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PREFACE

This Report is the second (i.e. Part II) in a series of ongoing studies
[MiddTeton, 1974] of the general electromagnetic (EM) interference environ-
ment arising from man-made and natural EM noise sources, and is also part
of the continuing analytical and experimental effort whose general aims
are [Spaulding and Middleton, 1975]:

(1). to provide quantitative, statistical descriptions of man-made
and natural electromagnetic interference (as in this series);

(2). to indicate and to guide experiment, not only to obtain per-
tinent data for urban and other EM environments, but also to
generate standard procedures and techniques for assessing such
environments;

(3). to determine and predict system performance in these general
electromagnetic milieux, and to obtain and evaluate optimal
system structures therein, for

(a). the general purposes of spectrum management;

(b). the establishment of appropriate data bases thereto; and

(c). the analysis and evaluation of large-scale telecommunica-
tion systems.

With the aid of (1) and (2) one can predict the interference characteristics
of selected regions of the electromagnetic spectrum, and with the results of
(3), rational criteria of performance can be developed to predict the suc-
cessful or unsuccessful operation of telecommunication 1inks and systems in
various classes of interference. Thus, the combination of the results of
(1)-(3) provide specific, quantitative procedures for spectral management,
and a reliable technical base for the choice and implementation of policy
decisions thereto.

The man-made EM environment, and most natural EM noise sources as well,
are basically "impulsive", in the sense that the emitted waveforms have a
highly structured character, with significant probabilities of large
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interference levels. This is noticeably different from the usual normal
(gaussian) noise processes inherent in transmitting and receiving elements.
This highly structured character of the interference can drastically de-
grade performance of conventional systems, which are optimized, i.e.
designed to operate most effectively, against the customarily assumed
normal background noise processes. The present Report is devoted to the
problems of (1), (2) above, namely, to provide adequate statistical physical
models, verified by experiment, of these general "impulsive", highly non-
'gaussian interference processes, which constitute a principal corpus of the
interference environment, and which are required in the successful pursuit
~of (3), as well. The principal new results here are:

(i). Canonical analytical models, experimentally corroberated, for the
first-order statistics of the envelope and phase of Class A and
Class B noise*;

(ii). Procedures for estimating the (canonical) model parameters,
calculation of moments, APD's (= exceedance probabilities,
P1&:>£b), etc.) and probability density functions (pdf's), and
a variety of other pertinent statistics; [see the Table of
Contents].

Finally, we emphasize, again, that it is the quantitative interplay
between the experimentally established, analytical model-building for the
electromagnetic environment, and the evaluation of system performance
therein, which provides essential tools for prediction and performance, for
the development of adequate, appropriate data bases, procedures for effec-
tive standardizations, and spectrum assessment, required for the effective
management of the spectral-use environment.

* Class A and Class B noise are distinguished, qualitatively, by having
input bandwidths which are respectively narrower and broader than that
of the (Iinear) front-end stages of the typical (narrow-band) receiver -
in use. More precise definitions are developed in the text following.
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