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THE DISCRETE LOGARITHM PUBLIC CRYPTOGRAPHIC SYSTEM

J. E. Hershey*

The report is a study and primer of the discrete logarithm pUblic
key cryptographic system. Implementation and strengths and weaknesses
are discussed.

Key Words: cryptography; Diffie-Hellman system; finite field logarithms;
MITRE system; public key cryptography

1. INTRODUCTION
The past few years have witnessed the development of a most fascinating dis

cipline termed public cryptography. Cryptography, the set of procedures for ren
dering messages unreadable except to those intended and those procedures for

authenticating commands and intentions to prevent spoofing, is an age-old pursuit.
Developed over thousands of years, it entered the 20th century as an art form.
Necessity, the mother of invention, accentuated the development and refinement of
cryptographic methods and techniques. Following passage through two world wars
into the present technological age, the art changed quickly to a science. Of
premier importance in marking this milestone, the evolvement from art to science,
was the attempt to quantify defensive cryptanalysis, i.e., the attempt to deter
mine the strength of a given system under specific scenarios. Only by standards
can one structure cryptographic methods and responsibly select their parameters.

Until public cryptography, it was necessary for two parties, who wished to
exchange messages securely, to previously exchange secret quantities usually termed
'keys' or I keying variables. I These exchanges could not be made public and had to

be effected through a secure medium such as by courier or other protected channel.,
Public cryptography may free us from this const,raint and do so in an ingenious
manner. The mechanism relies on the apparent asymmetric complexity of a set of
operations and their inverses.

As might be expected, this mechanism has given rise to a different set of
security concerns than beset 'classical' cryptography. The first concern is,

obviously, the evaluation of the algorithm 1s strength, i.e., what might be termed

*The author is with the Institute for Telecommunication Sciences, National Telecom
munications and Information Administration, U. S. Department of Commerce, Boulder,
Colorado 80303.



'shortcuts' to reduced complexity of implementation of the inverse operations.

Second, because correspondents are not in possession of privileged materiel (keys,

authentication words or other secret items) prior to communications, there may be

significant spoofing attacks possible. These vulnerabilities are naturally grouped
under the heading of I identification assurance l or Iresolution.'

In spite of the new genres of cryptographic worries, there are two very pro
mising possibilities for usage of public key cryptographic systems. The first is
the conventional use of protecting message traffic. The second is the protection

of a cryptographic keying variable for another, perhaps 'conventional, I crypto
graphic system such as the Data Encryption Standard (DES). Some of the public

key cryptographic systems are more naturally suited to one use than to the other.

The two systems we will consider in this report are naturally suited to the latter
usage.

The material in this report is intended to stand alone and serve as both an

instructional tool and as the basis for supporting rationale for a report to be
subsequently published which will present a suggested standard for encrypting DES

cryptographic variables.

2. MATHEMATICAL PRELIMINARIES

Although this paper is not intended to be a principally mathematical work, it

is nevertheless impossible to do justice to the cryptographic systems without in

curring some elementary modern algebra, number theory, and sequence theory. This

section is intended to acquaint the reader with terms and concepts used and to pro
vide a reference to outside study. The section is thus more oriented to providing

definitions rather than attempting to serve as a self-contained propaedeutic.

2. 1 Fie1ds
Consider a set of elements E = {el, e2, ... } which may be either finite or

i nfi nite and an operati on denoted by 1+. I If:

b) = (e. + e.) + ek1 J

c) there exists one and only one element in E, eI (the operation identity),
such that for any element in E, ei, ei + eI = ei

d) for any ei in E there exists one and only one element (the inverse) in
E, ej , such that ei + ej = eI
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then we have a mathematical structure termed a GROUP. If, further, for every e.,
is termed commutative or 'abelian. Iand e

J
. in E, e,. + e. = e. + e., then the group

J J ,
All groups with which we shall work will be abelian.

An example of an infinite abelian group is the integers over addition. For

this group the additive identity is 0 and the inverse of integer a is simply -a.

Note, incidentally, that the integers do not form a group under subtraction because

e. - (e. - ek) f (e. - e.) - ek., J '1 J
If we introduce another commutative operation, IX,' and require that the ele-

ments of the 1+1 group, excepting the 1+1 identity element, form a group under

'X,I and further require that for every ei, ej and ek in E, ei x (ej + ek) =

(e i x ej ) + (e i x ek), then we have a mathematical structure termed a FIELD.

An example of a field is the set of rational numbers over addition and multi
plication. The additive identity is O. The multiplicative identity is 1. The

additive inverse of a is simply -a. The multiplicative inverse of a (a f 0) is 1.
a

2.2 Number Theoretic Operations and Functions

We define a set of elements, E = {el, e2, ... }. If element ei = ej + ek x e£,
we note that ek divides (is a factor of) ei - e j . We say that ei is CONGRUENT

to ej modulo ('mod' for short) ek. We denote this by the symbology 'ei =ej mod(e k).
As an example, all even (odd) integers are congruent to each other modulo 2.

The concept of relative primitivity is important. Two elements, a and b, are

said to be RELATIVELY PRIME if they share no factors (excepting the multiplicative

identity) in common. Thus, 6 and 35 are relatively prime even though neither num

ber is itself a prime. A natural extension is the concept of GREATEST COMMON

DIVISOR. The symbology c = (a, b) is defined over the positive integers as follows:

I Integer c is the largest integer that can be d~vided without remainder into both

integers a and b.' If c = 1, then a and b are relatively prime.

A very important number theoretic function is the Euler totient or ·phi I func

tion denoted by ¢. This function when applied to a positive integer m, ¢(m), gives

the count of the number of integers relatively prime to m starting with 1 (which

is relatively prime to all positive integers) and incrementing by 1 up to m. Thus,

¢(6) = 2 and ¢(8) = 4 for examples. For a prime, p, ¢(p) = p - 1. The function ¢

is said to be 'weaklY multiplicative. I This means that ¢(mn) = ¢(m)¢(n) if (m, n)

1, i.e., if m and n are relatively prime. One further result about ¢ is needed

before it can be calculated for any integer and that is that ¢(pn) = pn-l (p-l)

if p is prime. Thus, to calculate ¢ for any positive integer, q, we proceed as

follows:
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a) Canonically decompose q into its (unique) product of powers of primes,
i . e. ,

b) Use the fact that ¢ is a weakly multiplicative function and write

c) Sequentially evaluate all right-hand terms using the result

As an example, ¢(l08) :;;: <P(22 • 33) :;;: ¢(22) • ¢(33) :;;: 2 • (2 - 1) • 32 • (3 - 1) :;;: 36.

