7.4. Project File LEW3.CPP

This file contains the major computation of the program except for the FFT and the impulse response
code.

Includes:

STDIO.H - library file containing the input/output routines.
STDLIB.H - standard library file needed for exit function.
MATH.H - library file containing the math functions.

Defines:

MAXLAYERS - the maximum number of reflecting layers (or reflected rays seen by the
receiver) in the ionosphere that the program will handle.

DATA - the number of real data points in the output data streams. Two successive data
points represent a complex number. The first is the real part and the second is the
imaginary part.

TWOPI - definition of 27t = 6.28318530717959.

C - speed of light in km/us, C = 0.299792458.

Structures:

ray_path - structure that contains all input and computed variables characteristic of a path.
The elements of ray_path are given on p. 28.

compute - structure that contains all the variables specific to the computations or not
specific to an individual path. The elements of compute are given on p. 29.

String type:
STRING - used for handling file names of input and output files.
Global variables:

cdat - array of float of size 2 x DATA, holds the impulse response data in the first half (up
to DATA) for each layer at a particular time slice, the second half is zero padding.
Later cdat holds the complex coefficients of the FFT for printing to the output files.
This is usually a structure of real variables, but it is used in this program as a
complex structure. A consecutive pair of floats in cdat represent a complex number,
the first number of the pair (the even index) represents the real part and the second
(the odd index) is the imaginary part.

45

seed] - long integer, random number seed for the Wichmann-Hill generator, initialized in
comp_arrays, calculated and updated in ranl.

seed? - long integer, random number seed for the Wichmann-Hill generator, initialized in
comp_arrays, calculated and updated in ranl.

seed3 - long integer, random number seed for the Wichmann-Hill generator, initialized in
comp_arrays, calculated and updated in ranl.

seed4 - long integer, random number seed for L'Ecuyer's generator, initialized in
comp_arrays, calculated and updated in ran2.

seed5 - long integer, random number seed for L'Ecuyer's generator, initialized in
comp_arrays, calculated and updated in ran2.

46

#include <stdio.h>
#include <math.h>
#include <stdlib.h>

#define MAXLAYERS 3

#define DATA 4096

#define TWOPI 6.28318530717959
#define C 0.299792458

typedef struct ray path
{

float path_Distance, center_freq, penetrate_freq, thick scale, maxD hgt;
float peak_amplitude, sigma_tau, sigma_c, sigma_D, fds, fdl;
double tau_c, sigma_f; slp, tau_L, tau U, tau_l, alpha, sigma_I, lambda;

i

typedef struct compute

{

int layers, slices, seed;
float delta_t, afl;
double delta_tau, big_el;

i}
typedef char *STRING;
/* Global Variables */

long seed1, seed2, seed3, seed4, seed5;

float cdat[2 * DATA];

47

7.4.1. Function void doit
Description:

This function is called by main. Doit first calls comp_arrays to compute all necessary
values for the model. Then it calls slicedo to make the transfer function for each time slice.
Doit is in file LEW3.CPP.

Variables passed to doit:

cd - array of compute, structure containing the computation parameters.
pd - array of ray_path, structure containing the path parameters.

daty - STRING containing the name of the first output file.

daty2 - STRING containing the name of the second output file.

Functions called by doit:

comp_arrays - computes all the derived parameters from the input parameters. Doit passes
cd, asingle element array of compute and pd, an array of ray_path both by reference
and also passes daty, a STRING containing the name of the first output file from the
command line. Comp_arrays is in file LEW3.CPP.

slicedo - computes the transfer function for each time slice. Doit passes cd, a single element
array of compute and pd, an array of ray_path by reference, and also passes daty2,
a STRING containing the name of the second output file from the command line.
Slicedo is in file LEW3.CPP.

