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Wideband model of man-made HF noise and interference
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Abstract.

A mathematical model of the waveform generated by man-made high

frequency (HF) noise and interference is presented and discussed. The model is based on
wideband (800 kHz) recordings of the noise and interference at various frequencies in the
HF band. Representative examples of first- and higher-order statistics of the measured
waveforms are described, including probability distributions of the envelope and phase of
the noise and interference in the time and frequency domains, power spectra,
autocorrelation functions, and level crossing distributions. The statistics of waveforms
generated by the model closely resemble the statistics of the measured data.

1. Introduction

Over the past several years the application of
spread spectrum technology and digital signal pro-
cessing techniques to high frequency (HF) communi-
cation systems has generated considerable interest in
HF communications over wide bandwidths (of the
order of 1 MHz or more). Since many questions exist
concerning the performance of these new wideband
systems, it is important to have HF channel models
for theoretical predictions of system performance and
for laboratory performance measurements using
channel simulators.

The HF channel models and channel simulators
currently in widespread use are based on narrowband
measurements. For example, the model described by
the International Radio Consultative Committee
(CCIR) [1986] is based on limited measurements over
bandwidths of 12 kHz or less. It could be misleading
to use such models to assess system performance over
bandwidths of hundreds of kilohertz or more, and it is
therefore necessary to develop channel models that
are valid over much wider bandwidths.

The propagation of HF signals in the ionosphere
comprises a rich variety of phenomena that can have
a deleterious effect on system performance. The
development of a model that describes these propa-
gation effects on wideband HF signals has been
developed and discussed elsewhere [Vogler and
Hoffmeyer, 1993]. However, the importance of these
effects notwithstanding, what often determine the
limits of radio system performance are the additive
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disturbances in the channel, i.e., the noise and inter-
ference, which can be quite severe in the HF band
(3-30 MHz). A wideband model of the noise and
interference Qas therefore been developed for use in
channel simulators.

The waveform model includes examples of narrow-
band interference generated by users of the HF band
as well as unintentionally radiated noise generated by
electrical machinery, automobile ignitions, etc. The
modeling of these man-made forms of noise and
interference are the subject of the present paper. The
development of a model of wideband HF atmospheric
noise will be discussed elsewhere.

Past developments of noise and interference mod-
els have often been directed toward statistical de-
scriptions of the noise and interference processes,
such as amplitude probability distributions. Statistical
models are useful for theoretical predictions of sys-
tem performance. For example, if one wishes to
derive an expression of the probability of a bit error as
a function of signal-to-noise ratio, one needs an
expression for the probability distribution of the
instantaneous value of the received noise envelope.
The models developed by Middleton [1972, 1977] are
well-known examples of this approach.

The present model development has been moti-
vated by the need for a model that can be imple-
mented in a wideband HF channel simulator to be
used for laboratory measurements of radio perfor-
mance. The model is therefore a description of the
noise and interference waveform itself, since it is the
waveform that must be added to the desired signal in
a channel simulator. However, comparisons of the
statistical characteristics of measured and simulated
waveforms are useful for the development and vali-
dation of a waveform model.
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2. Data Analysis

As part of its experimental wideband HF commu-
nications program, the Mitre Corporation has ob-
tained recordings of wideband HF noise and interfer-
ence at a variety of times of day and frequencies in the
HF band. The equipment used in these experiments is
described by Perry and Rifkin [1989]. A horizontally
polarized log periodic antenna (H/LPA) was used at
the receive terminal when the data discussed in this
paper were obtained. The H/LPA has a directivity of
about 10 dBi.

The wideband receiver converts the signal from RF
to baseband where the complex (inphase and quadra-
ture) components are low-pass filtered with a cutoff
frequency of 400 kHz, resulting in an equivalent RF
bandwidth of 800 kHz, and digitized at a sampling
rate of 1.024 MHz. Eight-bit analog-to-digital (A/D)
converters were used.

The data that were analyzed in this Work consist of
42 1-s records of the digitized, baseband inphase (1)
and quadrature (Q) components of the received
noise and interference. The data were collected dur-
ing March 1989 in Bedford, Massachusetts.