Euler showed that for any positive integers, a and m, such that (a, m) = 1,
a¢(m) =1 mod (m). An important special case of Euler's theorem obtains -when m is

a prime, p. For this case, ¢(p) :;;: p-l and aP- l =1 mod (p) (and, of course, p must

not be a factor of a). This special case of Euler's theorem is known as Fermat's
'little theorem. I

2.3 Sequence Theory

Consider that we have a sequence of terms {zl' z2' ... , zi' ... }. Further
suppose that the terms are restricted to elements of the set E :;;: {ei, e2, ... }.

Further suppose that the ith term depends on only the n terms directly preceding

it and does so in a linear fashion, i.e., zi :;;: '1 zi_l + c2 zi-2 + ... + cn zi-n·
Under these conditions we say that the sequence is linearly generated by an nth

degree recursion.
The sequence generation can be conveniently represented by, and studied via,

a polynomial. To derive the polynomial we first devise a square matrix relating

the n-tuple T. :;;: (z., z,. l' ... , z. +1) to the n-tuple T. 1 :;;: (z. l' z,. 2' ... ,, , - ,-n ,-,- -
z . ). By inspection, T. :;;: T. 1 M where,-n , 1-

M

a

I n-l

a

4

where I 1 is the identity matrixn-
of dimension n-l.



We know that the Cayley-Hamilton theorem (Perl is, 1952) requires a square matrix

to satisfy its own characteristic equation. (The characteristic equation will be
the polynomial describing the sequence generation.) To determine the characteristic
equation we take the following determinant: 1M - ~II = O. For calculations done
modulo 2, it is customary to use a polynomial derived from the polynomial in A by
the transformation ~ = x- l (Golomb, 1967).

As an example, consider the sequence generated by the recursion xn = xn-l +

xn-3. Addition here is modulo 2 and xiE{O, l}. The matrix Mis quickly derived:

The characteristic equation is then

\

A+~lIM+AII =

o
~ 1 = 0

o ~

(Note that addition and subtraction are equivalent modulo 2.) Expanding the deter
minant we obtain ~3 + A2 + 1. Making the transformation ~ = x-l, we obtain x3 +

x + 1 as the characteristic polynomial for this mod 2 recurrence of degree 3. 1

2.4 Guide to Further Study
For further study in fields and associated mathematical structures, the reader

is referred to Dean (1966) and Van derWaerden (1953). For further study in num
ber theory the reader is referred to Beiler (1966) and LeVeque (1956). For further
study in sequence theory the reader is referred to Golomb (1967) and Kautz (1965).

2.5 Finite Fields
We know that finite fields are possible if and only if the number of elements,

N, is a power of a prime number, p, i.e., N = pn (Albert, 1956). As we noted
earlier, a field has two binary operators usually denoted by 1+1 and IX. I As an

example of a finite field in which the number of elements is a prime to the first
power (n = 1), we consider N = 3. Let the set of elements be {A, B, C}. The

following tables, 1 and 2, define the field operators

l*Although we started with an equation whose right-hand side was zero, the character
istic equation, it is customary to retain and refer to the left-hand side as the
characteristic polynomial.
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Table l. Field Operator 1+1 Table 2. Fi el d Operator IXI

+ A B C x A B C

A A B C A A A A
8 B C A B A B C

C C A B C A C B

The element A is clearly the additive identity as A + e = e where edA, 8, C}.

The element 8 is the mUltiplicative identity and 8 x e = e.r= °1Let us now make the assignment 8 = 1 . Using this particular assignment
we obtain Tables 3 and 4 below. C = 2

Table 3. Field Operator 1+1 Table 4. Fi el d Operator I x'

+ 0 1 2 x 0 2

0 0 1 2 a 0 a a
1 1 2 a 1 a 1 2

2 2 a 1 2 a 2 1

Note that Tables 3 and 4 are simply the addition and multiplication tables for com
mon modulo 3 arithmetic, that is, the 1+1 and IXI binary operators are common
modular addition and multiplication.

Now consider a field in which the number of elements is a prime to other than
the first power. We consider N = 22 = 4. Let the set of elements be {A, B, C, O}.

Tables 5 and 6 define the field operations.

Table 5. Field Operator '+1 Table 6. Field Operator 'x'

+ A B C D x A B C D

A A B C D A A A A A

8 B A D C 8 A B C D

C C D A B C A C D B

D D C 8 A D A D B C

8y inspection of the Tables 5 and 6, we easily identify elements A and Bas,

respectively, the additive and multiplicative identities, but we are frustrated in
attempting to assign numerical values to all the elements and letting the binary

operators be normal modul·ar arithmetic. In other words, there appears to be a
fundamental difference in character between a field with 3 elements and a field
with 22 elements.

6



2.5.1 GF(p): Finite Fields of Order p

Introduction

The examples at the end of the preceding section have hinted at a very impor
tant first result which we now state without mathematical rigor.

If the number of elements of a finite field is a
prime to the first power, then a field, denoted
by GF(p), can be constructed in which the ele
ments are the residues (remainders) given on
division over the natural numbers, including
zero, by the prime p, and the binary operations
are common modular addition and multiplication.

The construction of GF(p) using the above schema is straightforward:

1) The elements are the integers 0, 1, 2, ... , p-l

2) Addition is addition modulo p

3) Multiplication is multiplication modulo p.

Element inverses are easily computed:

1) The inverse under addition of element a is simply p-a.

2) The inverse under multiplication of element a (a ~ 0) is easily found
with the aid of Fermat1s Ilittle theorem. I This theorem states that

p 1 p-2a - == l(p). Upon suitably factoring the left side, we obtain a-a

:: 1(p). In this form it is immediately evident that the inverse of

element a is aP-2. As an example, consider p = 7 and a = 5. By Fermat's
theorem, the inverse of a is 55 = 3125 :: 3 modulo 7. This is immediately

verfied by noting that 5-3 = 15 =1(7).

Primiti ve Roots
An element, a, is said to be a PRIMITIVE root of m if the succession of powers

a, a2, ... , a¢(m) are all distinct when reduced modulo m. If m is a prime, p,

i.e., m = p, then ¢(p) = p - 1 and the succession of powers is p - 1 long. For

this case, a generates all of the nonzero field elements.
In general, a number, m, has ¢(~(m)) primitive roots (LeVeque 9 1956).

Example

As an example, consider operations modulo 19. Table 7 presents the succession
of powers, reduced modulo 19, of a1s chosen sequentially from the set {2, 3,4, ... ,

17,18}.

