This 1imiting form of (2.36) is the expression which we shall exploit in
the remainder of the study.
The quantity A_ appearing in (2.38) is

A_(=y_): impulsive index (of the present analysis)* (2.39)

=]

As we have already noted in our earlier studies [Middleton, 1972b,1973,1974],
the Impulsive Index is a measure of the temporal "overlap" or "density", at
any instant, of the superposed interference waveforms at the receiver's IF
output. It is one of the key parameters of the interference model, in

that it critically influences the character of the p.d.'s and P.D.'s of the
interference, as observed at the output of the initial (linear) stages of a
typical narrow-band receiver. With small values of A_ the statistics of

the resultant output waveform are dominated by the overlapping of compara-
tively few, deterministic waﬁefcrms, of different levels and shapes, so that
the interference has an "impulsive', somewhat structured appearance. For
increasingly large values of A_ the resultant approaches a normal, or
gaussian process, as one would expect from the Central Limit Theorem
[Middleton, 1960, Sec. 7.7], as we shall see in more detail later [cf.

‘Sec. 2.4].

2.3 Interference Classes A, B, and C: The R6le of Input and Receiver
Bandwidths:

We are now ready to examine the basic form, (2.38), of fm(r) [=10g EI(ir)].
The role of the duration T5 of a typical emission (as perceived at the output
of the ARI (= aperture x RF x IF) stages of the narrow-band receiver) is
critical in determining the form of fm(r).

Let us consider first the important special case when the emission
duration T ijs fixed. From Eqgs. (2.63a,b), (2.70), (2.72a) of Middleton
[1960] we may write for the envelope B sef. B2 l0)s (2:30), (2318 (2.88):

AT( AA T vTT cf. (2.27¢),(2.35)) was designated "impulsive index", A,
in the author s earlier treatments [Middleton, 1972b,1973,1974].
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Here hys v, are real, and hARI(t) = Zho(t)ARI_cos [mot—yo(t)] is the
weighting function of the composite ARI filter. The (narrow-band).system
function Yo is obtained from the fourier transform Yo—ARI = QThOeHTYO}
and u [=wc-m0] measures the amount of "detuning" of the finput signal
(at w.» shifted to the IF region) from the (trial) central frequency (fO]
of the ARI stage.

With T fixed, we have in general the situation shown in Fig. (2.1)II
for the envelope of the narrow-band output of the ARI filter, produced
by a typical interference emission of finite duration, Tin‘ The output
envelope (muo(z)) produced by a typical input interference envelope [shown as
a rectangular pulse in Fig.(2.1)II], always consists of two parts: a part
which we shall call Class A with normalized envelope uOA(z), which is

produced by the input emission (nE ), which is "on" during the interval

0<z 5-Tin (= TsA = ?SA); and a pgrlnwe shall term Class B, with normalized
envelope uoB(z—]) (#uya(z))s which represents the transient decay of the
output of the ARI filter, following the termination of the input emission
[mEo(z)in]. The sum of Class A and Class B envelopes is called Class C,

e.g. uoc(z) = uOA(z) + u08(2-1), [cf. Fig. (2.1)II, where, of course, up=0s
zZ < 1, Ugp = 0; 2 <0, z>1 1in our definition. Thus, all receiver outputs
are typically Class C, with variable amounts of Class A and Class B,
depending on the duration of the typical input interference waveform
vis-a-vis the response time of the ARI filter at the front-end of_our
receiver. Equivalentiy, the relative extents of the Class A and B components

depend generally on the ratio of the bandwidth of the input (afin) to the
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bandwidth afARI of the 1inear "front-end" of the receiver. With ﬂfin >> AfARI’
for example, the usual case of very wide band interference (automobile igni-
tion, fluorescent lights, atmospheric noise), T o is very small vis-a-vis
TSB: the build-up time (—T ) is very bTTEf for Class A, while the duration
of Class B depends on the decay time (v Af ARI) of the ARI stage, which is
much Tonger than T in. On the other hand, with narrowband inputs of long
duration [AfARI >> af ] the transient at the termination of the typical
input is of neg]1g1b1e effect vis-a-vis the Class A component. For com-
parable bandwidths (&fARI N af1n) both Class A and Class B make comparable
contributions, e.g. neither can be ignored vis-a-vis the other, so that we
have then generally the Class C waveform in the receiver. [In all cases
IEUOA,B(t)kdt, k > 0, are finite.] )

