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POWER SPECTRAL DENSITIES FOR SELECTED DIGITAL
PHASE-CONTINUOUS MFSK EMISSIONS

M. Nesenbergs, D. L. Smith, and L. T. Jones*

This report -is a brief outline and a catalog of 11 power
spectral densities for certain M-ary frequency shift keying wave-
forms.  Spectral equations are displayed in graphical form for
easy visualization. The spectra pertain to real signals centered
on. their carrier frequencies.

The selected waveforms are all phase-continuous with no
symbol-to-symbol overlap. The number of keying waveforms, M,
varies from 2 to 8. The modulation index, k, is typically 2, and
only occasionally assumes values of 1 and 4. In all 11 cases
considered one encounters discrete line spectra. The relative
power contained in the discrete spectrum turns out to be 1/M for
regular square waveforms with no dependence between successive
symbols and somewhat larger for the other cases considered here.
The asymptotic behavior of the continuous spectral component
agrees with the theoretical predictions for very large frequency
deviations.

Specific waveform shapes include square (or rectangular)
pulses, sine-pulses, raised cosine pulses, and squared raised-
cosine pulses. The concluding sections of the report cover two
special systems of recent practical interest. They are the M=4
and k=2, alternating frequency, format of Rockwell/Collins ~ and
the M=8, k=2, scheme developed by MITRE and Harris Corporations.

Key words: asymptotics; continuous and line spectra; M-ary frequency shift
keying (MFSK); phase-continuous waveforms; spectral densities

1. INTRODUCTION AND OVERVIEW
Over the last 30 years, a number of comprehensive studies have addressed
the spectral properties of various digital modulations. General properties
that apply to large classes of waveforms are known. Also known are special
detailed features that pertain to the more unique, practically important,
real-world modulation systems. A case that corresponds to both categories is

* The authors are with the Institute for Telecommunicaton Sciences, National
Telecommunications and Information Administration, U.S. Department of Com-
merce, Boulder, CO 80303-3328.

** Certain commmercial equipment and software products are identified in this
report to adequately describe the design and conduct of the research or exper-
iment. In no case does such identification imply recommendation or endorse-
ment by the National Telecommunications and Information Administration, nor
does it imply that the material or equipment identified is necessarily the
best available for the purpose.



that of constant-envelope angle modulation. As the 1ist of references attest,
the spectra of the mutually related phase and frequency modulations are well
understood, at least on the conceptual Tevel. However, for applications it is
often necessary to translate and to condense the theoretical formulas into
simpler forms, accompanied by parametric numbers and useful graphs.

This report deals with one subclass of digital frequency modulation
(FM). That is the continuous-phase M-ary Frequency Shift Keying (MFSK), for
such typical values as M=2, 4, and 8. The frequency deviation or modulation
index is in most cases assumed to be k=2, although in a few chosen instances
k=1 and 4 are introduced for illustrative purposes. All waveforms are assumed
to be non-overlapping in time, that is, from one keying (or symbol, or baud)
interval T to the next. For the selected waveform cases, their power spectral
densities (or spectral densities, or spectra, for short) are given. When
available, published results are used. In other cases, special derivations
are made. Formulas are augmented by graphs that emphasize the key features of
the MFSK spectra.

The three main characteristics of the continuous-phase MFSK spectra are
as follows:

(a) In addition to the continuous spectral density, if certain conditions
are met, discrete or Tine spectra must exist. It will be shown that
all waveforms considered here possess spectral lines. With certain
exceptions to be noted, the total power in the discrete lines is
either equal to or larger than 1/M of the total power. Whether finite
or infinite in number, the discrete spectral lines can occur only at
certain well-defined frequencies, f. These frequencies correspond to
particular, positive and negative, multiples of 1/2T, 1/T, 2/T, etc.,
or mixtures thereof.

(b) For frequencies that depart from the carrier frequency, f., by much,
much more than 1/T, the power spectral fall-off depends on the contin-
uity properties of the modulating waveform. The simplest rule of
thumb appears to be the following. If the (n-1)-th time derivative of
all MFSK pulse sequences is continuous, but the n-th derivative is
somewhere discontinuous, then asymptotically the power spectrum must
decrease as 1/(f-f.)2(n+2)



(c) The continuous spectra exhibit nearly periodic maxima and minima. For
keying interval T, the spacing between minima tends to be either 1/T
or 1/2T, while the spacing between peaks is approximately the same as
for the minima.

The report is structured as follows. Sections 2 to 6 deal with four-
waveform, or M=4, MFSK. The whole development starts with a necessary intro-
duction of notation, plus a summary of the prerequisite theoretical back-
ground, 1in Section 2. (Comment on notation: Since previous writers have
chosen widely different symbols to represent the FSK spectra, we include as
Appendix A a summary of their power spectrum notation.) Initially, our devel-
opment is concerned with M=4., However, the context makes it easy to extrapo-
late to other M values, such as to M=2 in Sections 7 and 8 and to M=8 in
Section 10.