7



Table 7. Computation of Successive Powers of a's Modulo 19

na

n ;::; 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

a ;::; 2 2 4 8 16 13 7 14 918171511 3 6 12 5 10 1
a ;::; 3 3 9 8 5 15 7 2 6 18 16 10 11 14 4121713 1
a = 4 4 16 7 9 17 11 6 5 1
a = 5 5 6 11 17 9 7 16 4 1
a = 6 6 17 7 4 5 11 9 16 1

a = 7 7 11 1
a = 8 8 7 18 11 12 1
a = 9 9 5 7 6 16 11 4 17 1
a = 10 10 5 12 6 3 11 15 17 18 9 14 7 13 16 8 4 2 1

a = 11 11 7 1
a = 12 12 11 18 7 8 1

a = 13 13 17 12 4 14 11 10 16 18 6 2 7 15 5 8 9 3 1

a = 14 14 6 8 17 10 7 3 4 18 5 13 11 2 9121615 1

a = 15 15 16 12 9 2 11 13 5 18 4 3 7 10 17 8 6 14 1

a = 16 16 9 11 5 4 7 17 6 1

a = 17 17 4 11 16 6 7 5 9 1

a = 18 18 1

Note that there are 6 primitive roots of 19. This is in accordance with the theory

as ¢(¢(19)) = ¢(18) = ¢(2) • ¢(32) = 1 • 3 • (3 - 1) = 6.

2.5.2 GF(2n): Finite Fields of Order 2n Where n > 1

Introduction
What we have found so far is that finite fields with a first power prime num

ber of elements are frameworks within which we can easily operate using common
modular arithmetic. We will now proceed to develop a practical framework for

working with finite fields involving 2n elements (n > 1).
Consider polynomials of degree n-1 of the form

n-1 ( )c
n_1x

+ ... + c1x + Co 1

in which each of the coefficients is either a one or a zero, i.e., ciE{O, 1}.
We define addition of two polynomials an_ 1x

n-1 + ... + a1x + aO and bn_ 1x
n-1 +

... + b1x + bO as a polynomial rn_ 1x
n-1 + ... + r1x + rO where r i is the modulo two

sum of ai and bi. A little thought will show that there are 2n polynomials

8



possible of form (1) and that the set of all these polynomials forms an abelian
(commutative) group under addition as just defined. We are thus "halfway" to a
field structure and as the logical next step we ponder what will suffice for
multiplication. Clearly normal multiplication of polynomials will not work for
. . h (n-1 ) ( n-1 )lf we conslder t e product an_lx + ... + aO bn_lx + ... + bO =

2n-2 ( ) 2n-3an_lbn_lx + an_ lb n_ 2 + an-2b n_ l x + ... + aObO we note that the product
is a polynomial of degree 2n-2. If we wish to retain multiplication in the
above "normal" sense we will have to manaqe it so that polynomials of or exceeding
the nth degree will be mapped or reduced to polynomials of degree n-l or less. It
is a remarkable result that such a mapping can be accomplished through the use
of modular reduction based on a 'primitive ' polynomial.

Polynomials
Like their counterparts, the integers, polynomials can be factored. For exam

ple, the polynomial x2 + 1 cannot be factored over the field of polynomials with
coefficients from the set of real numbers because two factors of the form
(x + a)(x + b) = x2 + (a + b) x + ab cannot be found. However, over the field
of polynomials with modulo two coefficients, x2 + 1 can be factored, indeed, it
is a perfect square x2 + 1 = (x + 1)2. If a polynomial is factorable into a
product of polynomials of smaller degree, the polynomial is said to be REDUCIBLE.
Polynomials that cannot be so factored, such as x2 + x + 1, are said to be
IRREDUCIBLE. It is analogous to composite and prime numbers in the realm of
integers. But this is where the analogy ends for there is a further dichotomization
to the set of irreducible polynomials, those irreducible polynomials that are
PRIMITIVE and those that are not.

Only a polynomial, p(x), that is primitive (and this is a practical way to
2define Rrimitivity) can be used as a modulus of reduction so that the set {a, a, a ,

... , a2 -l} mod P(x) maps one-to-one onto the 2n polynomials of form (1). The
character a stands for a primitive element. One of the chief results of finite
field theory is that there exists suitable P(x)'s and a1s that allow construction
of a finite field of 2n elements.

Examples

1. The trinomial x4 + x + 1 is primitive (and hence irreducible2). It is
known that a = x is a primitive element. Thus we can start generating elements of
the field by successive powers of a:

2primitivity implies irreducibility. The converse is not true except when 2n-l is
a (Mersenne) prime.

9



a = x
2 2a = X

3 3a = X

4 x4 x + 1 Notice that x + 1 is the remainder obtained upon divisiona = =
4 (x4 + x + 1).5 x5 x2 + x

of x by the modulus
a = =

We will now present set A, the set {O, a, a 2, ... , a 15} and show that it does
indeed exhibit a one-to-one mapping onto the set, set B, of all polynomials of form
(1) with m = 4 (Table 8).

II. The polynomial x4
+ x2

+ 1 is reducible. In fact, it is a square: x4 +

x2
+ 1 = (x2 + x + 1)2. Because it is reducible it cannot serve as an appropriate

modulus and no primitive elements exist. The behavior is interesting. Let us
set a = x and generate elements as done in example I, above, this time reducing
modulo x4 + x2 +1. (The choice of a = X is, in a sense, a 'natural' choice as
a = X will always serve as a primitive element for a primitive polynomial.) The
results are displayed in Table 9. Notice that the mapping is no longer one-to-one
but many-to-one.

III. The polynomial x4 + x3 + x2 + x + 1 is irreducible but not primitive.
Because it is not primitive it cannot serve as an appropriate modulus and, again,
no primitive elements exist. Consider its behavior exhibited in Table 10. Note
that here also we see a many-to-one mapping.

IV. Let us look once more at the behavior of the primitive trinomial
x4 + x + 1 considered in example I. In example I we chose a = x as the primitive
element. Suppose we had chosen a = x3 Table 11 shows the results of such a
choice. Notice that the mapping is many-to~Qne. The reason this is so is not
due to reduction modulo a nonprimitive polynomial but rather due to the fallacious
choice of a = x3 as a primitive element. A little reflection will show that
a = x3, a 2 = (x3)2 = x6, a 3 = (x3)3 = x9, a 4 = (x3)4

= x12, a5 = (x3)5
= x15.

