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A METHOD OF BIVARIATE INTERPOLATION AND
SMOOTH SURFACE FITTING FOR VALUES GIVEN
AT IRREGULARLY DISTRIBUTED POINTS

Hiroshi Akima *

Abstract -— A method of bivariate interpolation and
smooth surface fitting is developed for z values given at points
irregularly distributed in the x-y plane. The interpolating func-
tion is a fifth-degree polynomial in x and y defined in each trian-
gular cell which has projections of three data points in the x-y
plane as its vertexes. Each polynomial is determined by the
given values of z and estimated values of partial derivatives at
the vertexes of the triangle. Procedures for dividing the x-y
plane into a number of triangles, for estimating partial deriva-
tives at each data point, and for determining the polynomial in
each triangle are described. A simple example of the application
of the proposed method is shown. User information and Fortran
listings are given on a computer subprogram package that imple-

ments the proposed method.

Key Words and Phrases -— Bivariate interpolation, interpolation,

partial derivative, polynomial, smooth surface fitting.

* The author is with the Institute for Telecommunication Sciences,
Office of Telecommunications, U.S. Department of Commerce,
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1, INTRODUCTION

In a previous study (Akima, 1974 a,b), we developed a method of
bivariate interpolation and smooth surface fitting. The method was de-
signed in such a way that the resulting surface would pass through all
the given data points. Adopting local procedures, it successfully sup-
pressed undulations in the resulting surface which are very likely to
appear in surfaces fitted by other methods. Like many other methods,
however, this method also has a serious drawback. Applicability is
restricted to cases where the values of the function are given at rec-
tangular grid points in a plane; i.e., the values of z = z(x,y) must be
given as Zij

F= 1, 25 s Ny This restriction prevents application to cases where

collection of data at rectangular grid points is impossible or otherwise

= z(xi,yj) in the x~-y plane, wherei=1, 2, ..., n, and

impractical.

The subject of the present study is bivariate interpolation and
smooth surface fitting in the general case where the values of the func-
tion are given at irregularly distributed points in a plane; i.e.,, the
case where the z values are given as z; = z(x.l,yi), wherei =1, 2, ...,
n. Despite potentially wide applicability of a method of bivariate inter-

polation and smooth surface fitting for irregularly distributed points,

studies for developing such a method have not been active in the past.

Two types of approaches are possible; one using a single global
function, and the other based on a collection of local functions. In the
former approach, the procedure ofter becomes too complicated to
manage as the number of given data points increases. Moreover, the
resulting surface from the former sometimes exhibits excessive un-
dulations. For these reasons, only the latter approach is considered

in the present study.



Bengtsson and Nordbeck (1964) suggested a method based on par-
titioning the x-y plane into a number of triangles (each triangle having
projections of three data points in the x-y plane as its vertexes) and on
fitting a plane to the surface in each triangle. Obviously, the resulting
surface is not smooth on the sides of the triangles although it is con-
tinuous. In addition, their suggestion for partitioning so that the sum
of the lengths of the sides of these triangles be minimized is too com-

plicated to implement.

Shepard (1968) suggested a method based on weighted averages
of the given z values. The basic weighting function is the square of the
reciprocal of the distance between the projection of each data point and
that of the point at which interpolation is to be performed. The actual
weighting function is an improvement of this basic weighting function in
that the actual function corresponding to a distant data point vanishes.
Through this improvement the originally global procedures in this
method became local. This method has several desirable properties.
It takes into account the "shadowing' of the influence of a data point by
a nearer one in the same direction, It yields reasonable slopes at the
given data points. However, it fails to produce a plane when all the
given data points lie in a slanted plane; this property is considered to

be a serious drawback.