From (2.38) we see accordingly that I_(r) can now be written as the
sum of the Class A and Class B components, viz: (T, = TsA fixed for the

in
moment) :

% . z=1 & - ® -
I.(r) vW{T f <J (rB )—T> dz + T J- <] (rB ')-1> dz}
sA 0 o' oA E"l sB 0 o' 0B w,’&

= T (r)y + 1(r)g = I(r)

(2.41)
(2.47a)
on changing variable z' + z in uoB(z'-1) -+ UOB(Z)’ e.q.
z B |
Boa,B = "o®o )|QRT(&"°O)19(&)(u0A(2).uoB(Z)), (2.41b)

from (2.40). In terms of the characteristic function (2.19) we see at once
that

Fy(ir) = Fplir)yoFy(in)g = Filir)c | (2.42)

with the important result that Class C interference consists of the
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independent sum of Class A and Class B components, as defined above. Note,
also, that the 1imiting voltages eéi) # eég), generally, as the recejver
responds to "narrow-band" inputs (A) differently from "broad-band" (B).
Specifically, when we can ignore the Class B component [TsB(<w) << fsA’
e.g. sufficiently narrow-band input vis-a-vis the receiver*], we have here,

from (2.42), (2.41), in (2.19),

1 R
exp {Aw,A JC-I <J0(rBoA)'1>e. xdz} (2.43a)

Fyir)e + ﬁ](ir)A

Ao e
= e ‘exp Am’A\Jo(r‘BOA) Z,é’,gl F) (2.43b)
(Tea™) A p > A, 5(=5.Tg), (2.43b)

where the averages <'>z A'e. are explicitly
f]d f - owp(g))e(2) [ 1 dude" | —
= z g Adg' . .43c
< >z,g_\_,g,' 0 A8 A ST

Similarly, when the Class A component is ignorable [TSA = Teqn =<l

e.g. very broad-band inputs vis-a-vis the receiver's ARI stages*] we get

f—l-[(ir)C > E](ir)B = exp{Am’B fZJO(rﬁoB)—1>l e'dz} ; (2.44)
0 e

Am,B>>Am,A’

with the averages given by (2.43c), (without the average over z). Note
that when r + o, Fren s exp(-A_ A)’ while Fi_p ¢ = 0. This means, as we
shall see in detail in Section 3.1 later, that for Class A interference

* The precise conditions for effectively Class A or Class B interference
alone are developed in Sec. 7 later.
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there will be a non-zero probability of "gaps-in-time", i.e. finite (nonzefo)
intervals in the receiver's output when there is no waveform present, while
for Class B and C interference there is always a nonvanishing waveform

level and hence no "gaps-in-time". [0f course, physically there is always
some inherent system noise, which makes it strictly impossible to have a
true "gaps-in-time" situation.]

We remark, again, that Class A [and consequently Class C] interference
models are new. The earlier "classical" analyses [Rice (1945); Middleton
(1953); Furutsu and Ishida (1960); Giordano (1970; Giordano and Haber
(1972)], for example, all dealt with Class B interference, and for the most
part in much less general terms and by different modes of approximation.*

2.3.1 Some Extensions:
Usually, there is an accompanying gaussian background noise, which may

arise in a number of ways:

(" (i). as system noise in the receiver;
(i1). as external interference, which is the resultant of

< many independent sources, none of which is exceptionally
dominant with respect to the others (so that the Central
Limit Theorem applies);

\_ (iii). as a mixture of receiver noise and (independent) gaussian
external interference.
(2.45)

From (2.12b) and the gaussian counterpart of (2.7), viz.