But x15 ~ 1 and so a6 = (x3)6 = x18 = x3. What we have discovered here is that

not all nonidentity elements of a finite field are necessarily primitive. The

one happy exception is the case when 2n - 1 is a (Mersenne) prime. For an

element a = xm to be a primitive element, m and 2n - 1 must be relatively prime
(have no factors, save unity, in common).
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Table 8. Powers of a mod(x4 + x + 1)

Set A Set B

Additive Identity = o • • 0

a = x 1
2 ia = X

3 = x3 x + 1a

4 = x + 1 x2a

a 5 = i + x i + 1
6 x3 +i 2 + xa = x
7 x3 + x + 1 i + x + 1a =
8 i + 1 x3a =
9 x3 + x x3 + 1a =
10 i + x + 1 x3a = + x
11 x3 + x2 + x x3 + x + 1a =
12 x3 +i + x + 1 x3 2a = + x
13 x3 +i + 1 x3 + x2 + 1a =
14 x3 + 1 x3 2a = + x + x
15 x3 2 + 1a = + x' + x

11



Table 9. Powers of a mod(x4 + x2 + 1)

Set A Set B

Additive Identity = o • • 0

a = x 1
2 x2a = x
3 = x3 x +a

4 = x2 + 1 2a x
5 x3 + x 2 + 1a = x
6 1 2 + xa = x
7 = 2 + x + 1a x x
8 i x3a =
9 = x3 x3 + 1a

10 2 + 1 x3 + xa = x
11 x3 + x x3 + x + 1a =
12 1 x3 + x2a =
13 = X x3 +i + 1a

14 = x2 x3 + x2 + xa

15 = x3 x3 + x2 + x + 1a

12



Table 10. Powers of a mod(x4 + x3 + x2 + x + 1)

= x3

= x3 + x2 + x + 1

= x3

= x3 + x2 + x + 1 + 1

+ x + 1

+ x

x

x + 1

a

1

i
i +1

x2 + x

i + x + 1

Set B

x3 + i + x + 1

x3

x3

x3

x3

x3 + i
x3 + i + 1

x3 + i + x

•a 111-----.

1

1

1

x

x

x

=

=

=

=

=

=

=

=

=

Set A

Identity =

9a

11a

12
a

14a

13a

10
,a

I
IAdditive

13



Table 11. Powers of a mod(x4 + x + 1)

Set A Set B

o•o ...----..I Additive Identity =

=

=

x

x + 1

x2

x2 + 1

i + x

i + x + 1

x3

x3 + 1

x3 + x

x3 + x + 1

_-h~--lr--'" x3 + i
x3 + x2 + 1

x3 + i + x

x3 + i + x + 1

1

= x3

= x3 + i
= x3 + x

= x3 + x2 + x + 1

=

= x3

= x3 + i
= x3 + x

= x3 + x2 + x + 1

= x3

= x3 + i
= x3 + x

= x3 + x2 + x + 1

12a

14



2.6 The Art of Exponentiation
Given a, how many multiplications are required to obtain an? The answer in

general is, as far as the author knows, unknown. Knuth (1969, pp. 401+) considers
the problem at length. Knuth presents the following algorithm (somewhat modified
by the author) which he terms the 'binary algorithm,· for accomplishing the expon
entiation Y = an as shown in Figure 1.

The binary algorithm requires b092~+ o(n) multiplications where o(n) is the
number of ones in n's binary representation. As stated, the algorithm is not nec
essarily the 'cheapest' in terms of multiplications required for general n. Knuth
cites n = 15 as the smallest n for which there is a less costly procedure. The
binary algorithm forms a15 from a with b09215J+ 0(15) = 3 + 4 = 7 multiplications.
Let us, however, calculate a15 with only 5 multiplications as follows:

START: S+-a
S-f8 2

S-f8 °a

y-f8

S-f8
2

S-f8
2

S-f8 oy

FIN ISH ED: S=a15

(1 multiplication)
(1 multiplication)

3(save a )
(1 multiplication)
(1 mUltiplication)
(1 multiplication)

Although the Binary Algorithm may not always be the cheapest in terms of multi
plications required, it is easily programmed and its performance, in general, is
quite good. The algorithm works not only for aE{integers} but also for
aE{finite fields}.

Finally, one must bear in mind that algorithms should not always be evaluated
by counting just one cost item, multiplications in this case. Total algorithmic
complexity, and 'convenience,' depends upon many ancillary considerations such as
storage requirements, indexing, sorting, and other housekeeping tasks.

There may also be shortcuts which do not reduce the number of multiplications,
for example, but reduce the work required to perform them. As an example, the
author (Hershey, 1980) has shown that the calculation of aX for a particular set
of a1s in specific finite fields can be performed using a trick from the theory of

recursive sequences. The method is proffered as an example following a motivational
preamble.

Fast calculation of aX:

Exponentiating aX modulo x7
+ x + 1 (a known primitive polynomial) can be

15



START
N+-n
Y+-1
Z+-a

s-t«:

Z+-Z2 (squaring)

(lnJ ~

NO

greatest integer)
less than or
equal to n

FINISHED

Figure 1. The 'binary algorithm.'
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performed by the block structure shown in Figure 2. This structure is essentially
the binary algorithm.

As an example, let our field element be a ::: 1 + x + x6 and let X = 67. These
quantities are represented in a natural way by the vectors: a::: (1100001), X :::
(1100001). The AC is a 7-bit register (vector) that serves as an accumulator. The

algorithm proceeds as follows:

IN ITIALIZE: AC+(1000000)
• ••••••••••••••••••••••••••••••• e , •••••••••••••••

i ::: 1: AC+(1000000)(1100001) ::: (1100001)

a +(1100001)(1100001) ::: (1010011)
· .
i ::: 2:

i ::: 3:

AC+(1100001)(1010011) ::: (0101110)

a +(1010011)(1010011) ::: (1001011)

a +(1001011)(1001011) ::: (1001110)
· .
i ::: 4: a +(1001110)(1001110) ::: (1111101)
· .
i ::: 5: a +(1111101)(1111101) ::: (1100110)
· .
i =6: a +(1100110)(1100110) ::: (1101100)
· .
i ::: 7: AC+(0101110)(1101100) ::: (0100110)
• •••••••••••••••••••• I' •••••••••••••••••••••••••••

FINISHED
• •••••••••••••••••••• tI •••••••••••••••••••••••••••

Clearly, the greatest amount of time is consumed in recursively squaring the

field element a. Consider now the progression of a-vectors (a, a2, a4, a8, a16,

32 64. 2 4a , a ) when a 1S of the form a ::: c1x + c2x + c4x , e.g., a ::: x. For this case

we obtain:

1 2 x3 4 5 6x x x x x
a ::: (0 1 a 0 0 0 0)

2
::: (0 0 1 0 0 0 0)a

4 ::: (0 0 0 a 1 0 0)a
8 ::: (0 1 1 0 0 0 0)a
16

::: (0 0 1 0 1 0 0)a
32 (0 1 1 0 1 0 0)a =
64

::: (0 1 0 0 1 0 0)a
Considering the table of powers of a above as a 7 x 7 array, two points are

17



NO

IN ITIALI ZAnON
i+l

AC+l

AC+AC*a

NO

YES FINISHED

AC=aX

a+a*a

i+i+l

(squaring)

Figure 2. Algorithm fo] computing aX (all operations
are modulo x + x + 1).
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immediately evident:

a) It is a sparse array, there are fewer ones and zeros.
b) Many of the columns contain only zeros.

property which obtains

Then
It follows that all

remarkable and useful
2 4c2x + c4x .

