6. DETERMINATION OF THE BASIC FIRST-ORDER PARAMETERS

In this section we outline procedures for determining the basic param-
eters of Class A and Class B interference models developed in the preceeding
sections. A variety of overlapping procedures is available. We shall
select what appears at this stage of the study to be the most direct and/or
convenient, (later efforts may suggest modifications, for particular
situations). '

We begin with:

A. Class A Interference:

The first-order PD (and pdf) are governed by three parameters. It is
convenient to distinguish two levels of parametric description: the first
level, which we shall call "Basic-I", consists of global parameters, which
~appear directly in the expression for the P.D., cf. Eq. (3.7), and the

second, or "Basic-II" level, contains the associated generic parameters,

which are defined directly in terms of the underlying statistical-physical
model. The two groups, as we shall see, overlap to some extent. Table
6.1 below gives the global and generic parameters of Class A interference:

Table (6.1): Class A Parameters

Basic I: Global: (AA’FA’QZA) + {Practical Global: (AA’FA’KA)}

o . 2 /22
Basic II: Generic: (AA,GG,<BGA>)

(6.1)
The generic and global parameters are related by

o5 = apaTh 3 {BL) = 20/, . [Eq. (3.72)] . (6.2)

Furthermore, the intensity of the independent gaussian component is

ok = oSt , [Eqs. (2.47)], (6.3)
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where cg is the intensity of receiver noise (at the output of the initial
ARI-stages of the receiver) and UE is the intensity of the independent
external gaussian component, if any, 1ikewise observed at the output of
the ARI-stages of the receiver. By blocking the input to the receiver ,
(i.e., insuring that UE = 0) one obtains °§= at the ARI output. Conse-
quently, as UE is found by actual reception in the (here) Class A noise
environment, one then at once determines UE from (6.3).

Because we do not a priori know the normalizations (3.1) by which the
thresho]d'E0 and the envelope E are scaled, it is necessary to convert our
analytic expressions (3.7) for the PD, for example, into forms more
directly conformable to experimental evaluation. For this purpose we
write*

E/ 23% = EJQZA(HI‘A)/SE = E/Kys E) = E /Ky (6.4a)

M
1

m

[Sé/mzA(T+rg)J1f2‘='[EE/(92A+GS)]1/2 , (6.4b)

the new conversion factor, between &' and €, where ég is an a priori de-
termined reference quantity, used to scale the EabsoTute) values E,» Es etc.

To obtain the generic parameters (AA’ cé, B§A ) we first must deter-
mine the global parameters (AA’TA’QZA)‘ Practically, this means we must
initially find the "practical" global quantities (AA’FA’KA)’ cf. Table
(6.1) above, and then use (6.4b) to eliminate the conversion factor Ky
Three relations involving the practical global parameters are needed.
Perhaps the simplest are the first and second moments of &', and the PD
of £ in the rayleigh region &Sé<<1), where the slope (dP1A/d65) is con-
stant, cf. Figs. (3.1,3.2)II. Accordingly, from the exact expression
(5.12b) and (6.4a) we write

(€ )2y = CEPp/KE = 1/KE = q,, (1474)/5E (6.5)

F?jfﬁ gives us Ky and hence‘QZA(]+rﬁ) in terms of the known ;é and 'ﬁEﬂ)2>h,

* 0f course, one can always measure (EZ>A=292§1+TA) and- then normalize, so
that KA=T.
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this last by measurement in practice. From-the approx1mate expression for
Qi \A’ viz. (5.3) with (6.4a), we obtain

-A

o = (m/Ag+ry) /2 A
Ep= k6 e * 7 L T

A
72 ml |

(6.6)

0 (T+FA)

and from (3.7b) specialized to the rayleigh region, e.g. (3.8), we have

-A

w  (1+4r7!)AT
Ple'>E) 21-le P A
dSR

) .
N [T AL (6.7)
m=0 (I’ﬂ'\+mXAA)m!

