted on log-log 

scales, as shown in Figure 50. 

 The pdf’s of the phase in the time domain are shown in Figure 51. As discussed 

above, the spikes in the measured distribution are an artifact of the A/D conversion, and are 

intentionally not being simulated. 
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 The level crossing distributions of the voltage envelope are shown in Figure 52, and 

again resemble those of previous case studies, except for the long tails in the distributions. 

 The power spectra, power cdf’s in the frequency domain, and phase pdf’s in the 

frequency domain are shown in Figures 53, 54, and 55, respectively. These quantities 

resemble those of previous cases, except for the difference of approximately 20 dB in the 

noise floor of the power spectra between the portions of the band which are inside and 

outside the bandpass of the filters in the HF receiver. As pointed out above, this difference 

can be attributed to the presence of a filtered, broadband process (filtered impulses). 

 It is of interest to compute the relative power of the Gaussian, narrowband, and 

impulsive components of the noise/interference. Since the power is I2 + Q2, the average 

power in the Gaussian component is 
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where σI and σQ are the standard deviations of gI and gQ, respectively. The power in the 

narrowband component is 
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where the integral over the cross-terms in (27) vanishes due to the orthogonality of sines 

and cosines of different frequencies. The average power of the impulsive component is 
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where the cross-terms in (28) which arise from the products of two distinct impulses are 

assumed to approximately vanish, and where the integral from 0 to T has been approximated 

by the integral from -∞ to +∞. 
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 In the simulation of noise/interference containing impulsive noise, σI = σQ = 0.12, 

∑Ai
2=28.13, ∑Bj

2=1.26 x 10-9, B=2π x 400 kHz, and T=4 ms.  Substituting these values into 

(26)-(28), one finds that PG=0.0288, PNB=28.13, and PIMP=2.52. Thus, relative to the 

Gaussian noise power, the narrowband power is approximately 30 dB and the impulsive 

power is approximately 19 dB. 