2 4+ c2x + c4x
same form as a.

clx +

;:: clx
of the

These two observations are clues to a

upon choosing a to be of the form a =

Consider that a is of the form a
224a = ~4x + (cl + c4)x + c2x and is

21
.of a ,1 = 0, 1, ... , 6, are of the same form. Also, because x7 + x + 1 is

2;
primitive, all of the a , i ti 0, 1, ... , 6, will be unique and the 'pigeon-
hole ' principle insures that all nonzero polynomials of the form

2 4 '11clx + c2x + c4x W1 occur.
Consider, now, the bit stream of a nonzero column proceeding from top to

b tt th f'f t t f' 2 4 8 16 32 64 1 0 0 1 0 1 1o om, e.g., e coe 1Clen sox 1n a, a , a , a , a , a , a .

This bit stream, and hence, the entire table, is described by the smaller, one is
almost tempted to term it of 'logarithmic' order, recusion: x3 + x2 + 1. 3

To generate the successive squares of a, then, when a is of the form
clx + c2x

2 + c4x
4, we need only implement a small shift register with linear

feedback as shown in Figure 3 and step it for every squaring operation.

2.7 The Inverse Problem - Finding Discrete Logarithms

Introduction

Exponentiation, computing the forward mapping, i.e., finding an given a and n
is straightforward and quickly accomplished. The reverse operation, the Ilogarithm
problem,' i.e., finding n given a and an is apparently not, in general, a task that
can be performed in a time comparable to exponentiation. It is the apparent asym
metric complexity that provides the security of the derivative public cryptographic
systems.

is easi ly found.

It i s c1ear tha tNote that ",2 = + ( ) 2~ c lX c l + c 1 x + ...n- n-
224 2

the components of a, a , a ... are described
is xn + xn-l + 1.

3The recursion generating the table for a primitive trinomial of the form

2n_l 2 4 2n-l
x + x + 1 when a = clx + c2x + c4x + .. , + C n_lx

2
2n- l

+ c ZX
2n-

by a recursive process whose polynomial

19
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Split-Search Attack
To find n given a and an we could, of course, try all possible exponents of a.

The number of multiplications required on the average to find an then will be pro
portional to, or linear with, n. But we can do better. Knuth (1973, p. 9,
Problem 17 [Discrete Logarithms]) presents what I call a 'split-search ' algorithm
which is applicable to any p.

Let

where

rxl = I x if x€{integers}

LxJ + 1 otherwise

and a ~ nl, n2 < rJP1·
It is clear that q will take on all values in the range a ~ q ~ p + 1 which includes
the range of interest a ~ q ~ p - 2. Consider our logarithm problem to be that of
recovering q given a and the equation aq = b mod(p). Substituting for q, we obtain

mn l + n2a = b mod(p)

where m = rJP1 We rewrite this equation as

mn l -n2a = ba . mo d(p) .

For simplicity of the computations that follow, we choose to rewrite further the
equation as

mn l 1 n2a = b(a-) mod(p)

where a- l =aP-2 mod(p) by Fermat's theorem. mn
We now create two tables. The first table Ronsists of a 1 mod(p) for

( - 1) 2o ~ nl < m. The second table consists of b a for 0 ~ n2 < m. Because
q = mn l + n2 will span the entire range of possible exponents, there will be an
entry in the first table that is the same as an entry in the second table.

Finding these matching elements allows us to compute directly the unknown
exponent q.
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Example of the Split-Search Attack, using Integers

We know that a ~ 3 is a primitive root of the prime 127. Therefore, for every

b, 1 ~ b ~ 126, there exists a q, 0 ~ ~ ~ 125 such that 3q = b mod(127). Table 14
lists the residues of 3q mod(127).

Let us find q such that 3q = 100 mod(127) using the split-search attack. The
three steps are:

a) We calculate m = r~1271 = rll.31 = 12

b) We calculate 0.-
1

= 3-1 =85 mod(127)

c) We prepare Tables 12 and 13.

Upon examination of Tables 12 and 13 we find that the entry 47 is common to both.
Thus nl = 5 and n2 = 6. We now compute q = 12 • 5 + 6 = 66 which may be verified
by looking up 0.

66 in Table 14.

Example of the Split-Search Attack, using Polynomials

We know that x7 + x + 1 is a primitive polynomial and that a = X

is a primitive element. Therefore, for every polynomial of degree six or less,
b(x), excepting the zero polynomial, there exists a q, 0 < q < 126 such that
xq = b(x) mod(/ + x + 1). Table 15 lists the residues of xq-mod(/ + x + 1).

Let us find q such that xq = x5 + x3 + x + 1 mod(/ + x + 1). As before,
m = 12. We calculate 0.-

1 =x6 + 1 and then Tables 16 and 17.
Upon examination of Tables 16 and 17, we find that the entry x4 + x3 + 1 is

common to both. Thus nl = 9 and n2 = 7. We now compute q = 12 • 9 + 7 = 115 which
may be verified by looking up 0.

115 in Table 15.
2.7.3 Other Attacks

Many contemporary mathematicians are viewing the logarithm problem as one of
the more interesting research areas of number theory and algebraic number theory.
The problem forms a natural 'bridge l of inquiry between the two disciplines of
multiplicative and additive number theory, the apparent present-day dichotomy of
the 'queen of mathematical sciences.' The split-search attack was the
best improvement known since Bouniakowsky·s method (1870) which as Adleman (1979)
points out becomes computationally equivalent to linear search as n becomes suffi
ciently large. The split-search attack, as we demonstrated, requires only pl/2

mUltiplications but also a great deal of storage, also of the order of pl/2, and

also ancillary sorting or a special table processing architecture.
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Split-Search Work Tables

Table 12. Table 13.

