solid and composite wall are not as close as might be expected upon examining the results in
Figure 18, especially between 2 and 20 m. The total received power is a function of both the
magnitude and phase of the reflection coefficient (T'). The results in Figure 18 only depict the
magnitude of I', the phase of I' for the composite and solid walls can behave quit differently
from each other depending upon the geometry and material properties of the walls, and this

characteristic is equally important in determining the total received power.

These examples illustrate how the predicted signal level can vary for block walls with different
geometries and material properties. Depending on the block wall parameters, the predicted
signal level for short path propagation can correlate to either a solid slab wall, or to a wall
composed of a perfect conductor. It can also behave differently from either of these two

types of walls.

5. REFLECTION FROM A TWO-DIMENSIONAL BLOCK WALL

The two-dimensional composite structure shown in Figure 2 is replaced by the four-layer
medium shown in Figure 5. Layers 1 and 4 are free space, layer 3 is a solid medium with
¢ = 6.1, 0 =1.95-107% and I3 = 4.75 cm, and layer 2 is a periodic medium with effective
material properties given by equations (8) and (9). For this medium it is assumed that

& =6.1,06=195-10"%a=27cm,d =153 cm and I, = 12.8 em

Figure 22 shows results for the reflectivity of this composite structure for both perpendicular
and parallel polarizations. Also shown in this figure are the results of a solid wall 17.55-cm
thick, where ¢, = 6.1 and o = 1.95 - 10~3. Notice that the resonance behavior of the solid

wall for the perpendicular polarization is different than that for the composite structure.

27



o4
y-ax ls or lentatlon i
-——-x-axls orlentatlon A
9.80 — — Soltd wall / /i

Reflectlv Lty
N
o~
®

(]
A
(O]

O R 5 0 L WO o EN W VO A A O G O i TN O O L I O o 1 A 30

Q.20

0.0 — T T ¢t T . T & 1.1 o . T [ &t T 1
.00 15.00 30.00 45.00 6.0 75.00 99.00
6 (Degress)

Figure 18. Reflectivity versus angle of incidence for a perpendicular polarized wave. These
results are for a 7.2-cm concrete block wall (block # 3 in Table 1) with slabs
oriented along both the y —azis and ¢ — azis and with f = 900 MHz. The large
dashed curve represents the results for a single layer slab of thickness equal to
21, + I3, the solid curve represents the actual concrete block wall with the slabs
oriented along the y — azis, and the small dashed curve represents the results
for the actual concrete block wall with the slabs oriented along the x — azzs.
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Figure 19. Reflectivity versus angle of incidence for a perpendicular polarized wave. These
results are for an 19.6-cm concrete block wall (block # 4 in Table 1) with slabs
oriented along both the y — azis and z — azis and with f = 900 MHz. The large
dashed curve represents the results for a single layer slab of thickness equal to
2l; + 3, the solid curve represents the actual concrete block wall with the slabs
oriented along the y — axts, and the small dashed curve represents the results
for the actual concrete block wall with the slabs oriented along the z — axis.
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Figure 20. Received power versus antenna separation for the four-ray model. These results
are for a 7.2-cm concrete block wall (block # 3) with slabs oriented along the
y —axts and f =900 MHz. The antennas are 1 m off the ground and are spaced
1 m from each of the two walls.
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Iigure 21. Received power versus antenna separation for the four-ray model. These results
are for an 19.6-cm concrete block wall (block # 4) with slabs oriented along the

y —axzes and f = 900 MHz. The antennas are 1 m off the ground and are spaced
1 m from each of the two walls.
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Figure 23 illustrates the results of the received power for the four-ray model with a frequency
of 900 MHz and the antenna placed 1 m from the wall. The results shown in this figure
assume a solid wall, a composite two-dimensional structure, and a perfectly conducting wall.
Here again, as for the concrete block wall, the results from the three different walls approach
one another for long propagation paths. However, for short propagation paths (< 1 km) a
difference of about 5 dB can be predicted. This again illustrates the importance of properly

representing the wall reflections for short propagation paths.

6. VALIDITY OF THE EFFECTIVE MEDIUM MODEL

The underlining assumption in the effective material properties model used in this paper, is
that the period of the structure is small compared to a wavelength. For how large of a period
compared to a wavelength can we expect valid results? This question can be answered by

referring to homogenization results for a similar problem.