To analyze these data, software was developed to
compute first- and higher-order statistics of the mea-
sured waveforms. The computed first-order statistics,
which characterize the time-averaged behavior of the
noise and interference processes, include probability
distributions of the raw data (I and Q) and of the
amplitude and phase of the recorded waveforms, as
well as amplitude and phase distributions of the
spectra (Fourier transforms) of the waveforms. In
addition, distributions of the average level crossing
rate of the noise and interference envelope were
computed.

Higher-order statistics of the waveforms are neces-
sary to characterize the relationships between the
noise and interference processes at different instants
in time. The higher-order statistics that were analyzed
include power spectra, autocorrelation functions, and
pulse width and pulse spacing distributions. These
quantities are precisely defined in the examples dis-
cussed below.

3. Noise and Interference Model

On the basis of computed first- and higher-order
statistics of the measured waveforms, it was con-
cluded that man-made processes generate a noise and
interference waveform that can be represented as a
sum of three components [Lemmon and Behm, 1991,
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1993]: white Gaussian noise, narrowband interferers
(sine waves) and impulsive man-made noise (filtered
impulses).

A noise and interference waveform that comprises
these three components is to be expected on heuristic
grounds. Within a bandwidth of the order of 1 MHz
many independent processes contribute to the noise
and interference. Therefore one expects a Gaussian
component as a consequence of the central limit
theorem. However, interference in the HF band is
generated by other users of the spectrum in the form
of intentionally radiated narrowband signals, and if
one or a few of these signals are dominant, as is often
the case, the central limit theorem no longer holds
and these interferers must be added to the model as
a separate component. Finally, broadband, man-
made noise is generated in the form of incidental
radiation from electrical devices, automobile igni-
tions, electric power lines, etc. These forms of noise
tend to be impulsive in nature and are therefore
neither Gaussian nor narrowband and must be in-
cluded as an additional component of the model.

If the noise and interference waveform at RF is
denoted by x(¢), and the inphase and quadrature
baseband components are denoted by I(¢) and Q(¢),
respectively, then x(¢) can be written as

x(t) = I(t) cos wot + Q(t) sin wyt, (1)
where wq is the RF center frequency. Use of the
representation in (1) implies that the noise and
interference is a narrowband process (bandwidth less
than the center frequency) with a well-defined ampli-
tude and phase. It may therefore seem inappropriate
to refer to the noise and interference as “wideband.”
However, the term wideband is used in the sense that
one is dealing with bandwidths of the order of 1 MHz
as opposed to bandwidths of the order of several
kilohertz.

The complex, equivalent low-pass waveform,

z(t) = 1(t) + iQ(1), 2
can be written as
Ni
2() = g(t) + D, Aze B+
i=1
N;j .
L sin2@B(t—t;)
+ sz——]—ezwot,-‘ 3)
’ t—t:
j=1 J
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In (3), g(¢) is a complex, zero-mean, white Gaussian
process, Aw; are the baseband frequencies of the
narrowband interferers (Aw; = w; — wy), A; are the
amplitudes of the interferers, ¢; are random phases,
N; is the number of interferers in the frequency band
of interest, ¢; are the arrival times of the filtered
impulses, B; are the amplitudes of the impulses, B is
the bandpass (in hertz) of the (square) low-pass filter
in the HF receiver, and N; is the number of impulses
in the time interval during which the noise and
interference are being modeled.

Still to be specified are the fractions of the total
noise and interference power that are associated with
each of the three components of the model, the
numbers of narrowband interferers and filtered im-
pulses, the distributions of the narrowband interferers
in amplitude, frequency, and phase, and the distribu-
tions of the filtered impulses in amplitude, time, and
phase. To specify these quantities, the statistics of
measured waveforms were examined and compared
with the statistics of waveforms simulated with the
model.

It was concluded that the frequency and phase
distributions of the narrowband interferers are uni-
form and that the amplitude distribution of the
narrowband interferers can be described by a model
developed by Hall [1966] for impulsive noise. Al-
though it may seem inappropriate to use a model of
impulsive phenomena to characterize narrowband
interferers, these interferers are impulsive in the
frequency domain, and it is the amplitude distribution
of these frequency domain impulses that must be
described.