48

void doit(struct compute cd[1], struct ray_path pd[MAXLAYERS], STRING daty,
STRING daty?2)
{

/* Function prototypes */

void comp_arrays(compute[], ray_path[], STRING);
void slicedo(compute([], ray path[], STRING);

[*-Code*/
comp_arrays(cd, pd, daty);
slicedo(cd, pd, daty?2);
return,

} /* End of doit */

49

7.4.2. Function void cOmp_arrays
Description:

Comp_arrays is called by doit and computes all the derived parameters that define each
layer. The path parameters computed are sigma_f, lambda, tau U, tau_L, slp, and alpha
which are parameters in the structure ray_path. The computing parameters that are
calculated are big el and delta_tau. Delta_tau is the largest tau_U less big el divided by
one fourth DATA. Comp_arrays also initializes the random number seeds seed!, seed?2,
seed3, seedd4, and seed5 by invoking the individual generators making up the Wichmann-Hill
and L'Ecuyer's composite generators, see functions ranl and ran2 below. Comp_arrays
calls big_c to compute the parameter fau_c. Comp_arrays calls little_el to compute the
parameter fau_[. Finally, this function calls outl to output the input and computed
parameters for each layer and for the input and calculated computation parameters to a file.
Comp_arrays is in file LEW3.CPP.

Parameters passed to comp_arrays:

cdc - array of compute, structure containing the computation parameters.
pdc - array of ray_path, structure containing the path parameters.
datout] - STRING, contains the name of the first output file.

Local variables:

sv - double, the ratio of the receiver threshold to the amplitude.
Z I - double, convenient holder for computing alpha, corresponds to (23).

k - integer, indexes the skywave paths or the reflective layers.

Functions called:

sqrt - library function takes the square root of a real non-negative number, requires
MATH.H.

log - library function takes the natural logarithm of a positive real number, requires
MATH.H.

big_c - type double, computes the value tau_c for each path, passes cdc and pdc, returns
computed value of fau_c. Big_c is in file LEW3.CPP.

little_el - type double, function that computes the value rau_! for each path, passes tau_c,
tau L, and tau_U, returns tau_l. Little_el is in file LEW3.CPP.

outl - type void, outputs computing and path information for each layer to file, passes cde,
pdc, and datoutl, the file name character string. Outl is in file LEW2.CPP.

50

void comp_arrays(struct compute cdc[1], struct ray path pdc[MAXLAYERS], STRING
datoutl)

]
1
/* Function Prototypes */

double big_c(ray_path[], int);
double little_el(float, double, double);
extern void outl(compute[], ray_path[], STRING);

/* Local Variables */

int k;
double sv, Z 1, big_U;

/* Initialize random number generator seeds */

seedl = (171 * cdc[0].seed) % 30269;

seed2 = (172 * seedl) % 30307,

seed3 = (170 * seed2) % 30323;

k =seed3 / 52774;

seed5 = 40692 * (seed3 -k * 52774) -k * 3791;

if (seed5 < 0)
seed5 +=2147483399;

k =seed5 / 53668;
seed4 = 40014 * (seed5 - k * 53668) - k * 12211,

if (seed4 < 0)
seed4 +=2147483563;

/* Compute the layer parameters */

for (k = 0; k <cdc[0].layers; k++)

{
sv = cdc[0].afl;
pdc[k].sigma_f=TWOPI * pdc[k].sigma_D * sv/sqrt(1.0 - sv * sv);
pdc[k].lambda = exp(-cdc[0].delta_t * pdc[k].sigma_f);

/* Note that sv can't equal 1 above */

pdc[k].tau_c = big_c(pdc, k);

51

pdc[k].slp = (pdc[k].fds - pdc[k].fdl) / pdc[k].sigma_c;
pdc[k].tau_L = pdc[k].tau_c - pdc[k].sigma_c;
pdc[k].tau_U = pdc[k].tau_L + pdc[k].sigma_tau;

pdc[k].tau_l = little_el(pdc[k].tau_c, pdc[k].tau_L,
pdc[k].tau_U);
Z 1= (pdc[k].tau_L - pdc[k].tau_l) / (pdc[k].tau_c - pde[k].tau_I);
pdc[k].alpha = (log(sv)) / (log(Z_) + 1 - Z_1);
pdc[k].sigma_l = pdc[k].tau_c - pdc[k].tau_l;
} /* End of k-loop */
/* Compute big_el and delta_tau */

big U =0.0;
cdc[0].big_el = 100000.0;

for (k = 0; k < cdc[0].layers; k++)

{
if (pde[k].tau_U > big_U)
big_U = pdc[k].tau_U;
if (pdc[k].tau_l < cdc[0].big_el)
cdc[0].big_el = pdc[k].tau_l;
}

if (cdc[0].big_el <0.0)
cdc[0].big_el = 0.0;

cdc[0].delta_tau = (big_U - cdc[0].big_el) / (DATA / 4);
outl(cdc, pdc, datoutl);
return;