In earlier work, one-dimensional wedges and two-dimensional pyramidal absorber structures
were analyzed [33]-[35] using the same techniques presented here. Reference [34] and [35]
illustrate that with the effective properties of the periodic absorbing structures, the reflection
coeflicients can be obtained by solving a classic inhomogeneous layered media problem. The
theoretical reflection coefficient obtained with these effective material properties have been
compared to both experimental results, [36] and [37], and to results obtained from a full
numerical simulation of the absorbing materials, [34] and [38]. Experimental results from
Ellam [36] and Pues [37] have indicated that the effective material properties model used to

analyze the absorbing material were valid for a period as large as 1-3 free space wavelengths.
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Figure 22. Reflectivity versus angle of incidence for a two-dimensional concrete block wall
with: I, = 4756 cm, 5 = 128 cm, ' d = 15:3 cm, a = 2.7 om, & = 6.05, 0 =
1.95-1072, and with f = 900 GHz. The solid curve represents the results for the
actual concrete block wall for the perpendicular polarization, the dashed curve
represents the actual concrete block wall for the parallel polarization, the squares
represent the the results for a single layer slab of thickness equal to 2[; + I3 for
the perpendicular polarization, and the triangles represent the the results for a
single layer slab of thickness equal to 2l; + I3 for the parallel polarization.
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are for a two-dimensional block wall with I, = 4.75 cm, I3 = 12.8 cm, d = 15.3
cm, a = 2.7 cm, € = 6.05, 0 = 1.95-107, and with f = 900 MHz. The antennas
are 1 m off the ground and are spaced 1 m from each of the two walls.
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In [34] reflection coefficients calculated by using the effective material properties model were
compared to results obtained from a moment-method calculation and excellent agreement
was demonstrated. The results in this comparison were for a period of the structure equal to
half a free space wavelength, and excellent agreement was demonstrated for incident angles
as large as 90°. Using a finite difference time domain technique, Holloway, Mckenna, and
DeLyser [38] have indicated that excellent agreement is achieved for a period as large as a
free space wavelength for normal incidence. Agreement was also achieved for a period of 1/2

of a wavelength for incident angles as large as 90°.

These numerical and experimental results indicate that the effective material properties
model presented here for the composite structure are accurate for periods at least as large
as 1/2 to 1 free space wavelength and possibly even higher. The upper frequency limit for
which the effective material properties of periodic structures can be used is currently being

investigated [38].

The only results in the literature analyzing electromagnetic wave interaction with concrete
block walls are those of Honcharenko and Bertoni [19]. We have made some comparison
to their results, and for 900 MHz we get quantitatively similar, but not identical, results.
Because of the error in Figure 4 of [19] we have to question if their other results are correct.
Honcharenko and Bertoni [19] make no comparisons in their paper that suggest that their
results are correct. We have compared our model to results from Bertoni’s earlier paper [18]
(the basis of [19]) and for a incident angle of 45°, agreement is achieved for a period of 1/2

wave length (A).

Bertoni, Cheo, and Tamir [18] and Pinello, Lee, and Cangellaris [26] show that for a period
greater than A/2 for incident angles of 45°, higher order Floquet modes begin propagating.
The homogenization model presented here cannot represent these higher order Floquet modes
for large periods and the reflection coefficient based on homogenization would no longer be

valid.



Watters [54] has investigated the problem of acoustical wave interactions with masonry block
walls, but his results are not applicable here. Watters does however, suggest that some type
of area weighted average model can be used to calculate transmission loss through these

types of walls (see Figure 10 of [54]).

7. DISCUSSION AND CONCLUSION

We have presented a model for analyzing the reflections and transmissions of electromag-
netic waves from periodic composite structures. With this model we have investigated the
importance of correctly predicting electromagnetic field interaction with walls for short path
propagation channels. For short path propagation (< 1 km), differences of 5-10 dB in re-
ceived power can be predicted by modelling composite walls as either a single layer structure
or as a perfectly conducting wall. This illustrates the importance of properly representing

the wall reflections for short propagation paths.

For large propagation paths (> 1 km) the results for either the solid or the composite
structures approach one another. This is expected because for large propagation paths,
the angle of incidence of the wave on a wall approaches grazing (90°), thus regardless of the
type of wall, the magnitude of the reflection coefficient approaches one. For long propagation
paths, the magnitude of the reflected energy from the walls in the vicinity of the propagation
path can be treated as if the walls behave as perfect conductors with little loss of generality.
The one exception to this assumption, is for a periodic structure in which the period is large
enough to guide energy in the structure. For this situation the periodic structure acts like a
waveguiding structure, and energy can be carried away as waveguide modes, and so is not

reflected off the surface in a spectral direction.
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