The probability density function p4(A) for the
amplitudes A4; is

Pa(A) = (04— Dy PAIA> + ) V7, (4)

where 04 and vy, are free parameters (with the
constraint that 64 > 1, so that p4(A4) is normaliz-
able). The Hall distribution in (4) was chosen be-
cause, as shown in the examples below, it leads to a
noise and interference waveform whose spectral
properties closely resemble those of the measured
data. A set of amplitudes distributed according to (4)
can be generated by integrating (4) to obtain the
cumulative probability P(A),

P(4)=1- y(e)A—l)/(AZ + 7,121)(6”_1)/2, )
inverting the result to obtain 4 (P),

A(P) = y[(1 — P)V1-0a)], (6)
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and treating the cumulative probability P as a random
variable uniformly distributed between 0 and 1.

Analyses of the first-order statistics of the man-
made noise observed in the data indicated that the
distribution of the amplitudes B; of the filtered
impulses can also be described by the Hall model for
amplitudes that are less than some maximum value
B x> and that the distribution be cut off for ampli-
tudes greater than B ,,:

pB(B)
1- 65 B
=| (B2, + yh) 0wz _ y§<1—es>/z' (B2 + v3) D72’
0
0 <B = Bpax
, 7
B > Bpax )

where 0p and yp are free parameters (with 65 > 1).
The expression in the first line of (7) differs from that
in (4) because cutting off the distribution results in a
different normalization constant. The amplitudes B;
can be generated by a technique analogous to that
used to generate the A;, that is, by integrating (7) to
obtain the cumulative distribution P(B),

(B2 + y3)(1-0a)/2 _ . 20-60)/2
P(B) =

(8)

2 2\ (1—- 2(1-68)/2°
(B2, + v2)(-0/2 — \20-0s

inverting (8) to obtain B(P),
BZ (1-68)/2 2/(1—68) 1/2
lP[ —’“f‘ﬂ) —1}+1] —1) :
%)

YB
and treating P as a random variable uniformly distrib-
uted between 0 and 1.

Analyses of the pulse width and pulse spacing
distributions of the man-made noise that was ob-
served indicated that the noise pulses are not distrib-
uted uniformly in time, but that they are clustered in
bursts and that the bursts are correlated in time.
These features can be simulated by treating the
arrival times #; of the filtered impulses as a uniformly
distributed random variable within windows of 4 us
duration and the time interval between windows as a
random variable uniformly distributed between 450
and 550 us.

B(P)=vp
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Figure 1. Comparison of (a) measured and (b) simulated / channel data.

4. Comparisons of the Model With
Measurements

The model development discussed above has been
based on numerous analyses and detailed case studies
too lengthy for a complete presentation herein. The
comparisons of the model with measurements will
therefore be restricted to a variety of first- and
higher-order statistics of one particular case study.
This particular case has been chosen because, of the
42 noise and interference records examined, only this
case clearly exhibits man-made impulsive noise in the
raw data, and it is therefore of greatest generality.
The data were obtained at 1922:31 UT on March 15,
1989, at a center frequency of 23.862 MHz.

A plot of the first 4 ms of the I channel data is
shown in Figure 1a. The origin of the noise pulses is
unknown but is almost certainly not atmospheric
noise because the noise pulses tend to occur in a
quasi-periodic fashion, as revealed by the pulse spac-
ing distributions discussed below. Thus the (un-
known) source of the noise has been assumed to be of
man-made origin.

In this particular noise record the quantization of
the noise samples is apparent. This is presumably
because the gain of the HF receiver was decreased to
prevent the noise pulses from saturating the system,
so that the voltage level of the .noise floor was
comparable to the resolution of the A/D converters.

Figure 1b shows a plot of the first 4 ms of the 1
channel voltage of a noise and interference waveform
that was simulated using the model. The waveform is

a combination of complex, zero-mean, white Gauss-
ian noise, 40 sine waves, and 50 filtered impulses in
each 4-ms block, resulting in a total of 12,500 im-
pulses in the entire 1-s simulation. The real and
imaginary parts of the complex Gaussian noise both
have a variance o? = 0.0144. The parameters in the
amplitude distributions of the sine waves and the
filtered impulses are 6,4 = 2.0, y4 = 0.2, 65 = 1.2,
yg = 1.0 X 1078, and B_,,, = 2.0 X 1075, The
parameter B in (3) is equal to 400 kHz, corresponding
to an equivalent RF bandwidth of 800 kHz. These
values of the model parameters were obtained by
comparing the statistics of the measured and simu-
lated waveforms.