Section 3 applies the tools of Section 2 to three square-wave 4FSK
waveforms, namely those with index k=1, 2, and 4, respectively. Depending on
the data sequence represented, a sequence of these waveforms can have
discontinuities at all times that are integer multiples of T.

Section 4 uses the single sine-wave pulse (namely the sinx function
between x=0 and x=7) as the waveform. The index 1is k=2. The modulating
waveform is everywhere continuous, but its first derivative can have discon-
tinuities at times that are integer multiples of T.

Section 5 employs the raised-cosine waveform. It, of course, has a zero
slope at multiples of T, and thus a continuous first derivative. The second
derivative, however, can have discontinuities.

Section 6 assumes the most complex waveform considered here, namely the
square of the raised-cosine waveform. It leads to rather complicated formulas
for the spectrum, plus associated computation difficulties. However, since
its fourth derivative is the very lowest derivative that can be discontinuous,

‘the associated spectral skirts must fall astoundingly as f to the minus 12-th

power.

Section 7 reviews and modifies the spectral expressions for two cases of
binary (or M=2) FSK. One is for the deviation index k equal to 1, the other
is for k=2.

Section 8 treats the 2FSK with squared raised-cosine waveforms and modu-
lation index k=2. Its asymptotic slope is f‘12 as it was in Section 6.



Section 9 presents a modified M=4 scheme that exhibits some properties
similar to the binary FSK. The unique properties appear to be due to an
"alternating frequency-pair" selection rule that is enforced by the
modulator. This scheme has been implemented by Rockwell/Collins in some of
their systems and, perhaps more noteworthy, it represents a significant propo-
sal for an automated HF system (e.g., link establishment) waveform standard.

Finally, Section 10 shows an 8-ary MFSK. Like many of the earlier cases,
its deviation index is k=2, and most of its power spectral properties relate
strongly to the corresponding spectra discussed in Section 3 (for M=4) and in
Section 7 (for M=2). This 8FSK model represents one more important modem
development. At this time, it appears likewise to be a standing candidate for
the proposed system standardization effort for automatic Tink establishment.

Table 1 summarizes the MFSK cases considered in this study. It lists the
waveforms, their main spectral features, as well as other key character-
istics. It also makes it quite apparent that this report is far from being
a comprehensive catalog of all MFSK systems studied here or abroad. Instead,
it represents a selective mixture of general interest, the authors' interest,
plus a few cases (see Sections 9 and 10) of practical significance in current
standardization of radio system designs.

In addition to the previously mentioned Appendix A, which deals with
notation, two other appendixes are included here. Their purpose is to remove
the mathematical (i.e., trigonometric and Bessel function) details from the
main text. The elementary, but often used, trigonometric function properties
are collected in Appendix B. Useful Bessel function properties, plus some
relevant derivations, are found in Appendix C.

2. COMMON RESULTS FOR 4FSK SYSTEMS
Outline

We seek the power spectral density of a particular class of digital
frequency-modulated signals, known as the M-ary FSK or MFSK systems. 'To have
a simpler presentation, assume for time being that M=4., Almost the same
general method will later apply to M=2, 8, and other cases.

The present approach is based on the randomness of the modulating data
sequence. 0One estimates the signal auto-correlation function and then uses
its Fourier transform to derive the spectral density (Papoulis, 1965). This "
method has been used by many workers to describe the spectra of certain MFSK



classes (Bennett and Rice, 1963; Anderson and Salz, 1965; Salz, 1965; Prabhu
and Rowe, 1974; Rowe and Prabhu, 1975). Whenever possible, previous results
are used here without justification or modification. In other instances,
modifications and extensions are made as needed.

TABLE 1. Overview of the Phase-Continuous, No Overlap, MSFK Systems Studied
in This Report

Pulse Found No. FSK  Modul. No. of Re]ativé Asymptotic
Waveform In Pulses Index Discrete Discrete Peak

Type Section M k Lines Power Envelope
Square 2 -4
Pulse 3 4 1 4 1/4 (5/817) (fT)

[T 3 4 2 4 1/4 (5/2“2)(f1—)—4

"o 3 4 4 4 1/4 (10/7%) (¢1) 2
Sine- -6
Pulse 4 4 2 Infinite .388 (5/32) (fT)
Raised 2 -8
Cosine 5 4 2 " .483 (5/2n7) (fT)
Squared Raised- 2 -12
Cosine 6 4 2 " .592 (40/77) (fT)
Square 2 -4
Pulse 7 2 1 2 1/2 (1/817) (fT)