In practice, of course, <€‘>A’ [e! 2>A’ and P (6f>£') are estimated
from the experimentally derived data, i.e. <‘5>A’ ((6 >A’ and P (£'>£‘)A
are respectively replaced by their estimates from the necessarily finite

empirical data, so that (6.5)-(6.7) are three relations for joint estimation
of the "practical" global parameters (AA’FA’KA)’ a proceedure requiring

a modest amount of computational assistance, particularly when the expres-
sions in brackets [ ] have been programmed. With the help of (6.4b) for

KA involving Qp PA we next get directly the (estimates of the)_gﬁoba]
quantities (AA’FA’QZA)‘ Then it is a simple matter to use (6.2) to

obtain finally the (estimates of the) desired generic parameters
(AA,G§,<é§A>). The desired estimates to be used in (6.5)-(6.7) are

3

<€‘>A+%iz1 5% > <8 2>A Z (5) ) P(€'>‘S' ""P (‘C' 6 A expt 1°

(6.8)

B. Class B Interference:

Here we have a six-parameter model for the Class B cases. Table (6.2)
summarizes the global and generic parameters involved:
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Table 6.2: Class B Parameters

Basic I: Global: (Aa,a,AB,Fé,QZB,NI)

+ [Practical Global: (Ay 50 Ag T psKasN )]

Basic II: Generic: (AB,a,c§,<égB>,<bgB>;N1)

The global and generic parameters are related by (6.9)
2 - b
og = QZBré’ LEq.:. (3.2a)] 1

c§+cg o [Eq.l(2.47)] =

<§§B> = 20,5 AéT ; » [Eq. (3.2a)]

% ryya/2 T(HGIZ)AQ |
<E0B> B (2925(1+FB)) ﬁFTT:E7§TKE [ Eq. (3.12a)]
A

and (6.10)
€p = KBSé, [cf. (6.11) below] .

The common global and generic parameters are clearly (AB,a).

The fact that there are six generic parameters for our statistical-
physical model of Class B interference stems directly from our pair of ap-
proximations ﬁ]—I’ET-II’ Eqs. (2.90), (2.93), to the exact cf. (2.87):
(i), the Impulsive Index AB [(2.38), (2.39) in (2:51): (§1); the spatial
density-propagation parameter a, (2.82); (iii), the independent gaussian
component cé, [(2.47), (2;88c)]; (iv). the a-moment of the generic, fil-
tered envelope waveform <BSB>, cf. (2.87a) , (2.87d); (v), the mean-square
of this generic wavgform, {égB); and finaT]y, (vi), the scaling factor
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NI(Aa’a’AB’QZB’Féféﬁ)’ cf. remarks in Sec. 3.2-A. This factor N; is
functionally involved with but not solely determined by the other global
(and generic parameters, through the APD form, and is independent of EB
[cf. remarks below in Sec. 6C]; hence it is regarded as a generic parameter
here also. The quantity N; ranges from 0(10db) to 0(50,60db) in practice.
For example, comparison of Fig. (2 4) with Fig. 3.3(II) (AOL = s a="1)
for the same P]=O 9 gives NI = - 44) 38db. The point of inflexion,
r "bendover" point £z, cf. Fig. (3 5)II, at which the PD's (and
pdf s) corresponding to the two approximating c.f.'s, F1 I’ 1_11, are
joined, to give us the desired composite PD (and pdf), is purely empirical
vl (3.18)]. The conversion factor Kz is here

Kg = {?2/928(1+réi}1/2 . (6.11)

cf. (6.4b), where, again, Sg is a known (measured) gaussian noise reference
level. Also as before, we may obtain the components of oé as indicated
above, cf. (6.3) et seq. [See, also, footnote, Eq. (6.4a).]

