3. NOISE/INTERFERENCE MODEL

3.1 Description of Model
Based on the case studies, a simple model of wideband HF noise/interference has
been developed. The model is capable of describing the first-order statistics of all the

aforementioned noise/interference data, and consists of three components:

e Gaussian noise
e Narrowband interferers (sine waves)

e Impulsive noise (filtered delta functions)

The presence of these three components is not unexpected, and is in accord with intuition.
Within a bandwidth on the order of 1 MHz one expects contributions to the
noise/interference from many independent sources, and hence, via the central limit theorem,
a Gaussian component. On the other hand, one also expects many narrowband interferers,
and if one or a few of these interferers are dominant, the central limit theorem no longer
holds, so that these interferers must be included as a separate component of the model.
Finally, it is well known that HF noise can be impulsive, due to atmospheric noise and other
broadband manmade noise which is neither narrowband nor Gaussian, and must therefore be
included as a third component of the model.

To make this precise, let x(t) denote the noise/interference signal at rf, and let the in-
phase and quadrature components of the baseband signal be denoted by I(t) and Q(t),

respectively. Then x(t) can be written as

X(t) = 1 (t)cos w,t + Q(t) sin a,t (1)
where o, 1s the carrier frequency. The measured data correspond to I(t) and Q(t), which are
the quantities we wish to model.

A sine wave of frequency ® can be written in the form of (1) by using the

identity
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cos(at + ¢) = cos w,t cos(Awt + ¢)—sin w,t sin(At + @) (2)

where Ao = w-®, and ¢ is an arbitrary phase. The baseband components I and Q are the
coefficients of cos wot and sin wot, respectively.

Similarly, the baseband components of an impulse which arrives at time t = t, can be
obtained by applying (2) to the Fourier integral representation of a delta function and
transforming the variable of integration from o to Aw:

S(t—t,)= jw cosa(t—t,)dw

—00

= cos w, (t -1, )J._Z cosAalt —t, )dAw (3)

= —sinw, (t —t, ).[_OO sin Aot —t, JdAw

Since we wish to model measured I and Q components which have been low-pass filtered,
the upper and lower limits of the integrals in (3) should be replaced by +2n B, where B is the
band-pass in Hz. The last integral in (3) vanishes because the sin Aw(t-ty) is an odd function
of Aw; evaluating the integral of cos Aw(t-ty) and expanding cos wy(t-t;) enables one to

express a filtered impulse d4(t-ty) as

sin27B(t —t,) (

5f(t_to): t_t
0

cos w,t, cos @,t + sin ,t, sin w,t) 4)

Again, the I and Q components correspond to the coefficients of cos wyt and sin wt,
respectively. Combining results, the baseband components of the noise/interference model
can be written as

3, sin27B(t—t;)

I(t)=g|(t)+iAi cos(Aawit + ¢, +ZBJ P_— cos @t ; (%)
= i=l i

QM) = gQ(t)_iAi sin(Aa;t + ¢, +Zj:Bj %sinwotj (6)

where g;(t) and gq(t) are independent, identically distributed zero-mean Gaussian processes,

N; is the number of narrowband interferers in the frequency band of interest, and N; is the
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number of impulses which occur during the time interval over which the noise/interference is
being modeled.

Still to be specified are what fraction of the total noise/interference power is
associated with each of the three components, how the narrowband interferers are
distributed in amplitude, phase, and frequency, and how the noise impulses are distributed
in amplitude and time. To do so, the results of the various case studies discussed above
were examined.

