Section 3.2-A.

An interesting feature of our results here, for Class A interference,
is that the c.f., and hence the p.d., and P.D., are not explicitly de-
pendent on the interference source distribution [for the usual Case I, II,

and not so common Case III source-receiver conditions, cf. Fig. (2.3)II].
Furthermore, these statistics are insensitive to the propagation Taw

(v 22T ) involved, which merely affects scale, through the average
<§§A <G /x7> The source distribution does appear, but in averaged
form and only in the impulsive index A_ A [cf. (2.35), (2.38), (2.39),

in conjunction with (2.27)]. Phys1ca11y, this is understandable, since

it is only the average number of emissions per second times the mean
duration of these finite emissions (in the receiver, cf. Fig. (2.1)II) to
which the receiver can respond. It has no way to distinguish where and in
what concentration, or by what propagation law, the sources may be acting
[for a given position of the receiver beam £2R, or for any position if

C?R is omnidirectional]. The only thing that counts here in determining
the (first-order) statistics of the received input is total input Tevel
and process "density', A

w A
later Sections, this insensitivity to source distribution and propagation

As we shall see in Section (2.7), and in

law is definitely not characteristic of Class B interference, and,- conse-
quently, Class C noise, to the extéent that its Class B component is
significant.

2.7 The C.F. for Class B Interference:
Here we use (2.67b) for the exponent (2.65). The result is a term
1ike (2.68), plus an additional term for x

<X < o, Wi A >A> iz:
0 <X > With A >3>0, viz

" o *0™8/ Mmax |
Im(r)B = -AN,B{ki - d{}; Jl(x)d%> .

w

~<f dZ_[(e ) s Vs, \.,(e $)d(e, ¢)f 6 /T J; (x)dx

o max
>~=(FG0)UYIXUY 32 '
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where we have used (2.66) and reversed the order of integration, according
to the régime of (iii), Sec. 2.5, and Fig.2.411) above. Note, in particular,
the order of the 1imits on the A-integration, which correspond té the vari-
ation in x, from X=X, to x+w, cf. Fig.(2.4)II again. [The average over z,

is unity, as none of the arguments contain zo;.a1so, gl = Ry> e etc., as
before.] The 1ntegra1s I¢, Ie,¢ over ¢ (or 6,¢), with A§1V’ become
explicitly from (2.62a,b)*

- _ (2-py ,u-2
g~ /s ( CZ) Max » Oswm<?
| , (2.80)
= = (3-uy ,p-3 '
Ia,¢ ﬂV/AV = ( C3) Mnax * 0<u<3
where specifita11y here
2 3
_ co L2=1 . = c 3-u
As = 85 227 Mmax (0 <w<2)s Ay =y 357 Mpax (0 <u<3),

(2.80a)

so that &g, 4 are respectively the integrals s csd¢, I oydeds in (2.79).
" With the above we readily find for (2.79) the (exact) relation

N = (%o N afc (" ¥
Iw(r‘)B = —Am’B {<j{; dz_j;J Jl(x)dx e|-x0I0dzL J1(x)dx/x >e‘} R
L -0 v

'(2.81)

with
x_ =16/ =rB (2.81a)

as before, and the new parameter

* For this Report we shall 1imit the allowed values of u as shown in
(2.80); extension to other values (u>2,3) will be considered in a sub-
sequent study, as is the analysis for a>2.
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e or 3y . (2.82)
Y lsurface Y lyol.