} /* End of comp_arrays */

52

7.4.3. Function double big ¢

Description:

This function, called by comp_arrays, calculates and returns the value of tau_c, the mean
delay for the center frequency, center_freq, from the equation

gl D)?
a8 PRIER o) 24
(C2] " (2) .

where ¢ is the speed of light (C in the program), D is the point-to-point distance between
transmitter and receiver (path Distance), and h, is the effective reflection height
(effective_height) given in Budden [20, p. 156] by

h, = oln (25)

where o is the thickness scale factor (thick_scale), h, is the height of the maximum electron
density (maxD_hgt), f, is the penetration frequency (penetrate_freq), and f, is the center
frequency (center _freq).

The first equation is an application of the Pythagorean Theorem while the second is an
evaluated integral expression for the effective reflection height in a hyperbolic secant squared
(sech?) electron density model. The functions are In, the natural logarithm, and sinh, the
hyperbolic sine. Big_c is in file LEW3.CPP.

This method of determining t, differs from the method presented in Vogler and Hoffmeyer
[S, p. 6]. There, the method used to find 7, requires an iterative scheme. The method above
is a direct calculation of the effective reflection height followed by a direct calculation for
the mean delay of the center frequency.

Parameters passed to big_c:

pdcb - array of ray_path, structure containing the path parameters.
t - integer, the index of the current path.

53

Parameter returned to comp_arrays:
tau_c, T, - mean delay for the center frequency.
Local variables:

compl - double, ratio of the penetration frequency to the center frequency, convenient
variable to avoid divisions.

comp?2 - double, square root of the quantity (compl x compl - 1), convenient variable to
avoid unnecessary calculations.

comp3 - double, holds the hyperbolic sine of the height of the maximum electron density
divided by the thickness scale factor, convenient variable to avoid recalculation.

effective_height - double, the effective reflection height of the layer.

Functions called by big_ec:

sqrt - library function takes the square root of a real non-negative number, requires
MATH.H.

log - library function takes the natural logarithm of a positive real number, requires
MATH.H.

sinh - library function takes the hyperbolic sine of a real number, requires MATH.H.

54

double big_c(struct ray_path pdcb[MAXLAYERS], int t)
f

1§
/* Variables */

double compl, comp2, comp3, effective_height;
/* Code */

compl = pdcb|[t].penetrate_freq / pdcb|t].center freq;
comp?2 = sqrt((compl * compl) - 1);
comp3 = sinh(pdcb([t].maxD_hgt / pdcb[t].thick_scale);
effective_height = pdcb(t].thick scale * log(sqrt(comp2) * comp3 +
sqrt((1 / comp2) * comp3 * comp3 - 1));
return((2 / C) * sqrt(effective_height * effective_height +
pdcb[t].path_Distance * pdcb[t].path_Distance / 4));

} /* End of big_c */

55

7.4.4. Function double little_el
Description:

Little_elis called by comp_arrays. Little_el finds the value of 7au_I that zeros the function

f(x) = In i Al it (26)
Topin Ty T Th

where In is the natural logarithm function. Equation 26 is a form of the equation
In Z, - Z, = In Z, - Z,, from Vogler and Hoffmeyer [5, p. 32], but (26) is written in terms of
the delay values. Note that Z, is given by (23) and that

Ty =T
Zn—
Ui @7

c

The function (26) is derived by evaluating (3) at the delay parameters t;, Ty, and T,
see Figure 1. Since P,(t;) = P,(Ty),

1 P(T;)
1. 178

which when simplified yields (26). Little_el is in file LEW3.CPP.

Pn(TU)
P(t)

, (28)

A bisection method was used to compute t, because (26) is complex valued when T, is
between 7, and t,,. For values of T, greater than 7, (26) increases without bound as T,
approaches T, from the right; the function approaches 0 asymptotically from above as T,
increases. Thus, there is no value in this range that will zero the function (26), see Figure 14.
To the left of 7, , the function decreases without bound as T, approaches T, ; however, (26)
approaches 0 asymptotically from above. This implies that (26) crosses the x-axis, achieves
zero value, to the left of t, , see Figure 15. The variable T, is a location parameter for the
impulse response. For delay greater than T, the delay power is positive otherwise the delay
power is zero.