It was concluded that the frequency and phase distributions of the narrowband
interferers are uniform. As discussed in Section 2.3.1, the amplitude distribution of the
narrowband interferers can be obtained from the cdf of the power envelope in the frequency
domain. This has been shown by Lemmon (1989) to be well described by a combination
of a Gaussian process and an impulsive process defined by a model developed by Hall
(1966). It may seem inappropriate to use a model of impulsive phenomena to describe
narrowband interferers; however, narrowband interferers are impulsive in the frequency
domain, and it is the amplitude distribution of these frequency domain impulses that must be
described. Thus, it was concluded that the pdf for the amplitudes A; can be modeled by the
amplitude pdf of the Hall model:

(@-1)y""'A
A2 4 }/2 )(9+1)/2 (7)

P(A) = (

The model has two free parameters, 6 and y. Roughly speaking, the value of 6 determines
the slope of the power cdf at high power levels, where the cdf is approximately linear (on
log-log scales), and the value of y determines the overall power scale.

A possible objection to modeling the amplitude distribution as a pure "Hall" process
is that although the power cdf in the frequency domain is well described by a combination of
Gaussian and Hall processes, and although the noise/interference in the time domain is
assumed to consist of a combination of a Gaussian process and narrowband interferers (in the
absence of impulsive noise), it has not been shown that the Gaussian process in the time
domain corresponds to a Gaussian process in the frequency domain. Thus, it has not been
shown that the narrowband interferers in the time domain correspond to a Hall process in the

frequency domain.
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That this is indeed the case, however, can be seen by the following argument. The
Rice representation for zero-mean Gaussian noise (Rice, 1944 and 1945) in a time interval of

length T and in a frequency band from -B to B can be written as

BT,
g(t) = Z(an cos@ +b, sin 27_|z_nt) (8)
n=l1

where the Fourier coefficients a, and b, are independent random variables which are
Gaussian distributed with zero means. Here the distribution of a given coefficient (fixed
value of n) refers to the distribution of values of that coefficient obtained from an ensemble
of noise records. Note that a, and b, correspond to the real and imaginary parts,
respectively, of the Fourier transform of g(t).

Now consider a single noise record and the distribution p(a) of the set of values of
a, for n= 1,2,...,.BT. We wish to determine under what circumstances p(a) is a Gaussian.
Note that p(a) can be viewed as the probability that a given a, is.sampled, times the pdf of
a, for that value of n, summed over n. The probability that a given a, is sampled is 1/BT.

Thus, p(a) can be written as

BT ~-a°/0>(a,)

p(@) = éBT 3¢ )

n=1 O-(an )

where o(a,) is the standard deviation of the pdf of a,. Since Gaussians with different
standard deviations are linearly independent, and since (9) is a sum of Gaussians, it is easy
to see that p(a) is a Gaussian if and only if the o(a,) are equal to one another for all n. A
similar argument holds for the b,. Therefore, the Fourier transform of a (real) Gaussian
process g(t) is a (complex) Gaussian process in the frequency domain if and only if g(t) is
white Gaussian noise, that is, Gaussian noise whose spectral properties (i.e., the a, and b,)
are independent of frequency.

The argument can be generalized to include the case of a complex Gaussian process
g(t). Thus, the Fourier transform of a complex Gaussian process is a complex Gaussian

process in the frequency domain if and only if g(t) is white. Although we have no proof that
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the Gaussian component of actual noise/interference is white, the power spectra shown in the
previous examples strongly suggest this to be the case.

It is of interest to see that modeling the noise/interference as a combination of
Gaussian and "Hall" processes in the frequency domain leads to a nonuniform phase
distribution in the. frequency domain, even though the Gaussian and Hall processes
individually have uniform phase distributions. Let G(w) and H(w) denote the in-phase
components. of a complex Gaussian and a complex "Hall" process, respectively, in the
frequency domain, and let their corresponding quadrature components be denoted by G (o)

and H (®). Then the joint pdf p,;(x,X) for the combined process X = G + H,

X =G + H can be written as a double convolution integral:
P (6N = [ [ p,qx=2.X-2)p, (2,7)dzd? (10)

where p, . and pg s denote the joint pdfs for the Hall and Gaussian processes,

respectively. An expression for p,, , has been derived by Hall (1966):

1

(x2 +X2 47

H.H (X Y) * )(9+1)/2 (11)
Since G and G are independent, identically distributed Gaussian processes, P, s can be

written as

pG,G (X, X) oc e*(xzﬁz)/zo—? (12)