This parameter o« we call the spatial density-propagation parameter, since

it depends on the interacting spatial effects of source density and source
propagation law. :

The lower Timit on a« is established by the present conditﬁon, ; (-
upon the upper Tlimit on u (=2,0r 3), y > 0. Analytically, for the integral
over x in (2.81) to be convergent, we require that a > -1/2. There is,
however, no (finite) upper 1imit on o, so that we can write

-1/2 < a < @ . (2.82a)

For the purposes of the present Report we shall, however, further restrict o

to the range (0<a<2), which covers many of the practical cases encountered
in applications, at Teast down to quite small values of the exceedance pro-
babilities PTGE < Eb). In a later Report we shall develop the analysis in
detail for (a > 2). _

The first integral in (2.81) 1s'readi1y evaluated by expanding the

Bessel function, followed by termwise integration. We get

o ('])£<x§£+2>z,s'

2.83
2£+1(2£+2) ( )

11 =
2=0 2! (2+1)!12

For the seqond integration, over x in the second integral of (2.81), we
use a Barnes integral representative of J](x) [cf. Middleton, 1960, Eq.
(132100

wi-C 2s+]
. fij=s X ds
il -[m'i-c sy 2 & e <20, (2.84)
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so that

.. = xa " J](X) =1-¢ -S ds 2mi 25+1—Gd
o o] o s+ X X i h
X X ~wi-C P(s+2)2 X z,9'

0 0 w
(2.85a)

This becomes, on choosing ¢ = -5/4 (as a result of the condition a > -1/2)
and carrying out the x-integration

2s42-q |7 -x25TZ-o Re(2s+2-a) < 0, or
T | me (2.85b)
2s+2-a 2Sf2-u g a0 .
%o B Sl
The resulting integral I  is now explicitly
wimc =T (-5)xCS 2 s/ 2ni
f 25+1 » (2.85¢)
-¢  T(s+2)2 (2s+2-c)

which has a simple pole at s = (a-2)/2 (>-5/4), and at s=0,1,2,3,...
(0 <« <2). The residue at s = (a-2)/2 is -r(1-a/2)/2% 0 (14a/2), while
those of r-function are (—I)zfal at s=¢ (=0,1,2,..). The result is

. »r(1 -a/2) (X3 ) § (-1) <¥§£+i> (2.85d)
2% 11 (14a/2) 150 21(a+1) 22 (2042-0) |

The exponent fm of the c.f. for Class B interference thus becomes, on
combining I, (2.83), and I, (2.85d), in (2.81):

r(1-a/2){x3) , E (;1)£<3§2+2> [ . ]

I (r) = -A_ -
«,B ,B 20-]r(]+u{2) 2=0 Q!(£+1)!22£+1 (22+2)(22+2‘G)

(0<a<?2), (2.86)

with () = <'>z X <fw( dz)e., etc.

With the add1t1ve, accompanying -gaussian background, cf. Sec. (2.3:1),
we have at last the desired c.f.:
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S 2
FI(1r)B+G N exp{:b] A, r - (cé+b2aAw’B)r /2

. gz](-1)Rb(2£+2)aAm’Br2a+2:} ,(0 <a <2), (2.87)

which, 1ike (2.81), is also exact, so far. Here we have exp]iciny

Lozl Nyoy . rf1eer2 <(B/;,B)é>(>o) (2.872)

7 b']cf, = Za_II'(Ha/Z) 0,B/ "max 2&/2—]P(1+af2)

- _ (4-a <B B>

< boy = (2- ) o B> max ( ) 2 (2.87b)
(43+4-a) (8242
_ 4o+4-q B = N

b(2e+2)a = 2!(£+1§!(22+2—a)(21+2) 2gz+1 (>0); (B, 5 = Go,B’*Tax) :
: 2.87¢c

since =0 < a <2, and from (2.65) we write
o, (6 0) - < B)a> (%) (1Gy > <gs )" QYJF : (Z)Gdz (-0), ' a7

and forma]]y <§2£ 2> is given by (2.87d) on replacing « by 22+2, etc.