In conjunction with variational problems containing second-order
derivatives, Zlamal (1968) discussed an approximation procedure using
fifth-degree polynomials in x and y over triangular regions in the x-y
plane, To determine the coefficients of the polynomial for each tri-
angle, he uses, in addition to the z values and the first and second

partial derivatives (i.e., z , and zyy) at the three ver-

s Loy Z, s Z

texes of the triangle, three partial derivatives, each differentiated in

the direction normal to one of the three sides of the triangle at the



midpoint of the side in question. The theory was generalized to

(4m + 1)st-degree polynomials for functions m-~times continuously dif-
ferentiable on a closed triangular domain by Zenisek (1970). Although
a comprehensive interpolation method is not suggested in their papers,
their papers were instrumental in stimulating portions of the ideas

developed here.

In the present study, we develop and propose a method of bivari-
ate interpolation and smooth surface fitting that is applicable to z
values giveu at irregularly distributed points in the x-y plane. As in
the method for rectangular grid points developed in the previous study
(Akima, 1974 a, b), the interpolating function used in the method pro-
posed in the present study is also a smooth function; i.e., the inter-
polating function and its first-order partial derivatives are continuous.
The proposed method is also based on local procedures. The surface
resulting from the proposed method will pass through all the given

data points.

In this report, the proposed method is outlined in section 2,
with some mathematical details in Appendix A. A simple example
that illustrates the application of the proposed method is shown in
section 3. Some pertinent remarks are addressed in section 4. In
Appendix B, user information and Fortran listings are given on the
IDBVIP/IDSFFT subprogram package that implements the proposed
method.



2. DESCRIPTION OF THE METHOD

In this method the x-y plane is divided into a number of triangu-
lar cells; each having proj'ections of three data points in the plane as
its vertexes, and a bivariate fifth-degree polynomial in x and y is ap-

plied to each triangular cell.

For a unique partitioning of the plane, the x-y plane is divided
into triangles by the following steps. First, determine the nearest
pair of data points and draw a line segment between the points. Next,
find the nearest pair of data points among the remaining pairs and draw
a line segment between these points if the line segment to be drawn
does not cross any other line segment already drawn. Repeat the

second step until all possible pairs are exhausted.

The z value in a triangle is interpolated with a bivariate fifth-
degree polynomial in x and y, i.e.,

5 5-j s
- J
z(x,y) = Z;qjkx vy . (1)
j=0 k=
The coefficients of the polynomial are determined by the given z values
at the three vertexes of the triangle and the estimated values of partial
z

derivatives Zys , and Zyy at the vertexes, together with the

Zyr Zxx? “xy
impdsed condition that the partial derivative of z by the variable meas-
ured in the direction perpendicular to each side of the triangle be a
polynomial of degree three, at most, in the variable measured along
the side. The procedure for interpolation in a triangle including de-
termination of the coefficients of the polynomial is described in detail
in Appendix A. Smoothness of the interpolated values and therefore

smoothness of the resulting surface along each side of the triangle is

proved also in the Appendix.



Procedures for estimating the five partial derivatives locally at
each data point are not unique. The derivatives could be determined
as partial derivatives of a second-degree polynomial in x and y that
coincides with the given z values at six data points consisting of five
data points the projections of which are nearest to the projectibn of the
data point in question and the data point itself. This procedure is a
bivariate extension of the one used in the univariate osculatory inter-
polation (Ackland, 1915). Adoption of this procedure has an advantage
that, when z is a second-degree polynomial in x and y, the method
yields exact results. As will be shown in section 3, however, this

procedure sometimes yields very unreasonable results.

We will take a different approach and estimate the partial deriv-
atives in two steps; i.e., the first-order derivatives in the first step
and the second-order derivatives in the second step. To estimate the

first-order partial derivatives at data point PO we use several addi-

tional data points P, (1= 1, 2, e nn) the projections of which are

nearest to the projection of P, selected from all data points other than

0
PO. We take two data points P; and PJ. out of the n points and con-
struct the vector product of P P. and P Pj; i.e., a vector that is

0 1 0
Pi and P

perpendicular to both P Pj with the right-hand rule and has

0 0
a magnitude equal to the area of the parallelogram formed by POpi

and POPj . We take P; and Pj in such a way that the resulting vector
product always points upward (i.e., the z component of the vector

product is always positive). We construct vector products for all

possible combinations of P P.1 and P Pj (i#j) and take a vector sum

0 0
of all the vector products thus constructed. Then, we assume that the
first-order partial derivatives z_ and z}]r at PO are estimated as those
of a plane that is normal to the resultant vector sum thus composed.