Substituting (11) and (12) into (10) gives

o © e—(22+72 )/20‘2

P [ ]

" (13)
S [(x 2 +(X-2) + 72](9 V" tzdz
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Making a transformation of variables from (x,X) to (V,p) via

X2+ X2 =V? (14)
X2+ X2 =V? (15)
X2+ X2 =V? (16)

results in the joint pdf p, , in amplitude V and phase ¢ for the combined process:

o o +72)125?

e
(S

=Vp,; oC v 5 dzdZ (17)
S[o _'[o B/z ~22V cos¢p—2ZVsing+2° +7° +}/2](6 v

Finally, the phase distribution p,, is obtained from the joint distribution p,, by integrating

over V,
b, = [ PV (18)
0
so that
2 2o verkeor)ar
Py -([dV J;dZ[OdZ B/ > —22Vcosgp—27ZVsing+2> +7° +y° ](M)/Z ()

Although no attempt has been made to evaluate the triple integral in (19), it is clear that
P, 1s not uniform, but is @-dependent, and has a period of 2.

Turning now to the impulsive noise, it was concluded from examination of the power
cdf’s in the time domain that the amplitude distribution of the impulses can also be
described by that of the Hall model for amplitudes B; which are less than some maximum
value B,... At larger values of amplitude, the distribution appears to be cut off (relative
to that of the Hall model). Whether this is due to some intrinsic property of the noise
pulses or is due to the limited dynamic range of the receiving and data acquisition systems

remains unclear at this time; the resolution of this question will require additional data
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obtained with a system that has greater dynamic range. In any case, based upon these
observations, it is proposed that the amplitude distribution p(B) of the impulses in the time

domain be modeled by that of a cutoff Hall model:

1-60 B
B2 +7/2)1—9)/2_7/2(1—5)/2 - (Bz+72)(6’+1)/2’

max max

p(B) = 0( 0<B<B_, (20)
The expression in the first line of (20) differs from that in (7) because cutting off the
distribution results in a different normalization constant.

As discussed in Section 2.3.5, in the one noise record which clearly exhibits impul-
sive noise, the noise impulses do not occur randomly in time, but tend to occur in a quasi-
periodic fashion. However, quantitatively modeling the arrival time distribution requires
investigation of the noise pulse spacing distribution, and this, as well as investigation of the
other higher-order statistics, is beyond the scope of the present work, and will not be further
discussed in this report. For the present purposes of modeling the first-order statistics, the

pulse arrival distribution will therefore be assumed to be uniform.

3.2 Comparisons of Model with Measurements

To demonstrate the usefulness of the model for simulation purposes,
noise/interference has been simulated, analyzed, and compared to the corresponding
analyses of measured data for two particular noise/interference environments: the case
study discussed in Section 2.3.1, which is typical of the data examined in the 42 noise
records, and the case study discussed in Section 2.3.5, which exhibits impulsive noise, in
addition to the Gaussian and narrowband components. The purpose of these comparisons is
not to exhibit simulated results which are identical to the corresponding measured results, but
rather to demonstrate that the model generates noise/interference with the same statistical
characteristics as the measured data.

In the first case, the simulated noise/interference consists of a combination of
Gaussian noise and 40 sine waves. Each sample of the Gaussian noise was generated by
summing 12 random variables, uniformly distributed between -0.5 and 0.5. Since the mean
and variance of each of the random variables are 0 and 1/12, respectively, the mean and

variance of the composite process are 0 and 1, respectively. The central limit theorem

60



implies that the composite process is (approximately) Gaussian, as discussed, for example,
by Mihram (1972). Moreover, because each sample was generated independently of the
others, the autocorrelation function of the process is impulsive; thus, its Fourier transform
(the power spectrum) is flat, and the noise is therefore white.

