4. PROBABILITY DENSITIES: wq(€), o

It is now a simple matter to determine the probability densities (pdf's)
(pdf's) associated with the exceedance probabilities (PD's) derived in
Section 3 preceeding. Because the PD's are continuous, at least through
the second derivative (0 < £ < =), and because

dP * n
Wi (€) = - HE;‘]' = J A (AE)F, (1ar)dr, 0 < & < =, (4.1)
0 [g,+E
0 0 cf. (2.21)(3.1)(3.3)

we may apply this to (2.7), (3.11) and (3.17), etc., to obtain directly the
desired pdf's. We have first:

4.1 Class A Interference:
From (3.7b) and (4.1) we find that

wp A ¢ -E?/ZQmA
W (€), v e Amg m—’;‘—e?— , 0<E (4.2)
mA

Thus, as expected from our earlier rw_;1t(3.?b),w1(€JA (in its principal
contribution*) is the weighted sum of rayleigh pdf's, whose variances cﬁA

cf. (3.5), increase with order [»!. Figs.(4.1)II and (4.2)II show w,(E),
for various combinations of the controlling parameters AA’ FA. With AA
small the pdf's are seen to be highly nongaussian (e.g. nonrayleigh in &),

unless FA is very large, in which case the gaussian (e.g. rayleigh) com-

ponent (here) dominates. As the Impulsive Index AA gets larger, the pdf
approaches the purely rayleigh form, cf. (2.57b). Also, for rh > 0, the
pdf near £= 0 has finite width, shouldering off into a broad, rather
Tow Tevel (in w]) form as £ + =, which represents the strongly non-
rayleigh structure of this class of noise. The larger I'}, the wider and
less "peaked" is the "spike" at £% 0, and the more "shoulder" there is
to the rest of the pdf.

When PA = 0, e.q. cé = 0, i.e., when there is no independent,

* See the comments following Eq. (3.7b).
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additive gaussian component to the interference, Eq. (4.2) reduces to

Am+'I

[+ =]

....AA
W€y ve {6(5-0)+ !

m=1

2€e

-EZAAfm
= }, Bis £ <) (4.2a)

and the "spike" at €= 0 is truly a delta-function. The variance is now
m/AA. In this case we have an example of "holes in time": there fs a
nonzero probability that €= 0, an idealized Timiting case, since there
is always in practice some system noise, which means an additive gaussian
term, so that (4.2) applies, with w}(O)A = 0, of course.

4.2 Class B Interference:

As expected for our general canonical approximation [(3.11b) plus
(3.17)], cf. (3.20) , we have also two relations for w](E)B: WT(E)B~I
applies for small and intermediate values of &, while w](E)B_II is
appropriate for € > EZB. Again, SB is a point of inflexion, or the
"bend-over" point, where the Class A form, (3.17) applies, with, of course,
the appropriate Class B parameters (AB’Fé)’ as determined analytically by
the procedures described in (3.18), (3.19). Accordingly, we use (3.11b) in
(4.1), to obtain specifically:

e 2 n , ~
¥ (8).8-1 = 2Elnzo —(;:i—!)—AE r(1 + EZE)]F](HnafZ;'I;—-Cz),
€ = (EN[)/26y, A_ = A_/2%G, (0<€<&), (4.3)

and, formally, for large (but not too large) £; from (3.15):

Na
(_1)n+1 i r(1+ =) ~-na-1

S o & 2 (1+na/2) (1-ne/2)
W, (E) v 2o ) 1+ L +...
== n£1 nl @ TNy 11E2

(0 << € < &). . (4.3a)
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When £ > 6% we obtain at once from (3.17) in (4.1)

-A m €42
B AB Ee

m@p e Lo omr—m > Egefe=) (4.4)
4GB m=0 OB |

analogous to (4.2) in the Class A cases. Observe from (ii),(iv) of (3.18),
and [(ii), (iv) of (3.19)], that w1(EJB, viz,:

. (4.5)

w€lgr »  Epst

is continuous at € = SB’ with continuous first derivative, so that w](E)B,
as well as P(E)B, has no break or "jump" at the bend-over point &g,

where the two approximations are joined. Furthermore, unlike the Class

A interference, when Tp = 0 there are no "gaps in time", cf. (4.2a) vs.
(4.3): there is always a non-zero probability (density) for e
Figs.(4.3)11,(4.3)II'sh0w typical curves of w](E)B, analogous to Figs.
(3.6)I1, (3.7)I] for the P.D.
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Figure 4.3 (II). The (complete) pdf w,(€)g, eq. (4.5), of the envelope for
Class B interference, calculated from eqs. (4.3, 4.4) for
various Ay, given a [cf. (3.19)]. [See fig. 3.6_(II) for
the associated P, (€ > €,)g and parameter values. ]
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Fiqure 4.4 (II). The (complete) pdf, w,(€)g, eq. (4.5), of the envelope
Class B interference ca]culated from eqs. (4.3, 4.4) for
various o, given Ay tcf (3.19)] . [See fig. 3.7 (II)
for the assoc1ated Pl(é‘ > &) B and parameter values ]
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