A Newton-Raphson method can result in evaluations in the complex part, which fail, or can
throw successive approximations into the areas where the function approaches zero unless
the initial guess is lucky. A bisection method was used to avoid those problems by keeping
successive approximations in the “good” zone.

56

T T
| : |
| |
[
3
2 i . - :
~

- :f i

0 : = -

i

E

-1 H

Tu

T

Figure 14. Horizontal and vertical asymptotes of function (26) above t,,.

0.4
0.0
-0.4
0.0001
10,0000 ™,
e 1] e \
X, -0.0001
S, \
= 00002
o122 s =St EIT A i e I (A S R e T W L st Dl e o AN
-0.0003
20,0004
1.6 |-
-0,0008
-2.0

Y

Figure 15. Horizontal and vertical asymptotes of function (26) below t, . Inset: Zero
crossing and function maximum illustrated at finer scale.

)

Other fixed point methods, such as the secant method, may also be used. Initial
approximations are found by searching for two points between t; and

2
T:Crpim G
LU c
PR (29)
TL+tU_ tc

which is the point at which (26) achieves its maximum value to the left of t,. The evaluation
of (26) at the two points sought will have opposite sign. The bisection algorithm takes these
two values and determines a value that zeros (26) with a tolerance of less than 0.0000001.
The bisection method used is an implementation of the one given in Burden and Faires
[22, pp. 28-33].

Parameters passed to little_el:

tau_c - float, delay associated with the carrier frequency for the current layer.
tau L (t,=1.- 0, - double.
tau U (t,=1,+0,) - double.

Parameter returned to comp_arrays:

searchpoint = tau_| - location parameter for the delay function, represents a location
parameter for the delay shape. The values of fau_ for the different layers are not
necessarily the same.

Local variables:

searchpoint - double, holds various approximations for the variable tau [. The final
approximation of fau_I is returned to comp_arrays.

negative_arg - double, holds approximation in bisection method that causes the function
value to be negative, not necessarily itself negative.

positive_arg - double, holds approximation in bisection method that causes the function
value to be positive, not necessarily itself positive.

holdval - double, convenient temporary variable.

halfdif - double, holds value in bisection algorithm that is used to keep from doing more
than one division.

m - integer, counts passes through loops in little_el, compared to preset values to provide
convenient stopping criteria for infinite loops, for example.

58

Functions called by little_el:

funvalue - computes and returns the value of (26). Little_el passes rau L, tau U, tau_c,

and searchpoint (or positive_arg) to evaluate (26) at searchpoint, the current
approximation to tau 1.

pow - library function returns x to the power of y, x*, where x and y are type double.
Requires MATH.H.

59

double little_el(float tau_c, double tau_L, double tau_U)
{ /* Function prototype */
double funvalue(double, double, float, double);
/* Variables */

int m;
double searchpoint, negative_arg, positive_arg, holdval, halfdif;,

/* Code */
positive_arg = (tau_L * tau_U - tau_c * tau_c) / (tau_L +tau_U - 2 * tau_c);
searchpoint = (positive_arg + tau_L)/2;
/* Get two estimates for bisection algorithm */

if ((holdval = funvalue(tau_L, tau_U, tau_c, searchpoint)) < 0)
negative_arg = searchpoint;

else
if (holdval > 0)
{
positive_arg = searchpoint;
while (1)
{

searchpoint = (searchpoint + tau_L) / 2;

if (holdval = funvalue(tau_L, tau_U, tau_c, searchpoint)) > 0)
positive_arg = searchpoint;

else
if (holdval <0)
{
negative_arg = searchpoint;
break;
}
else

return(searchpoint); /* Holdval =0 */
}
h

else return(searchpoint); /* Holdval =0 */

60

/* bisection algorithm with two appropriate estimates */

for (m = 1; m <= 100; m++)

{
halfdif = (negative_arg - positive arg)/2;
searchpoint = positive_arg + halfdif:

if ((holdval = funvalue(tau_L, tau_U, tau_c, searchpoint)) == 0) ||
(halfdif < 0.0000001))
return(searchpoint);

if ((holdval * funvalue(tau_L, tau U, tau_c, positive_arg)) > 0)
positive_arg = searchpoint;
else
negative_arg = searchpoint;
}
printf("\n Error in function little el!");
printf("\n Bisection for tau_| failed after 100 iterations!");
printf("\n Stopping program!");
exit(0);

} /* End of little el */

61

74.5. Function double funvalue

Description:

Funvalue is called by little_el and returns the value (double) of (26). Funvalue is located
in file LEW3.CPP.