The model specifies that the amplitudes A; of the sine waves are distributed
according to (7). A set of amplitudes so distributed can be generated by integrating (7) to
obtain the cumulative probability P(A),

0-1
Y
P(A)=1- (A2 N 7/2 )(3—1)/2 (21)

inverting the result to obtain A(P),
1 1/2
G =] )

and viewing the cumulative probability P as a random variable uniformly distributed
between 0 and 1. Thus, random values of P, uniformly distributed between 0 and 1, were
generated and substituted into (22) to obtain values of A;. The values of the parameters vy
and 0 were chosen to be y = 0.3 and 6 = 2.0.

The phases @; of the sine waves are uniformly distributed between 0 and 2x, and the
baseband frequencies Aw; are uniformly distributed between -400 kHz and +400 kHz.

Plots of the I-channel data, both measured and simulated, over an interval of 4 ms,
are shown in Figure 39. Although the measured and simulated data are qualitatively similar,
the simulated data appears to have more high frequency noise than the measured data.
However, this is due to the fact that the frequency of the dominant narrowband interferer
in the simulated data happens to be higher than that in the measured data in this particular
case. Because the frequencies and amplitudes of the narrowband interferers are treated as
random variables in the simulation, it is unlikely that the measured and simulated data will
exhibit identical sets of narrowband interferers. Nevertheless, the statistical properties of
the measured and simulated data are quite similar, as can be seen by comparing the
measured and simulated pdf’s of the I-channel data, the power envelope, and the phase,

which are shown in Figures 40, 41, and 42, respectively.
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Figure 39.  Comparison of (a) simulated and (b) measured (case study 1)
noise/interference in the I-channel data.
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Figure 40.  Comparison of (a) simulated and (b) measured (case study 1) probability
density functions of the I-channel data.
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Figure 41.  Comparison of (a) simulated and (b) measured (case study 1) probability
density functions of the power envelope in the time domain.
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The level crossing distributions of the voltage envelope are shown in Figure 43.
Again, the measured and simulated distributions are qualitatively similar, although the scale
of the simulated distribution is nearly three times larger than that of the measured
distribution. This is to be expected if the frequency of the dominant narrowband interferer in
the simulated data is several times greater than that in the measured data.

That this is indeed the case can be seen by comparing the measured and simulated
power spectra, shown in Figure 44. Whereas the frequency of the dominant interferer in
the simulated data is approximately 350 kHz, the frequencies of the dominant interferers
in the measured data tend to cluster around -125 kHz. Also note that the spectral lines
corresponding to the dominant interferers have a finite width, even though they have been
modeled by zero bandwidth sine and cosine waves. The reason is because the power
spectrum is the square of the Fourier transform of a noise record of finite length (4 ms)

iAwt

and the Fourier transform of a complex exponential e of finite time duration is a linear

combination of a filtered impulse and its Hilbert transform:

e—iAa)teiwt dt —

{sin (@ — A@)T =i [cos (0 — Aw)T —1]} (23)

S ey —

o—-—Aow

Thus, the structure of the spectral lines in the power spectrum corresponds to the logarithm
of the envelope 1/(0-Aw).

The cdf’s of the power envelope in the frequency domain and the pdf’s of the phase
in the frequency domain are shown in Figures 45 and 46, respectively. The similarity of the
measured and simulated power envelope cdf’s is to be expected, because the amplitude
distribution of the sine waves in the simulation was chosen to reproduce the measured
distribution. The simulated phase distribution is nonuniform, as expected based on the
discussion in Section 3.1, and also is qualitatively similar to the measured distribution,
although shifted in phase. However, a relative phase shift in the frequency domain
corresponds to a relative time shift of the noise record, which is of no physical significance.

The noise/interference discussed in Section 2.3.5 was simulated by combining

Gaussian noise, 40 sine waves, and 50 impulses. The Gaussian noise and sine waves were
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Figure 43.  Comparison of (a) simulated and (b) measured (case Study 1) level crossing
distributions of the voltage envelope.
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Figure 44.  Comparison of (a) simulated and (b) measured (case study 1) power spectra.
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generated by the techniques discussed in the previous example, except that the Gaussian
noise samples were multiplied by a factor of 0.12, so that g;(t) and go(t) each have a variance
6°=0.0144, and the parameters y and 0 in the amplitude distribution of the sine waves were
chosen to be y=0.2 and 6 = 2.0.