A. The Approximating C.F.'s for (0 < a < 2):

Unlike Class A interference [Sec. 2.6], where the c.f. is solely a
function of r2 [cf. (2.76)-(2.78)], and where a single "steepest-descent"
approximation [cf.(2.72)-(2.76)] provides a good fit for both large, small,
and intérmediate'va1ues of rz(and hence for EU,E), Class B noise requires
a pair of approximating c.f.'s, one of which will at least insure suitably
bounded behaviour of the exceedance probability F1 (E > E ) as E > @,
including the existence of all finite moments of the enveiope(EB)(0<B<m),
and the other of which will provide a satisfactory account of P1 for small

78



and intermediate values of E (>E0). It is the presence of the term
0(r*) in the (exponent of the) c.f. (2.87) for Class B interference, in
addition to the typical development in powers of r2 (analogous to that for
the Class A noise), which forces this double approximation for our canoni-
cal c:f:'s; and P.D."s, P1(E>Eo), pdf's, w1(E), here.

At this point we define the gaussian variance

2 2.

_ 2 2

hog = og * bzaAm B = bZaAh,B(1+UG/b2aAm,B) (2.88a)
. _
- §2(1+ré ), (2.88b)
with

(G) _ (G)_ 2,.(6) indep. gauss intensit

= < T8 = = = ‘y
28 bZaAm,B maB G/QZB Mimpulsive™ gauss Intensity (2.88c)

4-
= (5:30928, cf. Eq. (3.2a)ff.

where Q( )15 the "impulsive" contribution to the gaussian component arising
from the Class B noise alone, and where cé(—oé+0§) are the (independent)
inherently gaussian contributions from potential external (gaussian) sources
and from the receiver noise (essentially all arising in the initial Tinear
input stages), cf.(2.47). (Note that Qgg,rés)are also functions of a here.)
For the c.f. which is appropriate to the intermediate range of envelope
values, including the very small (E,E0+O), the controlling term in the

exponent of the (exact) c.f. (2.87) is the smallest power of r with negative

coefficient, e.g., ‘DIGAW,BrG here, so that this approximate form remains

a proper c.f., e.g. 113 ?1 =1, 112 ?]+O. The form of the associated pdf.
and P.D. for small and moderate values of E, E0 is governed principally by
the behaviour of the c.f. as r becomes large. Thus, as a first approxima-

tion which ignores any gaussian contributions, we have from (2.87)

-~ ~ "b-l Aw BT‘ )
F1(ir)é e &% : 0<a<?2. (2.89)
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However, practically there is always at least an observeable gaussian sys-
tem noise component, and as noted above, cf. (2.87), (2.88a), an additional
gaussian term (meaAm,B) contributed by the "impulsive" Class B noise, so
that the more realistic intermediate c.f. here is now

A . by A, gri-aeir?/2
FT(IF)(B+G)-I = @ » y 0= < 2}, (2.90)

where the subscript (-I) indicates the c.f. for the range (0 < EsEj 5-EB)
of envelope values. (The precise definition of EB will be given presently,
cf. Sec..3.2).

For values of E, E0 > EB we require a c.f. approximating the exact
relation (2.87) where the largest (r-dependent) contribution to the
exponent about r = 0 and in the finite (nonzero) neighborhood of r=0 is
the controlling term. For this we seek again a "steepest descent" form

for the exponent of (2.87), exclusive of the term in r%, which as we shall
see below is always here smaller than the former (for 0 < r 5_3) and thus
does not control the character of the c.f. at small r (and hence for large
E. Eo). Accordingly, as in the Class A cases, cf. Section 2.6 above, we
wish to represent the class B terms (exclusive of r®) in (2.87) by a series
of the form

2 2 ®
Au,B7P25", 8 7" Z (1" A Bb(2£+2)ar22+2 Silesd [HkLBRPZkJ ;
(2.91)

where the "steepest-descent" nature of the approximation is exhibited
not only by the exponential factor but by requiring the vanishing of the
BI -term in the right hand series, where the nearest "correction" term
(k=2) is O(r ) and quite ignorable vis- -a-vis unity. This condition and a
term by term comparison of (2.91) determine all the parameters A, a, B,
(k > 2), which are readily found to be
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A=A piac bzalz : (B1 = 0)
_ 2
BZ —”bﬂa-bza/B (2.92)
3
B & bL b4ub2u + bZa &
37 %60 " 2 ag > &tc
-ar2 4

Clearly, Am,Be“ar dominates -Am’Bb]ar“, A,.g® rt, etc., at and in the
neighborhood of r = 0, and this is the determining element for this approxi-
mation to the exact c.f. (2.87).