12nl n
n1 3 mod(127) 100 • 85 2 mod(127) n2

a 1 100 a

1 73 118

2 122 124 2

3 16 126 3

4 25 42 4

5 47 14 5

6 2 -e 47 6

7 19 58 7

8 117 104 8

9 32 77 9

10 50 68 10

11 94 65 11
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Table 14. Residues of 3q mod(127)

q

o

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1

3

9

27

81

116

94

28

84

125

121

109

73

92

22

66

71

86

4

12

36

q

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

108

70

83

122

112

82

119

103

55

38

114

88

10

30

90

16

48

17

51

26

78

q

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

107

67

74

95

31

93

25

75

98

40

120

106

64

65

68

77

104

58

47

14

42

24

q

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

126

124

118

100

46

11

33

99

43

2

6

18

54

35

105

61

56

41

123

115

91

q

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

19

57

44

5

15

45

8

24

72

89

13

39

117

97

37

111

79

110

76

101

49

q

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

20 I

60 I
53 !

!
j

32 1
I
i

96 I
I
I

34 I
I

102 I
I

52 I
291

87 I
7 I

21

63

62

59

50

23

69

80

113

85



Table 15. Residues of xq mod(x7 + x + 1)

q xq q xq q xq

0 1 22 432 44 6 +x4 +xx +x +x +x x

1 23 x5+x4+x3+i 45 5 i+x+lx x

2 2 24 x6+x5+x4+x3 46 6 +x3+i+xx x

3 x3 25 x6+x5+x4 +x+l 47 x4+x3+i+x+l

4 x4 26 x6+x5 +x2 +1 48 x5+x4+x3+x2+x

5 5 27 x6 +x3 +1 49 x6+x5+x4+x3+x2x

6 6 28 x4 +1 50 X6+X 5+x4+x3 +x+lx

7 x+l 29 5 +x 51 x6+x5+x4 +i +1x

8 2 30 6 +i 52 x6+x5 +x3 +1x +x x

9 x3+i 31 x3 +x+l 53 x6 +x4 +1

10 x4+x3 32 x4 +x2+x 54 x5 +1

11 x5+x4 33 x5 +x3+i 55 6 +xx

12 x6+x5 34 6 +x4+x3 56 i+x+lx

13 6 +x+l 35 x5+x4 +x+l 57 x3+i+xx

14 / +1 36 x6~x5 2 58 x4+x3+i+x +x

15 x3 +x 37 x6 +x3+x2+x+l 59 x5+x4+x3

16 x4 +i 38 x4+x3+i +1 60 X6+x5+x4

17 x5 +x3 39 x5+x4+x3 +x 61 x6+x5 +x+l

18 x6 +x4 40 x6+x5+x4 +x2 62 x6 +i +1

19 x5 +x+l 41 x6+x5 +x3 +x+l 63 x3 +1

20 6 2 42 x6 +x4 +i +1 64 x4x +x +x +x

21 x3+i+x+l 43 5 +x3 +1 65 x5 +ix
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Table 15. (cont . )

16:
xq

q xq q xq

x6 +x3 88 x6+x5 +x 110 x6+x 5 +x2

167 x4 +x+l 89 x6 +i+x+l 111 x6 +x3 +x+l
I 5 +x2+x x3+i x4 +i
1

68 x 90 +1 112 +1

169 x6 +x3+i 91 x4+x3 +x 113 x5 +x3 +x

70 x4+x3 +x+l 92 x5+x4 +i 114 x6 +x4 +i

71 x5+x4 +i+x 93 x6+x 5 +x 3 115 x5 +x3 +x+l

72 x6+x5 +x3+i 94 x6 +x4 +x+l 116 x6 +x4 +x2+x

73 x6 +x4+x3 +x+l 95 x5 +i +1 117 x5 +x3+i+x+l

74 x5+x4 +i +1 96
6 +x3 +x 118 6 +x4+x3+i+xx x

75 x6+x5 +x3 97 x4 2 119 x5+x4+x 3+x2+x+l+x +x +x+l

76 x6 +x4 +i+x+l 98 x5 +x3+i+x 120 x6+x5+x4+x3+i+x

77 x5 +x3+i +1 99 x6 +x4+x 3+x2 121 x6+x5+x4+x3+x2+x+l

78 x6 +x4+x3 +x 100 x5+x4+x3 +x+l 122 x6+x5+x4+x3+i +1

79 x5+x4 +x2+x+1 101 x6+x5+x4 2 123 x6+x5+x4+x3 +1+x +x

80 x6+x5 +x3+i+x 102 x6+x5 +x3+i+x+l 124 x6+x5+x4 +1

81 x6 +x4+x3+x2+x+l 103 x6 +x4+x3+i +1 125 x6+x5 +1

82 x5+x4+x3+i +1 104 x5+x4+x 3 +1 126 x6 +1

83 x6+x5+x4+x3 +x 105 x6+x5+x4 +x

84 x6+x5+x4 +i+x+l 106 x6+x5 +i+x+l

85 x6+x5 +x3+i +1 107 6 +x 3+x2 +1x

86 x6 +x4+x3 +1 108 x4+x3 +1

1
87 x5+x4 +1 109 x5+x4 +x
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Split-Search Work Tables
Table 16. Table 17.

12n1 mOd(/+x+l)
n

n1 x (X5+x3+x+l )o(x6+1) 2 mod(x7+x+l) n2

0 1 x5 +x3 +x+l 0

x6+x5 6 +x4 +i 1 Ix

2 x6+x5+x4+x3 x5 +x3 +x 2 I

3 x6+x5 +i+x x4 +i +1 31
I

4 x5+x4+x3+x2+x x6 +x3 +x+l 4
1

5 x6+x5+x4 x6+x5 +i 5

6 x6+x5 x3 +x x5+x4 +x 6

7 x6+x5+x4 +x2+x+1 x4+x3 +1 7

8 x6 +x3 +x x6 +x 3+x2 +1 8

9 x4+x3 +1 x6+x5 2 9+x +x+l

10 x6+x5+x4+x3+x2+x+l x6+x5+x4 +x 10

11 x5 x4 +x 11

27



The split-search attack is not the only attack, however. Recently, Pollard
(1978) presented a randomly driven algorithm to compute the logarithm of an
exponentiated primitive root modulo its prime. Pollard's method requires on the
order of pl/2 computations. Its significant benefit is that, unlike the

split-search attack, it doe~ not require the storing and processing of a large
quantity of information. Although Pollard did not adapt his algorithm to finite
fields other than those formed about primitive roots (integer domains), he
stated that such an extension should be easily effected.