4.1. First-Order Statistics

The cumulative distribution functions of the power
envelope (I + Q?) of the first 4 ms of the measured
and simulated waveforms are shown in Figure 2.
Plotted is the (common) logarithm of the probability
that the power exceeds some threshold as a function
of that threshold in decibels.

The distributions exhibit two distinct regimes, sep-
arated by a transition region where the logarithm of
the exceedence probability is approximately —2.5.
The regime at the lower power levels comprises the
Gaussian noise, the narrowband interferers, and the
impulsive noise, whereas the regime at the higher
power levels corresponds only to the impulsive noise.

The power in the Gaussian, narrowband, and im-
pulsive components can be computed by evaluating
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Figure 2. Comparison of (a) measured and (b) simulated cumulative distribution functions of the
power envelope in the time domain.

the time average of I + Q? and ignqring the cross Pg = 1 f T lg@)|2 dt = 202, (10)
terms between different components, since the three T

components are independent processes and the _

Gaussian and narrowband components are zero- where T is the record length, o is the variance of the
mean processes. The average power in the Gaussian real and imaginary components of g(¢), and the cross
component is term between the real and imaginary components of

0
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g(t) has been ignored since these components are
independent, zero-mean processes. The power in the
narrowband component is

P 1 7T
NB—TL

N
=2 4},
i=1

2

Ni
2 Aje —i(Awit+ i)
i=1

dt

11

where the integral over the cross terms in (11)
vanishes because of the orthogonality of sines and
cosines of different frequencies. The power in the
impulsive component is

2

sin 2@B(t — t;)

t_tj

eia)ot,-

1 7|
Prvp =?f > B;
0 j=1
2728 N « sin? mx 27BN
2 _ 2 :
~—— 2 B; —rdv=—— 2B}, (12)
=1 Jee j=1

where the cross terms in (12) that arise from the
products of two distinct impulses are assumed to
approximately vanish, and where the integral from 0
to T has been approximated by the integral from —o
to +oo.

In the simulated waveform, o2 = 0.0144, 3 A} =
28.13,2B? = 1.26 X 10™°, B = 400 kHz, and T =
4 ms. Substituting these values into (10) through (12),
one finds that P; = 0.0288, Pyp = 28.13, and
Ppyp = 2.52. Thus, relative to the Gaussian noise
power, the narrowband power is approximately 30 dB
and the impulsive power is approximately 19 dB.

Probability density functions of the phase
(tan"1(Q/I)) of the first 4 ms of the measured and
simulated waveforms are shown in Figure 3 in the
form of histograms. The spikes in the phase distribu-
tion of the measured data are an artifact that arises
because of the aforementioned quantization of the
data. Because the [ and Q channel voltages are
integral multiples of a fundamental voltage (the res-
olution of the A/D converters), the phase is dis-
cretized at values equal to the arctangent of the ratio
of two integers. Thus one expects peaks in the phase
distribution at tan~! (0/1) = 0, tan"! (1/0) = 7/2,
tan"! (1/1) = /4, tan~! (1/2) = 0.46, etc. These
peaks are intentionally not being simulated; in fact,
the simulated phase distribution closely resembles the
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phase distributions of recorded waveforms that do
not exhibit quantization noise.

4.2. Spectral Properties

Figure 4 shows the power spectra of the first 4 ms
of the measured and simulated waveforms, computed
as the absolute square of the (discrete) complex
Fourier transform of the baseband data. Because the
transforms are discrete transforms of 4-ms records
sampled at 1.024 MHz, the power spectra span a
bandwidth of 1.024 MHz with a spectral resolution of
250 Hz. The spectra have been folded so that the zero
frequency at baseband (center frequency at RF)
appears at the far left and right ends of the frequency
scale.