Now to obtain the desired global parameters of our model from observed
data we need six convenient nonidentical relations involving these parameters
in various, sometimes simple ways. First, we use the exact expression for
the mean square envelope (5.14), with the renormalization (6.4), to write

<(€r)2>B & <62>BKB = 1/K = QZB(1+I‘B)/UG ﬁO'G/UG s (6.]2)

cf. (6.5). Since the expressions for the Class B moments are analytically
quite involved, and because the PD contains all moment information here,
we use [(i), (ii1), (iv)] of (3.18), (3.19) where Pi_g is empirically
determined from the data. Accordingly, we have the additional five rela-
tions:

(g KBNI) Z (_])nﬁ

an
463 n=0 nl r{l 2 )

rayleigh region: Pi(E‘zfg)B
[2 relations]
_AB

£ (ESKB) F

=

m
—‘,l (26%5)7"3 (6.13a)

IIMB
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T(1+§)/EB

large thresholds: P](E'zﬁ%) "z ) [+ %11 )@ NI -a E--Z 2)]
[2 relations] T(A ~/2) _

B m 2,2

e o A = 1

*2Z 1 e €3¥a)"/2eng (6.13b)
B =0 mi
at_bend-over point:
-A /20
A or (14/2) (26, at] ! o 1 - £qe B E AT ~£8/ 207
1+0
r(T-a/2) 2 L m!
EB I) 4GB m=0

As noted from (3.18), (v),(vi), €p is the joining point (or point of contin-
uity (through the second derivative of P1~I 1° at least) for the approxi-
mations to Py_p. &p is the point of inflexion of Pi-B> obtained from

(Py_g)

expt. Here

1 = ~2
£ = E/y255 - (6.14)

In practice, gé is available from inspection of the experimental* PD, PT-B,exp'
so that in addition to (6.12) only the five relations (6.13ayb,c ) are then
required for the remaining six global parameters. Once these have been ob-
tained, we may use (6.10) to determine the six u]timatély generic paraméters |
of the Class B interference under study. Of course, in practice, our

data are finite and P1—B is an empirical function;({ﬁ')2>B is an estimate,
cf. (6.8), based on sample values, and Eé is Tikewise an estimate by in-
spection, so that all parameters actually obtained are necessarily them-
selves estimates. We do not include EB in our 1ist above of global
parameters, and exclude it from the basic, or generic parameters, cf. (6.9),
since it is in-effect, an empirical quantity resulting from the procedure

of joining PI-1’P]-II in approximation to the true P]-B’ at £ = 68'

C. Degenerate Cases:
When 83 (oréié) is not known -- i.e., is not evident from the empiri-

* However, see the important situation discussed in C following.
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cal PD, Py_p -= we can only work with the P,_, form of the PD, namely the
approximation suitable for small and intermediate values of & (and €6)

< EB(éé). This is the case, for example, of much of the atmospheric noise
data, cf. Fig. 2.4, where no bend-over point is at all evident. The model
now reduces from six to a five-parameter approximation, in (Aa,u,ré,QB,NI)
[or (Aa’a’ré’KB’NI)] for the global parameters and in (a,aé,NI) for the
generic parameters, cf. Table (6.2). BecauseéTB is notAknown, we areAunab1e
to obtain Ay, and hence we-can determine only 2,5 = AB(B§B>/2, A~ (BEB>AB,
and not their individual factors <BEB>’<B§B>‘ For these five global para-
meters we need accordingly five equations. The conversion factor KB is
again given by (6.12), and for the four other parameters we use

Eq. (3.11b): rayleigh region:

vekan? o GO -
Pr(€'>€2)py = (0B1) [ —r— r(1+ 37) = 0.99, say; (6.152)
and 2Gp n=0 ’

PT-I in the "bend-up" region, where P]—I departs from the "straight line"
rayleigh form, so that (3.11b) fully applies, and two points P, ,=P;.P,
with '

Eq. (3.15): large £, (<E§li

AT (14a/2) (EgKeN )™

P.(E'>E
1€°28) 1 2 I(1-a/2) (26g)™®

where the PD's are empirically determined. Without the turnover point eB
we cannot join the large-threshold approximation P]-BII to P1—BI for
(EOEEE), avd ?re.thus unable to determine the generic parameters, except for
a,aG,NI.Th1s indicates the importance of obtaining the "rare-event" data
&i>EB), so that the fundamental (i.e., generic) parameters of the inter-
ference model may be estimated, as the fundamental descriptors of this

noise environment, as specified, of'course, by our statistical-physical

model in this case [cf. Section (2.1) et seq.].
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