Another method has been discovered by Adleman (1979). Adleman1s method runs in
time proportional to an expression on the order of exp(~ln(p) In(ln(p))). This
expression is subexponential and its significance can best be appreciated by the
entries in Table 18. Letting q = 2a, Table 18 compares q, ql/2 and

exp(~ln(q) In(ln(q)) ) against a.

3. THE DISCRETE LOGARITHM PUBLIC CRYPTOGRAPHIC SYSTEM

3. 1 Introduction
We have developed the concept of raising primitive field elements to powers

and reducing them modulo prime numbers and primitive polynomials. We have stated
that the inverse problem, the index or 'logarithm ' problem, i.e., determining the
exponent Xof aX given a and aX, is evidently more difficult than exponentiation.
In section 2.7 we hinted that the logarithm problem's difficulty ranges from greater
than that of exponentiation to so much greater that, for the present at least, it
appears that the logarithm problem is effectively impossible. For those cases in
which the logarithm problem is effectively impossible, we can construct a crypto
graphic system of the 'Public Key' genre.

Diffie and Hellman (1976) proposed a cryptographic system based on integer
exponentiation over GF(p), where p is a large prime. We will refer to this system
by DLI, an acronym for Qiscrete hogarithm (the basis of the apparent asymmetric
complexity) using Jptegers.
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Table 18. Comparison of Work Required for Three Different Attacks

[x(y) is shorthand for x • lOY]

ql/2 exp(/ln(q) In(ln(q))a q )

20 1.0( 6) 1.0( 3) 4.2( 2)

40 1.1(12) 1.0( 6) 1.5( 4)

60 1.2(18) 1.1( 9) 2.6( 5)

80 1.2(24) 1.1(12) 3.0( 6)

100 1. 3(30) 1.1(15) 2.8( 7)

120 1. 3( 37) 1.2(18) 2.l( 8)

140 1.2(21) 1.4( 9)

160 1. 2(24) 8.4( 9)

180 1.2(27) 4.5(10)

200 1.3(30) 2.3(11 )

220 1. 3(33) 1.1 (12)

240 1. 3(36) 4.6(12)

260 1.9(13)

280 7.7(13)

300 2.9(14)

320 1.1(15)

340 3.8(15)

360 1.3(16)

380 4.4(16)

400 1.4(17) 1
i
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Berkovits, Kowalchuk, and Schanning (1979) introduced a variant to the dis
crete logarithm problem and set forth a system based on exponentiation over GF(2 n)

using primitive polynomials. We will refer to this system as DLP, an acronym for
Qiscrete 10garithm using folynomials.

The procedure underlying both systems is essentially the same. Let there be
two parties, A and B, who wish to create a quantity (an integer or polynomial)
which is known to them jointly but not to anyone else. Further assume that they
possess no mutually private data a priori and that all communication between parties
A and B is available to any interested third party. Parties A and B proceed as
follows:

PARTY A
o BOTH PARTIES MUTUALLY

AND PUBLICLY AGREE ON
ELEMENT a FROM A PUB
LICLY AGREED UPON FI
NITE FIELD

PARTY B

o PARTY A GENERATES A NUMBER XA
o PARTY A SAVES XA AND CONCEALS

IT FROM EVERYONE ELSE
X

o PARTY A COMPUTES a A
X

o PARTY A TRANSMITS a A
TO PARTY B

(

N XB ) XAo PARTY A COMPUTES ~

o PARTY B GENERATES A NUMBER XB
o PARTY B SAVES XB AND CONCEALS

IT FROM EVERYONE ELSE
X

o PARTY B COMPUTES a B
X

o PARTY B TRANSMITS u B
TO PARTY A

o PARTY B COMPUTES (u XA ) XB

o BOTH PARTIES NOW
X X

POSSESS a A B
X X

All that a third party can glean from communications intercept is u, a A and a B

3.2 Example of the DLI
An example of the DLI using the prime modulus 127 and the primitive element

a = 3 is given as follows:
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PARTY A PARTY B
o BOTH PARTIES AGREE TO

USE a = 3 AND REDUCE
MODULO 127

o PARTY A CHOOSES (GENERATES IN 0 PARTY B CHOOSES XB = 72
A RANDOM MANNER) XA = 16

o PARTY A COMPUTES 3
16 MOD 127 = 71 0 PARTY B COMPUTES 372 MOD 127 = 2

o PARTY A TRANSMITS 71
TO PARTY B

o PARTY A COMPUTES
216 modulo 127 = 4

o

o PARTY B TRANSMITS 2
TO PARTY A

o PARTY B COMPUTES
71 72 modulo 127 = 4

BOTH PARTIES NOW
POSSESS A QUANTITY, 4,
WHICH IS KNOWN TO
THEM ONLY.

3.3 Example of the DLP
An example of the DLP using the primitive polynomial x7 + x + 1 and the primi

tive field element a = x is given as follows:

PARTY A PARTY B
o BOTH PARTIES AGREE TO

USE a = x AND
REDUCE MODULO x7 + x + 1

o PARTY A CHOOSES XA = 56

o PARTY A COMPUTES
x56 mod(x7 + x +1) = x2 + x + 1

o PARTY A TRANSMITS x2 + x + 1
TO PARTY B

o PARTY A COMPUTES
(x6 + x4)56 mod(x7 + x + 1)
= x5 + x4 + x3 + x2 + x + 1

o PARTY B CHOOSES XB = 18

o PARTY B COMPUTES
x18 mod(x7 + x + 1) = x6 + x4

o PARTY B TRANSMITS x6 + x4
TO PARTY A

o PARTY B COMPUTES
(x2 + x + 1)18 mod(x7 + x + 1)
= x5 + x4 + x3 + x2 + x + 1

o BOTH PARTIES NOW
POSSESS A QUANTITY,
x5 + x4 + x3 + x2 + x + 1,
WHICH IS KNOWN TO
THEM ONLY.
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3.4 Implementation
To implement either the DLI or the DLP, the implementor must choose a finite

field within which to work and a primitive element of the field. The security
afforded by the system will be in large part determined by the number of field
elements but there are other important considerations specific to the system.

Additional Consideration for the DLI System

From Pohlig and Hellman's work (1978), we note that the type of prime is very
important. Pohlig and Hellman's attack works extremely efficaciously against those
primes, p, for which p - 1 canonically decomposes into a product of powers of small
primes. The fourth Fermat number, 65537, is an excellent example of such a prime.
Note that 65536 = 216. The best choice for a prime, p, in order to render the
Pohlig and Hellman attack impotent, would be a case for which p is a 'safe prime,'
i.e., p = 2p· + 1 where p' is also a prime.