Parameters passed to funvalue:
¢ - float, corresponds to fau_c, passed by value.
L - double, corresponds to fau_L, passed by value.

U - double, corresponds to tau_U, passed by value.
point - double, corresponds to tau_l, passed by value.

Parameter returned to little_el:

The value of (26) evaluated at point - double.

Functions called by funvalue:

log - library function returns the natural logarithm of a real positive number, requires
MATH.H.

62

double funvalue(double L, double U, float ¢, double point)
]
1
/* Code */
return(log((L - point) / (U - point)) + (U - L) / (¢ - point)));

} /* End of funvalue */

63

7.4.6. Function void slicedo
Description:

This function is called by doit. Slicedo starts by initializing a block of dynamic memory for
the exponential autocorrelated random number streams that are used to compute the impulse
response. There are DATA floats for each layer in the allocated block, enough for the
computation of the nonzero padded portion of the impulse response array. Slicedo calls
rvgexp to compute these number streams. For each time slice, slicedo calls imp to compute
the impulse response by computing and superimposing the impulse responses for each
reflective layer, then calls little_four to compute the FFT of the impulse response, then calls
outit to print the complex Fourier coefficients to file. Finally, slicedo frees the allocated
dynamic memory block. Slicedo is in file LEW3.CPP.

Parameters passed to slicedo:

cds - array of compute, structure containing the computation parameters.
pds - array of ray_path, structure containing the path parameters.
datout2 - STRING, contains the output file name, passed to outit.

Global variables used:

cdat - array of float of size 2 x DATA, holds the impulse response data in the first half (up
to DATA) for each layer at a particular time slice, second half is zero padded, later
holds the complex coefficients of the FFT for printing to the output files, although
this is a structure of real variables it is used in this program as a complex structure.
A consecutive pair of floats in this array represents a complex number, the first
number of the pair (the even index) represents the real part and the second (the odd
index) is the imaginary part. Cdat is initialized here in slicedo.

Local variables:
timex - double, value of time for each time slice.

n - integer, counts the time slices.
o - integer, counts through initialization of cdat, reused to count through layers in
determining impulse response for a time slice.

front - pointer to a float, points to the first position of the dynamic block of floats, this is
the location of the block.

starter - pointer to a float, points to the next starting place of the dynamic block, the place
where the values for the impulse response for the next layer start.

nextest - pointer to float, points to the next starting place, is returned by rvgexp by reference.

64

Functions called by slicedo:

rvgexp - pointer to a float, creates and updates the random number array that has
exponential autocorrelation in time. Slicedo passes n, lambda, and starter-. Rgvexp
returns a pointer to float, the next starting place in the dynamic array for subsequent
layers. Rgvexp is in the file LEW3.CPP.

malloc - library function that allocates dynamic memory for the large random number arrays,
needs STDLIB.H.

printf - prints a file, needs STDIO.H.

exit - library termination function, needs STDLIB.H.

free - library function that unallocates dynamic memory, needs STDLIB.H.

outit - prints the coefficients of the FFT to file, slicedo passes the complex array of
coefficients, cdat, and the name of the output file, datout2. Outit is in the file
LEW2.CPP.

imp - type void, creates the superimposed impulse response layer by layer for each time
slice. Slicedo passes the data array cdat, cds, pds, starter, timex, and n. Imp is in
the file LEW4.CPP.

little_four - type void, computes the FFT on the impulse response. Slicedo passes cdat,
DATA (aglobal constant), and a +1 (indicates the direction of the F FT). Little_four
returns the data array, cdat, which now contains the complex Fourier coefficients.
Little_four is in the file LEW4.CPP.