The power spectra clearly reveal the presence of
many narrowband interferers. The absence of these
interferers from the center of the plot in Figure 4a is
due to the fact that this part of the spectrum is outside
the bandpass of the low-pass filter in the HF receiver.
Accordingly, the baseband frequencies Aw; of the
narrowband interferers in the simulated waveform
are treated as a random variable uniformly distrib-
uted between —400 and +400 kHz. The finite spectral
width of some of the sine waves in the simulated
power spectrum is spectral splatter that arises when
the frequency of a sine wave does not coincide with
one of the frequencies in the discrete Fourier trans-
form.

In the measured spectrum, the fact that the noise
floor within the 400-kHz bandpass of the low-pass
filters in the HF receiver is greater (by approximately
20 dB) than the noise floor outside the bandpass of
the filters indicates that a broadband process (impul-
sive noise) is contributing to the inband power spec-
tral density. This difference between the inband and
out-of-band noise floors corresponds to the 19-dB
difference between the Gaussian and impulsive noise
powers that was computed above and can be seen in
the simulated spectrum in Figure 4b.

The amplitude distribution of the narrowband in-
terferers can be characterized by the cumulative
distribution of the power spectral density, shown in
Figure 5 for both the simulated and measured power
spectra of Figure 4. In analogy to the cumulative
distributions of power in the time domain (Figure 2),
Figure 5 shows the logarithm of the probability that
the power in a spectral bin exceeds some threshold
plotted versus that threshold in decibels. Like the
distributions in Figure 2, the distributions in Figure 5
reveal two different regimes. Here, however, the
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Figure 3. Comparison of (a) measured and (b) simulated probability density functions of the phase in

the time domain.

regime at the higher power levels (greater than
approximately 55 dB) comprises only the narrowband
interferers. The approximately linear character of the
distribution in this regime was observed in the other

noise and interference records that were analyzed and
has also been reported by Perry and Abraham [1988]
and Mousley [1985].

Probability density functions of the phase of the
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Figure 4. Comparison of (a) measured and (b) simulated power spectra.

measured and simulated spectra are shown in the
form of histograms in Figure 6. Unlike the time
domain phase distributions, which are approximately
uniform for all the noise and interference records that
were analyzed, the frequency domain phase distribu-
tions are decidedly nonuniform. This nonuniformity
can be understood as follows.

The Fourier transform of a complex, zero-mean,
white Gaussian process is another zero-mean Gauss-
ian process; the transform of a sum of sine waves is a
sum of impulses with Hall-distributed amplitudes; the
transform of a sum of impulses (with different arrival
times) is a sum of sine waves (with different frequen-
cies). A combination of sine waves and Gaussian
noise results in a Ricean process, whose phase distri-
bution is well known to be nonuniform [Papoulis,
1965]. Similarly, the phase distribution of a process
that is a combination of Gaussian noise and a Hall-
distributed process can be shown to be nonuniform
[Lemmon and Behm, 1991], as can the phase distri-
bution of a process comprising all three components
(Gaussian noise, sine waves, and impulses). The point
is that although the phase distributions of the indi-
vidual components are uniform, the phase distribu-
tion of the composite process is not.

This argument is equally applicable to the time
domain waveform, which also consists of Gaussian
noise, sine waves, and impulses. In fact, the time
domain phase distributions are approximately but not
precisely uniform. No attempt has been made to
quantify this difference between the phase distribu-
tions in the time and frequency domains. What is

important is that the measured and simulated distri-
butions are qualitatively similar to one another in
both domains for a variety of noise and interference
environments.

Closely related to the power spectrum of a random
process is its autocorrelation function, which has been
computed as

1
R(r,t) = T sz*(t)z(t + 1) dt. (13)

0

An analytic expression for R(r, T) in the noise and
interference model can be obtained by substituting
(3) into (13). Note that R(0, T) is the average power
of the noise and interference process, given by (10)
through (12). For nonzero values of 7, arguments
similar to those used in the derivation of (10) through
(12) can be used to evaluate (13). The result is

2172B Ny Ny
R(r,T) = (202 t— > B}?)ST,O + > AZeTitwiT,
j=1 i=1

(14)

where 3, is an impulse function, defined as

1, =0
950 = {0, T 0}'

Thus R(7, T) is the sum of an impulse at 7 = 0 and a
periodic function of 7.

