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A Study of the Electromagnetic Properties of Concrete Block Walls for Short
Path Propagation Modeling

Christopher L. Holloway!
Patrick L. Perini?
Ronald R. DeLyser®
Kenneth C. Allen!

For short propagation paths, correctly representing reflections of electromagnetic en-
ergy from surfaces is critical for accurate signal level predictions. In this paper, the
method of homogenization is used to determine the effective material properties of
composite material commonly used in construction. The reflection and transmission
coeflicients for block walls and other types of materials calculated with these homoge-
nized effective material properties are presented. The importance of accurately repre-
senting the reflections for signal level prediction models is also investigated. It is shown
that a 5- to 10-dB error in received signal strength can occur if the composite walls are
not handled appropriately. Such accurate predictions of signal propagation over short
distance is applicable to microcellular personal communications services deployments
in urban canyons as well as indoor wireless private branch exchanges and local area
networks.

Key words: composite walls; concrete walls; propagation modeling; reflection coefficient;
homogenization; effective material properties

1. INTRODUCTION

Much work on long path propagation through urban settings has been done in the past
[1]-[10]. In most of this work, little attention is given to accurate representation of the
reflection coefficient (I') of a wave striking building surfaces. In this paper the problem of
electromagnetic wave interaction with composite walls is addressed. Some examples used

here are concrete block walls and other composite structures depicted in Figures 1 and 2.

1The author is with Institute for Telecommunications Sciences, National Telecommunications and Infor-
mation Administration, U.S. Department of Commerce, Boulder, 80303

?The author is with US West Advanced Technologies, Boulder, 80303

3The author is with Department of Electrical Engineering, University of Denver, Denver, 80208
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Figure 1. a) Illustration of a concrete block wall with its slabs oriented along the y — azis,
b) Hlustration of a concrete wall with it slabs oriented along the @ — azis.

In the majority of the published work the reflection coefficients of the buildings are obtained

by assuming that either the building -materials are perfect conductors or that the building

walls are single solid slabs of material with some assumed properties. For the most part this

may very well be justified for long path propagation in urban canyons.

In long path propagation, the transmitting and receiving antennas are set a relatively large
distance apart. The dominant contribution to the total signal for an urban canyon setting
is waves that make one to two bounces off the building, take a direct path, and make one
bounce off the ground (see Figure 3). In this case the waves that bounce off of buildings

are incident at an angle close to grazing, or 90°. Even though the angular dependence of
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Figure 2. Illustration of a two-dimensional periodic block wall.

the reflection coeflicient of a composite material can behave much differently than that of a
perfect conductor or a single solid slab, this is not an important issue for long propagation
paths. Therefore, regardless of the building’s material, the actual reflection coefficient for

large incident angles will approach that of a perfect conductor.

There is a growing need to predict signal levels for short propagation paths, in the range
of 2-100 meters. Business campuses utilizing wireless private branch exchanges (PBXs) and
wireless local area networks (LANs) to provide mobile voice and data communications, ve-
hicular communications through urban canyons to nearby relays, and microcellular personal
communications services (PCS) deployment in malls and airport are just a few examples.
For short propagation paths like these, the accurate behavior of waves reflecting off walls

can be very important.

Calculating the fields interaction (i.e. the reflection and transmission coefficient) of the com-
posite structures similar to those shown in Figures 1 and 2 is a classic problem (see [11]-[27]).
These techniques range from analytical techniques like Floquet analysis and mode match-

ing to full numerical approaches like method of moments (MOM), finite element, and finite



Figure 3. Illustration of the rays in the four-ray model.

difference methods. These techniques are capable of high accuracy, but are computation-
ally intensive and hence do not lend themselves to ready use in signal prediction models.
For short path signal prediction models (like ray tracing and other geometric optic mod-
els), efficient closed form expressions for calculating both the the reflection and transmission

coefficients for composite structures are desired.

In this paper, we introduce expressions for the effective material properties for some com-
monly used composite building materials. These expressions for the effective material prop-
erties can be used to efficiently obtain the reflection and transmission coefficients for walls
composed of composite materials. With these reflection and transmission properties we in-
vestigate the importance of accurately representing the interaction of the composite walls for
the prediction of received signal strength (RSS) over short distances. The paper is organized
as follows: following the introduction, Section 2 discusses the technique of homogenization,

showing how the equivalent material properties for composite walls can be obtained. Lx-



pressions are then given for the effective material properties for both singly and doubly
periodic structures. In Section 3 the equations needed for calculating the reflection and
transmission coeflicient for an obliquely incident plane wave (either perpendicular or parallel
polarizations) are introduced. In Section 4 results from a singly periodic structure for dif-
ferent orientations and polarizations are presented. In Section 5 results for doubly periodic
structures are presented. Also in Section 4 and 5, the importance of accurately representing
the reflection properties of walls for signal ievel prediction models is investigated. Finally,

in Section 6 a discussion on the validity of the expressions presented here is given.