65

void slicedo(struct compute cds[1], struct ray _path pdsqMAXLAYERS], STRING datout2)
{

/* Function prototypes */

float * rvgexp(int, double, float *);

extern void little_four(float[], int, int);

extern void outit(float[], STRING);

extern void imp(float[], ray_path[], compute[], float *, double, int);

/* Variables */
int n, 0;

float *front, *starter, *nextest;
double timex;

/* Code */
if ((front = (float*) malloc(cds[0].1ayers * DATA * sizeof(float))) == NULL)
{
printf("\n Error in function slicedo!");
printf("\n Not enough memory to allocate!");
printf("\n Terminating program!");
exit(0);
}
for (n = 0; n < cds[0].slices; n++)
{

for (0 =0; 0 <2 * DATA; ot++)
cdat[o] = 0.0;

/% Provides initialization for each slice and 0-padding */
timex = n * cds[0].delta_t;
for (0 = 0; o < cds[0].layers; 0++)
if (0==0)
starter = front;
else

starter = nextest;

nextest = rvgexp(n, pds[o].lambda, starter);

66

imp(cdat, pds, cds, starter, timex, 0);
} /* End of layers loop */
/* fast fourier xform */
little_four(cdat - 1, DATA, 1);
outit(cdat, datout2);
} /* End of slices loop */

free(front);
return;

} /* End of slicedo */

67

7.4.7. Function pointer to float rvgexp
Description:

Rvgexp is called by slicedo. This function initializes and updates a dynamically allocated
random floating point array that represents a complex array, which has exponential
autocorrelation from time slice to time slice, see (19) in Section 3. The memory block for
the array is initialized and freed in slicedo. The array is just large enough for the required
data points in the impulse response function, imp, for each time slice. The array is updated
for the next time slice with the current value for each float in the array used to compute the
next value at that position. The autocorrelation quality is in the time direction, not in the
delay direction. Rvgexp is located in file LEW3.CPP.

Parameters passed to rvgexp:

slice - integer, the current time slice.

lambduh - double, corresponds to lambda in slicedo, the exponential autocorrelation factor.

start - pointer to array of floats, points to the beginning of the dynamic block containing the
array.

Local variables:

normall - double, variable from a normally distributed random number stream with 0 mean
and variance equal to one. The notation N(0,1) is usually used for such a
distribution.

normal?2 - double, variable from an N(0,1) stream independent of normall. These two
N(0,1) distributions (normall and normal2) are said to be independent and
identically distributed (IID).

mult - double, used to hold computed factor 1 - A to avoid recomputing.

p - integer, used to count through creation of array.

current - pointer to a float, points to the current position of the dynamic block. Used to run
through the array.

Variable returned to slicedo:

current - pointer to float, points to the next position in the dynamically allocated array.

68

Function called by rvgexp:

get_2i_normals - produces two independent normal random variates. Nothing is passed by rvgexp,

but two IID N(0,1) variates are returned by reference. Get_2i_normals is in the file
LEW3.CPP.

69

float * rvgexp(int slice, double lambduh, float *start)

{

/* Function prototype */

void get_2i_normals(double *, double *);

/* Variables */

int p;
float *current;

double normall, normal2, mult, squared;

/* Code */

current = start;

mult = 1 - lambduh;

if (slice == 0)

for (p=0; p <DATA; p +=2)

get 2i_normals(&normall, &normal2);
*current = normall * mult;

current++;

*current = normal2 * mult;

current++;

for (p = 0; p<DATA; p +=2)

{
{
}
}
else
{
{
}
}

return (current);

} /* End of rvgexp */

get 2i_normals(&normall, &normal2);

*current = normall + lambduh * (*current - normall);
current++;

*current = normal2 + lambduh *(*current - normal2);
current++;

70

7.4.8. Function void get_2i_normals
Description:

This function is an improvement of the Box-Muller algorithm that produces two independent
standard normal variates. The algorithm is called the polar method and is an
acceptance/rejection method given in Law and Kelton [10, pp. 490-492] with further
reference to Marsaglia and Bray [23]. Atkinson and Pearce [24], and Ahrens and Dieter [25]
reporta 9 - 31% increase in speed over the standard Box-Muller method, see Box and Muller
[26]. The algorithm requires two independent uniform pseudorandom number streams. To
ensure this independence, two different random number generators are used. There are faster
algorithms, see, for example, Kinderman and Ramage [27], but the polar method produces
a pair of independent variates as required by the modulation function (19). Get_2i_normals
is in file LEW3.CPP.

Parameters returned to rvgexp:

normyl - double, N(0,1) distributed random variate passed back by reference.
normy2 - double, N(0,1) distributed random variate passed back by reference.

Local variables:

vl - double.
v2 - double.
w - double.
y - double.