Additional Consideration for the DLP System

The ~est choice for a field of 2n elements is one in which 2n - 1 is a prime
number. All elements, excepting the additive and multiplicative identities, are
primitive for this case. (All irreducible polynomials are also primitive in this
case.) Although Pohlig and Hellman's attack (1978) extends from GF(p) to all
finite fields, GF(pn), it produces no advantage over the Split-Search attack
for GF(2 n) when 2n - 1 is prime.

3.5 Other Security Considerations
3.5.1 Computation Time Attack

If a DLI or DLP system is operated real-time, on-line, it is conceivable that
an attack could be mounted by m~asuring the time required for exponentiation and
relating it to the bit density of the exponent. For example, it takes longer to form
a7 from a than to form a8. If one could determine a(XA)4 from the time required to

X
compute a A, then one need perform only a sequential search of (a(~A)) cryptovari-
ables where n ;s the length of the cryptovar;able.

The system, therefore, should be implemented so that there will be no way that
externally measurable timing information can convey any information regarding the

cryptovariable in use.

4The notation a() is defined in Section 2.6, entitled 'The Art of Exponentiation. I
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3.5.2 Active Transparency Attack
The Active Transparancy Attack (ATA) is an attack that can be carried out only

if the perpetrator:

(a) is sophisticated.
(b) has access to the telecommunications medium to the extent that he/she

is able to interrupt it and insert his/her own traffic.

The attack schema is illustrated in Figure 4 and proceeds as follows:

(a) The perpetrator, Party P, elec tron l caTly inserts himself between Party A
and Party B.

. XBParty P, however, does recelve a

(b) Party A sends
XAa to Party

however, does receive a
XA

(c) Party P sends Party A a
Xpl

(d) Party P sends Party B a
Xp2

(e) Party P
XA Xpl

computes (a) .

(f) Party A
Xpl XAcomputes (a ) .

(g) Party B sends Party A a
XB

(h) Party A never receives a
XB

(i ) Party B
Xp2 XBcomputes (a ) .

(j)
XB Xp2

Party B computes (a) .

B.
XAParty B never receives a Party P,

XAX pl XBXp2
As a result, Parties A and P hold a in common and Parties Band P hold a
in common. If Party A (or B) sends traffic to Party B (or A), Party P will decipher
the traffic, exploit it, and reencipher the traffic using the other commonly held
cryptovariable and send it on to the other legitimate party.
3.5.3 ATA Countermeasure

A countermeasure to the ATA has been suggested by McRae (private communication).
XAXBMcRae1s idea requires Party A or B to send an unused part of a to Party B or A

by another channel or to use another authentication scheme such as voice recognition.
How this procedure would help defeat the ATA becomes obvious when we consider
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that, under the ATA, Parties A and B share no secret quantity; rather, all traffic
is unencrypted and then reencrypted by Party P.

As an example of the ATA countermeasure, consider that:

Party P chooses Xpl =

Party A sends x6 + i
Party P sends x5 + x3

Party A computes (x5

Party P computes (x6

If it is standard procedure for Parties A and B to authenticate, by voice or
other channel, by exchanging (publicly) the coefficients of x2, x, and 1 (remember

that Parties A and B do not use these three bits of their common secret quantity
as key for any secret process), then A and B will detect a mismatch as A will hold

1, 1, 0, and B wi 11 ho1d 1, 0, o.

35



3.6 Architectural Tools
We have already shown that when implementing the DLP using polynomials over

GF(2m), it is best to choose m such that 2m - 1 is a large prime. (A prime of

this form is termed a Mersenne prime.) Two things are needed. First, we need a
list of Mersenne primes and, second, we need to know a primitive polynomial of the
Mersenne prime degree.

The first twenty-seven Mersenne primes are known. The following table, com
piled from Zier1er (1969) and Noll and Nickel (1980), presents the primes and:

(a) if primitive trinomials exist, the trinomials themselves.
(b) the notation INONE EXIST' if no primitive trinomials exist of the

Mersenne prime order.
(c) a blank if the primitive trinomial question is unanswered.

p, for which 2P - 1 is prime primitive trinomia1s 5

2 x2 + x +

3

5

7

13

17

19

31

61

x3 + x +

x5 + l + 1

x7 + x + 1

x7 + x3 + 1

NONE EXIST6

x17 + x3 + 1

x17 + x5 + 1

x17 + x6 + 1

NONE EXIST

x31 + x:
3 + 1

x31 + x6 + 1

x31 + / +

x31 + x13 + 1

NONE EXIST

5If xP + xa + 1 is a primitive trinomial then so is xP + xp-a + 1. Only the former
is listed.

6There do, however, exist primitive polynomials of this and all other degrees.
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p, for whi ch 2P - 1 is prime primitive trinomials

89 x89 + x38 + .1

107 NONE EXIST

127 x127 + x +

x127 + / + 1

x127 + ~15 +

x127 + x30 +

x127 + x63 +

521 x521 + x32 +

x521 + x48 + 1

x521 + x158 +

x521 + x168 +

607 x607 + x105 + 1

x607 + x147 + 1

x607 + i 73 + 1

1279 x1279 + i 16 + 1

x1279 + x418 + 1

2203 NONE EXIST

2281 x2281 + /15 + 1

i 281 + x915 + 1

i 281 + x1029 + 1

3217 x3217 + x67 + 1

x3217 + x576 + ,

4253 NONE EXIST

4423 x4423 + i 71 + 1

x4423 + x369 + 1

x4423 + x370 +

x4423 + x649 +
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p, for which Zp - 1 is prime

9689

9941

11213

19937

21701

23209

44497

primitive trinomials

x4423 + xl 393 + 1

x4423 + x14l 9 + 1

x4423 + x2098 + 1

x9689 + x84 + 1

x9689 + x47l + 1

x9689 + x1836 + 1

x9689 + x2444 + 1

x9689 + x4l 87 + 1

NONE EXIST

NONE EXIST

4. SUMMARY AND CONCLUSIONS
We have described a very important subset of present-day Public Cryptographic

methods, specifically those systems built upon the apparent asymmetric complexity
between finite field exponentiation and the taking of discrete 'logarithms' in a
finite field. We have presented the requisite mathematics and have attempted to
be very liberal in our use of examples to highlight the mathematical preliminaries
and the cryptographic systems themselves. The most important issue, the crypto
graphic strength, the systems' resistance to cryptanalysis, has been addressed
and finally we have provided advice regarding the architecture of system imple
mentation and specific architectural tools that may be used.
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