The autocorrelation functions of the simulated and
measured waveforms discussed in the previous exam-

(15)
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Figure 5. Comparison of (a) measured and (b) simulated cumulative distribution functions of the

power envelope in the frequency domain.

ples are shown in Figure 7 for 0 = 7 = 4 ms. The
integration time 7" was chosen to be 4 ms (i.e., 4096
samples). Because one expects an impulse in R(7, T)
at 7 = 0, which is difficult to see on the plots, the
autocorrelation functions were normalized so that
R(0, T) = 1. Because R(7, T) is complex, the absolute
magnitudes of the normalized autocorrelation functions
have been plotted. Thus the quantity that has been
plotted in each case is |[R(t, T = 4 ms)/R(0, T = 4 ms)|.

As expected, the normalized autocorrelation func-

tions consist of a unit impulse at 7 = 0, followed by an
approximately periodic function of 7. The simulated
autocorrelation function does not resemble the mea-
sured function in quantitative detail; the difficulty in
achieving quantitative agreement arises from the fact
that one is dealing with random processes and there-
fore an infinite variety of waveforms. Thus the
frequencies and amplitudes of the narrowband inter-
ferers (which determine the nature of the autocorre-
lation function for nonzero values of 7) have been
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Figure 6. Comparison of (a) measured and (b) simulated probability density functions of the phase in

the frequency domain.

treated as random variables in the simulated wave-
form and do not correspond to those of the measured
waveform. However, using the expression in (14) for
guidance, it has been shown that the wide variety of
autocorrelation functions of the measured data can
be simulated using the model with appropriate
choices for the amplitudes and frequencies of the
dominant interferers [Lemmon and Behm, 1993].

4.3. Level Crossing Distributions

Figure 8 shows level crossing distributions of the
simulated and measured waveforms. Plotted is the
number of upgoing crossings (in a time interval of 4
ms) of the voltage envelope ((I2 + Q2)V 2 across a
given threshold as a function of that threshold. Thus
the number of crossings divided by 4 ms gives the
average level crossing rate in crossings per second.
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The tails in the distributions at high thresholds cor-
respond to the impulsive noise bursts.

The similarity of the distributions in Figure 8
indicates that the envelopes of the simulated and
measured waveforms fluctuate at the same average
rate in time. Characterization of the precise nature of
these fluctuations, that is, the relationships between
the envelope at different instants in time, requires
investigation of the higher-order statistics. In partic-
ular, the pulse width and pulse spacing distributions
need to be examined.

Pulse width is defined as the time interval between
an upgoing crossing of the voltage envelope through
some threshold and the next downgoing crossing of
the envelope through that same threshold. Con-
versely, pulse spacing is defined as the time interval
between a downgoing crossing of the envelope
through some threshold and the next upgoing cross-
ing through that threshold. Thus, for a given data
record, a family of distributions (corresponding to
various thresholds) is required to characterize the
distributions of pulse widths and pulse spacings.

Figures 9 and 10 show pulse width distributions of
the measured and simulated waveforms, respectively,
for thresholds of 5 and 30. Pulse spacing distributions
of the waveforms for these same thresholds are shown
in Figures 11 and 12. Each point in Figures 9-12
corresponds to the number of occurrences of a pulse
width (spacing) of a given time duration. To obtain a
sufficient number of occurrences to clearly reveal the
trends in the distributions, it was necessary to analyze
the entire 1-s records. The scales are logarithmic

because of the large ranges of values that were
encountered.

The pulse width and spacing distributions are es-
pecially helpful for modeling the impulsive noise
bursts. For example, the measured pulse width distri-
bution at a threshold of 30 reveals numerous pulse
widths between 2 and 10 us, whereas the base width
of the central lobe of an impulse filtered with a
400-kHz low-pass filter is 2.5 us. A pulse width
greater than 2.5 us at high thresholds can be achieved
either by filtering an impulse with a bandpass less
than 400 kHz or by superimposing two or more
impulses. However, the measured pulse spacing dis-
tribution at a threshold of 30 reveals numerous pulse
spacings of the order of or less than 10 us, which is
indicative of fine structure in the pulses, suggesting
that the noise bursts consist of superpositions of
individual impulses. This has been verified by inspec-
tion of the voltage envelope on an expanded time-
scale [Lemmon and Behm, 1993].