The amplitudes B; of the impulses are distributed according to (20) and were
generated by a technique analogous to that used to generate the A;. Integrating (20) to obtain
the cumulative distribution P(B),

(Bz Ly )(1—9)/2 -0

P(B) =
(B) (Bz +72)(1—9)/2 _]/2(179)/2

(24)

max

and inverting to obtain B(P),

1/2

87 (1-6)/2 2/(1-6)
B(P)=y [Pl[%ﬂj —1} +1] -1 (25)
v

values of B; were obtained by generating random values of P, uniformly distributed between
0 and 1, and substituting into (25). The parameters were chosen to be B,...=2x107,
y=1.0x10", and 6 = 1.2.

The arrival times t; of the impulses are uniformly distributed between 0 and 4 ms.

Plots of the I-channel data and pdf’s of these data are shown in Figures 47 and 48,
respectively. The presence of impulses in the raw data results in the long tails in the pdf’s,
which otherwise are typical of those of previous case studies.

The pdf’s of the power envelope, which are shown in Figure 49, also exhibit long
tails, which are more readily apparent in the cdf of the power envelope plotted on log-log
scales, as shown in Figure 50.

The pdf’s of the phase in the time domain are shown in Figure 51. As discussed
above, the spikes in the measured distribution are an artifact of the A/D conversion, and are

intentionally not being simulated.
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Figure 47.  Comparison of (a) simulated and (b) measured (case study 5) I-channel data.
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Figure 49.  Comparison of (a) simulated and (b) measured (case study 5) probability
density functions of the power envelope in the time domain.
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The level crossing distributions of the voltage envelope are shown in Figure 52, and
again resemble those of previous case studies, except for the long tails in the distributions.

The power spectra, power cdf’s in the frequency domain, and phase pdf’s in the
frequency domain are shown in Figures 53, 54, and 55, respectively. These quantities
resemble those of previous cases, except for the difference of approximately 20 dB in the
noise floor of the power spectra between the portions of the band which are inside and
outside the bandpass of the filters in the HF receiver. As pointed out above, this difference
can be attributed to the presence of a filtered, broadband process (filtered impulses).

It 1s of interest to compute the relative power of the Gaussian, narrowband, and
impulsive components of the noise/interference. Since the power is I + Q7, the average

power in the Gaussian component is

P = ot 30t =oi o (26)

where o, and o are the standard deviations of g; and g, respectively. The power in the

narrowband component is

P = %H[z A cos(Aat + o, )T + [Z A sin(Aayt + g, )T}dt
= ZAZ

(27)

where the integral over the cross-terms in (27) vanishes due to the orthogonality of sines

and cosines of different frequencies. The average power of the impulsive component is

P 31n27zB(t t) ? sm27zB(t t) ?

—cosa)o - ——~  Vsin ot
j _ — t, | +| DB, t | ldt
0

i j t—t;

=~

IMP =

(28)

z J-sm 7X @ZBJZ

]

where the cross-terms in (28) which arise from the products of two distinct impulses are
assumed to approximately vanish, and where the integral from 0 to T has been approximated

by the integral from -co to +oo.
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Figure 52. Comparison of (a) simulated and (b) measured (case study 5) level crossing
distributions of the voltage envelope.
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Figure 53.  Comparison of (a) simulated and (b) measured (case study 5) power spectra.
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In the simulation of noise/interference containing impulsive noise, 6; = 6 = 0.12,
YA’=28.13, YB{*=1.26 x 107, B=2r x 400 kHz, and T=4 ms. Substituting these values into
(26)-(28), one finds that P5=0.0288, Pyp=28.13, and Ppp=2.52. Thus, relative to the
Gaussian noise power, the narrowband power is approximately 30 dB and the impulsive

power is approximately 19 dB.

82