Note that, when n, = 2, the estimated Zs and ZY are equal to the partial



derivatives of a plane that passes through P Pl, and P Also note

0’ 2

that, when n = 3 and the projection of P, in the x-y plane lies inside

0

the triangle formed by the projections of Pl, P_, and P_, the esti-

22 3¢
mated z, and zy are equal to the partial derivatives of a plane that

passes through Pl’ PZ’ and P3.

In the second step, we apply the procedﬁre of "partial differen~
tiation'" described in the preceding paragraph to the estimated Zy
values at B (i=0, 1, 2, ..., n,) and obtain estimates of z,, = (Z)
We repeat the same procedure for the esti-

and z = (ZX)Y at P

y 0°

mated z_ values and obtain estimates of z = (= nd = (z .
y amm e st xy = (oylg and 2oy = (z0)y

We adopt a simple arithmetic mean of two ny values thus estimated

s timate f thbP
as our estimate for.z,, at P,

The selection of n_ is again not unique. Obviously, n  cannot
be less than 2. Also, it must be less than the total number of data
points. Other than those, there seems to exist no theory that dic-
tates a definite value for n_ . The best we can say is that, bésed on
the example to be shown in section 3 and on some others, we recom-

mend a number between 3 and 5 (inclusive) for n .



3. APPLICATIONS

Using a simple example taken from the previous study (Akima,
1974 a,b), we illustrate the application of the proposed method. We
take a quarter of the surface shown in the example in the previous
study and sample 50 data points from the surface randomly. The
coordinate values of the sampled data points are shown in table 1.
Knowing from the physical nature of the phenomenon that z(x,y) is a
single-valued smooth function of x and y, we try to interpolate the 2z

values and to fit a smooth surface to the given data points.

Figure 1 depicts contour maps of the surfaces resulting from the
30 data points with asterisks in table 1, while figure 2, from all the 50
data points in the table. In these contour maps, projections of the
data points are marked with encircled points. In each figure, the ori-
ginal surface from which the data points were sampled is shown in (a).
The surface fitted with piecewise planes (i.e., the surface consisting
of a number of pieces of planes, each applicable to one triangle) is
shown in (b). Of course, such a surface is continuous but not smooth.
The surface fitted by the method that estimates the partial derivatives
with a second-degree polynomial is shown in (c). The surfaces fitted
by the proposed method using three, four, and five additional data
points for estimation of partial derivatives at each data point are shown
in (d), (e), and (f), respectively. In drawing these contour maps, the
z values were interpolated by their respective methods at the nodes of
a grid consisting of 100 by 80 squares; in each square, the z values

were interpolated linearly.

Figures 1l and 2 indicate that the proposed method yields reason-
able results although these results might not necessarily be satisfac-

tory for some applications. In these figures very little difference is



Table 1,

An example set of data points.

(Thirty points with asterisks are used in figure 1,
while all 50 points are used in figure 2.)