Accordingly, we have fina11y'f0r the c.f. appropriate at Teast to the
large values of E, Eo,'i.e. for the "rare events",

B 2 .
~ . -Am =0k /2 :
Frlir)(geg)-11 = {% 'BexP[%m,Be a ’UE”ZI%]:}[T+O(ra’r4)]’

(0 <a<2).

(2.93)

Comparison with (2.77) shows at once that this approximate c.f. for
Class B interference has the same (approximate) form as that for Class A
noise, and thus will yield the same type of pdf's and P.D.'s, etc., cf. Sec.
(3.1). As we shall see later, in Section 4, this has the important con-
sequence of insuring that all (finite) moments of the envelope, <EB>,
exist, as required by the physics of the situation in all cases.

We note in passing that a more elaborate approximation to f1 here may
be obtained by a combination of (2.89) and (2.93), viz:

2 2
be A r®A -glrf/2 b, r2/2
Ta '=,B =,B "G exp(A Be 20 ,

B = »

Frir) (geg)-111 = ©
(2.94)

which may be used for intermediate ranges of r for improved fits to the
corresponding intermediate ranges for the envelope. However, since the
resulting pdf's, and P.D.'s, are considerably more complex and since the
simpler forms of c.f. above, e.g. (2.90), (2.93), appear ultimately to
provide excellent agreement with observation, we shall not pursue the con-
sequences of using (2.94) further in the present Report.
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We remark that both approximating c.f.'s (2.90), (2.93) for the
true Class B c.f. are such as to give pdf's which are not properly
normalized; each pdf, wT(EJB_I,w(E)B_II, (4.3),(4.4) does not yield
<E?)B = 1. The former gives an infinite value, while the latter, although
Class A-type, cf. (2.78), yields 652)3_11 = 465 (#1), where Gy is given
by (3.12b). Thus, Wy (€)1 rorm = (468)7'w; (E)g_1p» while the normali-
zation of w](E)B_I requires, instead, a change of scale for the argument
€ (and . 56 in the associated PD). How this is done is described in Section
3.2-A.

Finally, it is important to observe that unlike the Class A interference
discussed in Section 2.6 above, the (first-order) statistics of Class B
noise are obviously sensitive to the combined effects of source distri-
bution (u) and propagation law (y), through the density-propagation param-
eter a, cf. (2.82). Physically, this may generally be explained by the
fact that now the receiver itself largely determines the waveform of its
response to the (relatively) short input excitations, unlike Class A noise,
where apart from amplification (for fixed aperture bearing) the receiver
negligibly influences the structure of the received wave trains. The
composite sum of the "tails" of the transients in the receiver, generated
by the Class B input, depend on the (relative) times of arrival of indi-
vidual wave trains (vsource distribution) and on the level of the
various wavetrains (vsource distribution and propagation law). The
(relatively) Tonger time-pedestal provided by the transient decay of in-
dividual impulses provides a wider range of possible total amplitudes of
overlapping transients and hence a more gradual transition to given
thresholds (EO) of the exceedance probabilities P1(E > EO), than that
occuring with Class A interference, as can be seen subsequently in Figs.(3.5,
3.6)IT vs. Figs.(3.1)II,(3.2)II. [These effects accordingly influence
the instantaneous waveform in the receiver's ARI stage, and hence the
statistics of that waveform.] In any case, the sensitivity to a is
thus a receiver bandwidth phenomenon, which is illustrated by the
experimental and theoretical results shown in Part I of this Report.
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