2. EFFECTIVE MATERIAL PROPERTIES OBTAINED FROM
HOMOGENIZATION

The problem at hand is to determine the reflection and/or transmission coefficient for a
field incident onto the composite periodic structures illustrated in Figures 1 and 2. The
concrete block wall in Figure 1 is equivalent to a five layer medium depicted in Figure 4.
Layers 1 and 5 are free space, layers 2 and 4 have the material properties of the concrete,
and layer 3 represents a one-dimensional periodic structure. The two-dimensional composite
wall in Figure 2 is equivalent to a four-layer medium depicted in Figure 5. Layers 1 and 4
are free space, layer 3 has the material properties of the concrete, and layer 2 represents a
two-dimensional periodic structure. In order to calculate the reflection and/or transmission
coefficient for these composite structures the field’s interaction with the periodic sections
labeled as layer 3 (for the one-dimensional structure of Figure 4) and layer 2 (for the two-

dimensional structure of Figure 5) must be determined.

Recently, a method for analyzing periodic structures known as homogenization has been

used to solve problems of this type when the period of the structure is small compared to



the wavelength. Only a few of these published results are applicable to electromagnetic
problems: [28] and [29] for a corrugated impedance surface, [30] and [31] for a wire grid and
conducting strips, [32] for a rough perfectly and non-perfectly conducting rough surfaces,

and [33]-[35] for analyzing pyramidal electromagnetic absorbers.

Even though the homogenization technique is based on the period of the structure being small
compared to a wavelength, results given in [34] and [36]-[38] indicate that the homogenization
models are accurate for periods at least as large as 1/2-1 free space wavelength and possibly

even higher for lossy periodic structures. This is discussed in more detail in Section 6.

Homogenization is a technique utilized in the early 1970’s, primarily by a group of French
mathematicians (see [28] and [39]-[45]). This asymptotic technique is based on the method
of multiple-scales associated with the microscopic and macroscopic field variations due to
the periodic structure. In most situations, only the averaged (slowly varying) fields are of
interest, and not the microstructure of the fields. Homogenization allows the separation of
the average field from the microstructure. It is then possible to show that the averaged fields
satisfy Maxwell’s equations for some homogeneous media. The equivalent material properties

of these homogeneous media are related to the properties of the composite structure.

With homogenization, the periodic layers of the composite structures (layer 3 in Figure 4
and layer 2 in Figure 5) can be replaced with a medium with an equivalent material property.
Once the equivalent material property of the medium is determined, then the reflection and
transmission coefficients of the composite structures can be efficiently obtained with either

classical layered media approaches or by classical transmission line methods.

Homogenization uses asymptotic expansions and the concept of multiple-scales to expand
the I and H fields in an asymptotic power series with both slow and fast variations. These
slow and fast variations are associated with the microscopic and macroscopic field variations.

With asymptotic power series of both the £ and H fields, Maxwell’s equations can be grouped
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Figure 4. Equivalent layered media of a concrete block wall.
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Figure 5. Equivalent layered media of a two-dimensional block wall.



in terms of different powers of the period (p) of the structure. The details of this procedure

are found in [33].

Following this type of analysis, the zeroth order averaged fields [(£°)avg and (H°)avg] are
related by the following:
VX (g = —jw [1"] - (H°)avg

(1)
VX (H)wg = —jw[et] - (E)avg -

This equation states that the average fields satisfy Maxwell’s equations in an anisotropic

homogeneous medium characterized by the tensors [ch] and [,uh]. These effective material

properties are referred to as the homogenized permittivity [¢?] and permeability [x"], and

are defined by the following:

(E°).., = [¢]- (&),
(k8°),,, =[] (B),,, -

The average zero order fields [(£°)ayg and (H®)avg) see the properties of the medium in terms

(2)

of a single tensor quantity. The values of these tensors can be obtained from the solutions

of the two-dimensional static source-free field problems that govern E° and H° (see [33]):

V§><EO B 0

V£X_HO = 0 (3)
and _

Ve (e£°) = 0

Ve (uH?) = 0 (@)

where £ is the so-called fast variable and is defined as the following:
Lo _
£ = ?—j(mx + yay) (5)

where p is the period of the structure.

Now that it has been shown that the averaged field sees the periodic medium as an effective



anisotropic homogeneous region with tensor permittivity [¢"] and [u"):

0 0
@] = |0 ¢ o
e 00 (6)
[#h} = 0 p 0 )
L 0 0 g

we now need to determine the effective material properties of this region. There has been a
great deal of attention in the past towards determining the effective properties of composite

regions. For a survey of this work see [46].