The measured pulse spacing distribution at a
threshold of 30 also exhibits a bump in the vicinity of
500 ps, indicating that the noise bursts tend to occur
periodically in time. However, the bumps have finite
widths, indicating that the bursts are not precisely
periodic. Thus the level crossing distributions reveal
both fine structure and time correlations associated
with the noise bursts, which have been taken into
account in modeling the impulsive noise.

The simulated distributions at thresholds of 30 in
Figures 10 and 12 typically have fewer occurrences
associated with these features than do the measured
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Figure 8. Comparison of (a) measured and (b) simulated level crossing distributions of the voltage
envelope.

distributions. These differences in the number of eling of the arrival time distribution of the impulses to
occurrences could be diminished by simulating the more accurately reproduce the shapes of these features.
impulsive noise with a greater number of impulses. The level crossing distributions also indicate that
One could also envisage a more sophisticated mod- the impulsive noise is not atmospheric noise. Light-
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Figure 9. Measured pulse width distributions at thresholds of (a) 5 and (b) 30.

ning flashes comprise one or more strokes with pulse
widths of the order of 100 us and with spacings
between strokes of the order of tens of milliseconds
[Uman, 1987]. On the other hand, the level crossing
distributions reveal pulse widths of the order of
several microseconds and pulse spacings of the order
of half a millisecond.

5. Conclusions

A simple model of the waveform of man-made HF
noise and interference has been described. The model
development has been based on analyses of recorded
waveforms over an equivalent RF bandwidth of 800
kHz at various times of day and frequencies in the HF

24

Log of Number of Occurrences

T T
° 1 2 3

Log of Pulse Width (y.s)

band (3-30 MHz). Examples of first- and higher-
order statistics of the recorded waveforms have been
compared with those generated by the model. These
comparisons are of a qualitative nature. Quantitative
comparisons are difficult because one is dealing with
an infinite variety of waveforms generated by random
processes.

Ideally, a database used for model development
would be obtained from many geographical locations
and various seasons, whereas the data discussed in
this paper were all obtained at a single site (Bedford,
Massachusetts) during March 1989. Nevertheless, the
general structure of the model (narrowband interfer-
ers, filtered impulses, and a Gaussian noise back-

=3
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Figure 10. Simulated pulse width distributions at thresholds of (a) 5 and (b) 30.
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Figure 11. Measured pulse spacing distributions at thresholds of (a) 5 and (b) 30.

ground) is expected to be applicable to a wide range
of environments. For example, limited analyses of
data obtained by Mitre during a European measure-
ments campaign revealed a spectrum considerably
more congested with narrowband interference than
the Bedford data; however, increasing the number of
interferers in the model from 50 to 200 resulted in a
cumulative distribution function of the power spectral
density that showed good agreement with the mea-
sured data.

To mention a second example, only one case of
impulsive manmade noise was analyzed in detail.
Examination of the pulse width and spacing distribu-
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tions revealed a “bursty” distribution for the times of
arrival of the impulses that can be simulated by
clustering the impulses in bursts that are correlated in
time. It is expected that this general approach could
be used to model other forms of impulsive man-made
noise as well.

Noise and interference in the HF band can be
highly nonstationary (for example, when dominant
interferers drop in and out of the spectrum), and this
nonstationarity has not been incorporated into the
model. However, the motivation of the work reported
herein has been to develop the capability to perform
laboratory measurements of radio performance un-
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Figure 12. Simulated pulse spacing distributions at thresholds of (a) 5 and (b) 30.
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der stationary channel conditions so that perfor-
mance and channel conditions can be correlated.
From this point of view, the lack of nonstationarity is
not a serious limitation of the model.

Finally, the atmospheric noise waveform has not
been discussed in this paper. However, a wideband
model of HF atmospheric noise has been developed
and will be reported elsewhere.
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