A -(52+n2)cg/2 '
F1(‘5"“)x ,X_:gauss = : (2.46)
o~
we readily find that
2.2
: -gar /2
N G 2 2 2z
FT(1r’¢)gauss = e = F1(1r)G; og = Ogtop s (2.47)

* Technically, Giordano [1970] and Haber [1972] express their results in a
Class A format, whenever sample size (T) is finite, cf. remarks in
Section (5.3) following.
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cf. (2.13), where UE, ag are respectively the receiver and external noise
variances.
Applying (2.47) to (2.15), (2.17) shows directly that*

24,2

22
Wy (E)n = Ef rJ (rE)e S ode = =% , E>0 (2.48a)
1 G g © 2 =
°G
so that
-E2/205 -E2/20%
D, (E,)g = 1-e s PI{E>E) = e , (E;>0) . (2.48p)

As expected, the p.d. and P.D. here are rayleigh.
Our results of Sec. 2.3 above are readily extended to include the

more general situation of interference inputs of random duration, e.g.
Tin = Tea (# TSA) generally. Only the Class A portion of I_(r), (2.41),
is modified. Letting z, = Tin/?sA’ we have at once, for the desired

extension of (2.43),
F(1r), = e oA <z° 5 ) (2.49)
Fi(ir), =e ™ exp{f J_(rB dz . 2.49
1 A 0 0 oA P lagt
Combining (2.49) and (2.44) with (2.47) gives us the desired charac-
teristic functions with which we shall be concerned here, and subsequently,
in this report:

Class A Interference and Gauss:

. -cérzxz-Am : S
F1(1r)A+G =ka exp{%w,A<iJ; JO(rBoA)d%>z

Class B Interference and Gauss:
. —cér2/2 =
FT('ir')B+G = @ exp{lm’B '[}Z[Jo(rlaog)-1]>&,g.dz} . (2.51)

* Use Eq. (A.1-49) [Middleton (1960)], for examp1e.'
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[We shall reserve the analysis for Class C interference and gauss noise, e.g.
based here on

z
-~ O s
Fr(ir)ceg = exp [-agrzxmmqj [aotrsoA)-1sz>

Zys298'

+Am’BJ:]<[JO(rI§08)—1]>X a7 | (2.52)

to a subsequent Report.]

2.4 Large Impulsive Indexes:

When the impulsive index, A_, is large, we expect asymptotica11y'gaussian
statistics for the instantaneous amplitude X [Secs.3,p.26; 5,p. 39, Middleton,
19747, and rayleigh statistics here, cf. (2.48), for the instantaneous
envelope E. This latter is easily shown by developing fm(r), (2.41) or
(2.52), as a power series in r about r = 0, in the usual way.* Thus, the
c.f. (2.52) for our general Class C case, with gaussian background noise

in addition, becomes

r2 2 -exp E (-1}nr2n (A- Ab(A)+A b(B)) :

F (ir) = exp{- 5— ¢
1 C+G : o ,A72 w0,
. Z "0 beo 22n(n.)2 n B™2n (2.55]
where
2 0 e e -z [T/k2
oq = (optop)+v T I BS,dz +v T f <B dz, (2.53a)
0 R "E sA 0 oA :>Zo’&’2' sB 0 oB &=E' |
z, .
h{A) -f 52Ny, Y GO f <§2n dz . (2.53b)
2n 0 oA s 2n 0 oB x.0"
O’w,w PV (2.53C)

* Provided we consider for the moment finite observation intervals T(<=),
i.e. finite upper limits on the z-integrals in (2.51), (2.52), so that
these integrals are uniformly convergent, proper integrals, permitting
a series expansion of their ﬁntegran@s. Then, we ultimately have
E](ir)c+6: }iﬂ F1(ir|T)C+G, where (%lﬂ) is invoked for each term of the
resulting expansions. See the comments in B, Sec. (5.2) below.
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