For the one-dimensional periodic structure, the effective properties of layer 3 (see Figure 4)
is needed. If the period (p) of the slab structure shown in Figure 6 is small compared to a
wavelength in either medium, and also small compared to the skin depth, then the effective

properties are given by [33], [17] and [47]-[50] as:

' = (1-g)e! +g¢!

prt = (1—g)p;t +gu? (M)
€y =€ = (]-_g)co+gﬁa
py =pz = (1= 9o+ gpta

where ¢ = a/p (p and a are defined in Figure 1) is the relative volume of space occupied by
the material, ¢, and g, are the complex parameters of the bulk material, and ¢, and p, are

the free space values.

For the two-dimensional block wall shown Figure 7 (where €, = ¢, and ¢; = ¢,), the longitu-

dinal permittivity and permeability are known exactly ([46], [28] and [39]) as:

e: = (1—g)e + gea (8)
p: = (1=g)po + gpta

where g = a*?/p* (a and p are defined in Figure 2) is the volume fraction of space occupied

by the material, and ¢, and y, are the complex parameters of the bulk material.

For this type of symmetric two-dimensional periodic structure, ¢, = ¢, = ¢, and p, =

pz = py. Reference [33] indicates that the transverse permittivity (¢) and permeability

9
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Figure 7. Two-dimensional periodic structure.

10



(p¢) are not simple spatial averages as had often been assumed. There are no exact closed
form expressions for the transverse material properties; however, upper and lower bounds

for these properties can be found in [46].

Nakamura and Hirasawa [51] have done a numerical study of a similar periodic structure
and they showed that the Hashin-Shtrikman upper bound given in [46] and [52] correlates
very well to the effective material properties of this type of periodic structure. Thus, the

transverse material properties can be approximated by the following:

1 —
& = &t —g g_y_
Ea—Efa 2¢a 9
l—g (9)
Ht = Hq + 1—‘“:9“_“
fla— o 2pa

where once again g = a*/p? is the volume fraction of space occupied by the material.

In [33], a structure converse to the one shown in Figure 7, i.c., a dielectric surrounded by
air (where ¢; > ¢;), was analyzed. If the roles of the material properties in equation (9) are
=4

interchanged with Keller’s scaling theorem [53] (such that €; < ¢;), then the results given in

equation (25) of [33] are obtained.

In general, the permittivity given in equations (7)-(9) is complex, resulting from the possi-
bility that the material has a-conductivity o. For this scenario, the complex permittivity in

these equations is expressed as:

(10)

3. OBLIQUELY INCIDENT PLANE WAVE

We want to investigate the problem of a plane wave incident onto the medium that behaves

like a uniaxially anisotropic, but homogeneous, material. The periodic structures shown in

11



Figures 6 and 7 can be replaced with an equivalent layer (Figure 8). The material properties
of this effective layer can be given by either equation (7) (for the one-dimensional periodic
structure) or by equations (8) and (9) (for the two-dimensional periodic structure). If the
plane of incidence is the zz-plane (Figure 8), then we can assume d/dy = 0. Maxwell’s
equations can now be decoupled into two independent sets of equations; one set for the

perpendicular polarization (referred to as E-polarization):

9Hy _ 9H. — jwey By
= —jwp.H, (11)
= —jwpH,;
and one set for the parallel polarization (referred to as H-polarization):
e = JwnH,
%} = _.ijZEZ (l2)
oy, - —jwep By

9z

with an assumed time factor of e/*.

The z-dependent factor of the fields is given by: e™7%#5"? which means that the derivatives

with respect to  can be replaced by:

% — —jkysinf . (13)

With this, the following general set of equations for the electromagnetic fields is obtained in

which the z component is eliminated:

LU = —jwpesH(z) (14)
%ﬂ - —jwsc”b}(z)
where for the perpendicular polarization:
Ez)=FE (z) H(z)==H:(2) (15)
Loeosin?
\ff_{ff S (‘L" e IT (]6)
Beff = Hz

12



Figure 8. Equivalent anisotropic layer.

and for the parallel polarization:

E(z) = Eu(z) H(z) = H,(2) (17)
Ceff = Cxp :

Lo€oSin 18

N &

With these expressions for the angular dependence on the effective material properties, we

can now calculate reflection and transmission coefficients for composite structures.

4. REFLECTION FROM A CINDER BLOCK WALL

In this section, results for a one-dimensional periodic structure resembling a cinder block
wall will be given (see Figures 1 and 4). Four block walls are analyzed: two different 14.5-cm
(5.71-in) walls, one 7.2-cm (2.83-in) wall, and one 19.6-cm (7.72-in) wall. The dimensions of

these different walls are shown in Table 1.

The 14.5-cm (5.71-in) block wall labelled block # 1 in Table 1 is represented as the layered

structure shown in Figure 4, and has the following geometry: layers 1 and 5 are free space;
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