[

*i Vi = 5 Yi 1
1 % 11,16 1,24 22.15 26 3.22 16.78 39.93
2 = 24,20 16.23 2.83 27 * 0,00 0,00 58,20
3. 12,85 3,06 22.11 28 * 9,66 20,00 4.73
4 * 19,85 10,72 7.97 29 2;56 3.02 50.55
5 % 10.35 4,11 22,33 30 * 5,22 14,66 40,36
6 24,67 2.40 10,25 31 % 11,77 10.47 13,62
7 % 19,72 1,39 16,83 32 17.25 19.57 6.43
8 15. 91 7.74 15,30 33 ® 15,10 17,19 12.57
9 % 0,00 20.00 34.60 34 * 25,00 3.87 8.74
10 * 20,87 20.00 5.74 35 42,13 20,79 13,71
11 6,71 6.26 30.97 36 * 25,00 0.00 12,00
12 3.45 12,78 41,24 37 22.33 4.2l 10,75
13 % 19,99 4,62 14,72 38 12,52 8,53 15.74
14 14,26 17.87 10.74 39 % 14,59 8.71 14,81
15 * 10,28 15,16 21,59 40 % 15,20 0,00 21,60
16 * 4,51 20,00 15,61 41 7.54 10,69- 19.31
17 17.43 3.46 18.60 42 * 5,23 10,72 26.50
18 22.80 12,39 5,47 43 17.32 13,78 12,11
19 * 0,00 4.48 61.77 44 * 2,14 15,03 53.10
20 7:58  1.98 29.8% 45 * 0,51 8,37 49.43
21 * 16,70 19.65 6.31 46  22.69 19.63  3.25
22 * 6.08 4.58 35,74 47 * 25,00 20,00 0,60
23 1.99 5.60 51,81 48 5.47 17,13 28,63
24 * 25,00 11,87  4.40 49 * 21,67 14.36 5.52
25 * 14,90 3,12 21,70 50 %= 3,31 0,13 44.08



(c) 2nd -degree-polynomial Method (d) Proposed Method (3 points)

(e) Proposed Method (4 points) (f) Proposed Method (5 points)

Figure 1. Contour maps for the surfaces fitted to 30 data points
given with asterisks in table 1.
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(e) Proposed Method (4 points) (f) Proposed Method (5 points)

Figure 2. Contour maps for the surfaces fitted to 50 data points
given in table 1.
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exhibited in the resulting surfaces due to the difference in the number
of data points used for the estimation of partial derivatives in the pro-
posed method. Figures 1(c) and 2(c) demonstrate a peculiar idiosyn-
cracy of the method based on second-degree polynomials; more data

points yield a much worse result in this example.

Decision as to whether or not the proposed method is applicable
to a particular problem rests on each prospective user of the method.
The examples given here are expected to aid one in making such a
decision. Comparison of (d), (e), or (f) fitted by the proposed method
with (a) the original surface or (b) the piecewise-plane surface in each
figure should be helpftil for such a decision. Also, comparison of
figures 1 and 2 gives one some idea on the dependence of the resulting
surfaces upon the total number of data points and the complexity of

original surfaces.
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4. CONCLUDING REMARKS

We have described a method of bivariate interpolation and smooth

surface fitting that is applicable when z values are given at points irre-

gularly distributed in an x-y plane. For proper application of the

method, the following remarks seem pertinent:

(1)

(ii)

(iii)

(iv)

(v)

(vi)

The method does not smooth the data. In other words, the
resulting surface passes through all the given points if the
method is applied to smooth surface fitting. Therefore, the
method is applicable only when the precise z values are
given or when the errors are negligible.

As is true for any method of interpolation, the accuracy of
interpolation cannot be guaranteed, unless the method in
question ha;s been checked in advance against precise values
or a functional form.

The result of the method is invariant under a rotation of the
x-y coordinate system.

The method is linear. In other words, if z(xi,yi) .

a z'(xi,yi) + b z"(xi,yi) for all i, the interpolated values
satisfy z(x,y) = az'(x,y) + bz'(x,y), where a and b are
arbitrary real constants.

The method gives exact results when z(x,y) represents a

planes i e, Z2{x,yv) = a .-+ a.. x4 a3 where a

00 " 210 017

and a;; are arbitrary real constants.

The method requires only straightforward procedures. No

00’ 210’

problem concerning computational stability or convergence

exists in the application of the method.

A computer subprogram package that implements the proposed

method is described in Appendix B.
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