Skip to main content
Institute for Telecommunication Sciences
the research laboratory of the National Telecommunications and Information Administration

Stephen D. Voran; Andrew A. Catellier

Abstract: We describe a major effort to quantify the speech intelligibility associated with a range of narrowband, wideband, and fullband digital audio coding algorithms in various acoustic noise environments. The work emphasizes the relationship between these intelligibility results and analogous ones for an analog FM land-mobile radio reference. The initial phase of this project includes 54 noise environments and 83 audio codec modes. We use an objective intelligibility estimator to narrow the scope and then design a practically sized modified rhyme test (MRT) covering 6 challenging yet relevant noise environments and 28 codec modes for a total of 168 conditions. The MRT used 36 subjects to produce 432 trials for each condition. Results show that intelligibility depends strongly on noise environment, data rate, and audio bandwidth. For each noise environment we identify codec modes that produce MRT intelligibility values that meet or exceed those of analog FM. We expect that these results can inform some of the design and provisioning decisions required in the development of mission-critical voice applications for LTE.

Keywords: background noise; speech coding; speech intelligibility; audio coding; acoustic noise; MRT; ABC-MRT

To request a reprint of this report, contact:

Lilli Segre, Publications Officer
Institute for Telecommunication Sciences
(303) 497-3572

For technical information concerning this report, contact:

Stephen D. Voran
Institute for Telecommunication Sciences
(303) 497-3839

Disclaimer: Certain commercial equipment, components, and software may be identified in this report to specify adequately the technical aspects of the reported results. In no case does such identification imply recommendation or endorsement by the National Telecommunications and Information Administration, nor does it imply that the equipment or software identified is necessarily the best available for the particular application or uses.

Back to Search Results