Functions called by get_2i_normals:

ranl - Wichmann-Hill composite uniform random number generator, returns a double on
the interval (0,1). Ranl is located in file LEW3.CPP.

ran2 - L'Ecuyer's composite uniform random number generator, returns a double on the
interval (0,1). Ran2 is located in file LEW3.CPP.

sqrt - returns the square root of a non-negative real number, must include MATH.H.

log - returns the natural logarithm of a positive real number, must include MATH.H.

71

void get_2i_normals(double *normy1, double *normy?2)
/* The polar method improvement of the Box-Muller method of producing two
* independent N(0,1) variates.
* Note: Two random number generators are used to ensure that the two
T required random number streams are independent. */

/* Function prototypes */

double ranl1();
double ran2();

/* Variables */
double v1, v2, w, y;

/* Code */

vl =2.0 * ranl() - 1.0;
v2=2.0 *ran2() - 1.0;
w=vl*vl +v2*v2;

}

while (w > 1.0);

y = sqrt(-2.0 * log(w) / w);

*normyl =vl *y;
*normy2 =v2 * y;

return;

} /* End of get_2i_normals */

72

7.4.9. Function double ranl

Description:

Ranl is called by get_2i_normals. This function is an implementation of the Wichmann-
Hill uniform random number generator. It requires three integer seeds. The random number
generator is a composite of the three generators

U,., = 171U, (mod 30,269) ,
Vi = 172V, (mod 30,307) , and (30)
W, = 170 W,(mod 30,323) ,

given in Jeruchim, Balaban, and Shanmugan [28, pp 273-275] with further reference to
Coates, Janacek, and Lever [29], and Wichmann and Hill [30]. The period of the composite
random stream is of the order 10", The function returns a double on the interval (0,1). The
seeds are global variables and are initialized in comp_arrays. The seeds are updated with
each call to ranl. Ranl is located in file LEW3.CPP.

Global variables used:
seed] - integer, U in (30) above.
seed? - integer, V in (30) above.
seed3 - integer, W in (30) above.

Variable returned to get_2i_normals:

Returns the fractional part of the sum of U, V, and W divided by 30,269, 30,307, and 30,323,
respectively.

Functions called by ranl:

fmod - returns the fractional remainder of one double type divided by another. Need to
include MATH.H.

73

double ranl()

/* An implementation of the Wichmann-Hill composite algorithm

* Note: seedl, seed2, and seed3 are global variables initialized
: globally and retain value with each call */
{
/* Code */

seedl = (171 * seed1) % 30269;
seed2 = (172 * seed2) % 30307;
seed3 = (170 * seed3) % 30323;

return(fmod((double)seed1 / 30269.0 + (double)seed2 / 30307.0 +
(double)seed3 / 30323.0, 1.0));

} /* End of ranl */

74

7.4.10. Function double ran2
Description:

This function is an implementation of L'Ecuyer's composite uniform random number
generator. Ran2 is located in LEW3.CPP. It requires two long integer seeds. The random
number generator is a composite of the two generators

U, = 40,014 U, (mod 2,147,483,563) and

Vip = 40,692 V, (mod 2,147,483,399) , -

i+l

that, in turn, are inputs to the generator

Wi = U, +V, (mod2,147,483,563) . (32)

i+l i

The algorithm is given in Brately, Fox, and Schrage, [21, pp. 204, 332] with further reference
to L'Ecuyer [31]. The period is of the order 10'®. The seeds are global variables and are
initialized in comp_arrays. The function returns a double on (0,1). The seeds are updated
with each call.

Global variables used:

seed4 - long integer, Uin (31) and (32) above.
seed5 - long integer, Vin (31) and (32) above.

Variable returned to get_2i_normals:
w/2,147,483,563 - the uniform random variate on the interval (0,1).
Local variables:

w - long integer - 7 in (32) above.
k - long integer - useful variable to avoid repeated divisions.

735

double ran2()
/* An implementation of L'Ecuyer's composite algorithm
* Note: seed4 and seed5 are global variables initialized globally and
» retain value with each call */
/* Variables */
long int w, k;
/* Code */

k = seed4 / 53668;
seed4 = 40014 * (seed4 - k * 53668) - e:®. 122115

if (seed4 < 0)
seed4 +=2147483563;

k = seed5 / 52774,
seedS = 40692 * (seedS - k * 52774) -k * 3791,

if (seed5 <0)
seeds +=2147483399;

w = seed5 - seed4;

if (w<=0)
w +=2147483562;

return((double)w * 4.656613057392¢-10);

} /* End of ran2 */

76