. 7 2 2 2 1/2 (1/21%) (FT)74
Squared Raised- 2 ~12
Cosine 8 2 2 Infinite .748 (8/77) (fT)
Rockwell 2 -4
Collins 9 4 2 " 1/2 (5/277) (fT)
MITRE 2 -4
Harris 10 8 2 8 1/8 (21/247) (fT)




To keep matters simple and compatible, the notation of Rowe and Prabhu
(1975) is followed in our equations.
The real unity-envelope signal is written as

x(t) = cos(anct + ¢(t)). (1)

In (1), f. is the carrier frequency and ¢(t) is the time-varying phase. The
variation of phase is a direct consequence of the MFSK waveforms. When the
keying or baud interval has length T, the data source selects a new waveform
for every new interval. This selection process 1is completely memoryless,
equiprobable, and random. The waveforms come from a finite alphabet. For M=4
one represents the alphabet as {hi(t), hp(t), h3(t), hy(t)}. The phase term
is then

t

TORY BED DELUEL L (2)

- N=-m
where the subscript s, keeps track of which of the four waveforms is picked in
time-slot n by selecting values from the set {1, 2, 3, 4}.

As is commonly done, the actual angle modulation is written as a complex
random function

v(t) = eJ®(t) (3)

Its power spectrum, P, (f), determines the desired double-sideband power spec-
trum, P,(f), of the real band Timited signal x(t) (Prabhu and Rowe, 1974):

P () = 1/4(P (f-f.) + P (-f-F ). (4)

Or, when the spectrum is divided into its continuous and discrete line compo-

nents as functions of positive (only) frequencies,

P (F+)/T = 1/2(P, (FT) + P (FT)). (5)



Useful formulas and graphs for (5) represent the ultimate goal of this
report. Of course, different system assumptions and parameter values will
alter the expressions and shapes for the spectra. Sections 3 to 10 illustrate
that point for the selected modulation cases of interest.

Derivation of Spectrum
Start with a finite waveform alphabet, as illustrated in Figure 1 for a
single time interval 0stsT. A number of pertinent properties are noted:

(A) The number of distinct waveforms is M=4.

(B) Frequency modulation with bounded waveforms results in everywhere
continuous-phase, as long as spurious phase jumps are not allowed at
transition times t=nT.

(C) There is no waveform overlap from one keying interval to the next.

(D) A1l four waveforms are multiples of a common real, but otherwise
arbitrary, generator (or parent) waveform h(t).

(E) The modulation index for the above alphabet 1is defined as twice the
maximum instantaneous phase deviation of the generator waveform

h(t): T |
k=2 ,/” h(t)dt. (6)
« A |
This definition differs from the term "frequency deviation," which
nominally  should refer to  the  largest [h(t)] value in

the 0st<T interval. To avoid a potential confusion of terms, the mod-
index k convention of (6) is adopted here (Taub and Schilling, 1971).
Small integer values, such as k=1, 2, 3, ..., are of most practical
interest. Most of the examples considered here will have k=2.

To proceed, define a column vector with arbitrary components {x{, Xps X3,
Xa} as

>

x

(7)

x
—
]
xX X
S W Ny =




hz[‘] = —hft]

n (1) = —3n(i

Figure 1. An illustration of an M = 4 waveform alphabet
with a single parent h(t).



The transpose of x], or x]tfi, is then a row vector. It will occur occa-
sionally in the text. Far more common will be the occurrences of functions of
vectors. For any function f(x) and any vector x], we use the natural vector-
function convention, '

f(x]) =

Based on the above vector notation, the waveform alphabet can be said to
be a vector function over 0stsT,

h(t)] = A] = h(t), (9)
where the increment or coefficient vector A] is in transpose form
t
A} = (1, -1, 3, -3). (10)

One next needs to define what can be called a segment of the MFSK base-
band,

t

q(t)] = eJ2ml -_)(. hwdu for ogtsr,

> (11)
0] elsewhere.

It is followed by the probability weight vector that corresponds to the wave-
form vector h(t)] in (9),
w] = (1/4)1]. (12)

where the vector 1] consists entirely of unity components.

Given (6), (11), and (12), one is in a position to carry out the test for
the existence of the line spectrum. That test, known to be both necessary and
sufficient, states that discrete line spectrum exists when the scalar vector-
product, w-q(T)], has a magnitude of unity (Rowe and Prabhu, 1975).

9



For the MFSK model postulated above and for k an integer,

-3jkm

Woe ()] = (1/4) (eFKT 4 e73KT , G30km =30kmy _Gdkm (g3

Therefore, for all integer values of the modulation index k, the above MFSK
model must possess discrete spectral Tines.

Further derivation of the continuous and the 1line spectra can benefit
from a Fourier series expansion of q(t)], see (11). A minor problem arises
occasionally, when the natural period of q(t)] may not be T, but some t2T.
One expands

o]

aw)] = D ] e P (14)

N=-0

and notes that quite generally the coefficient vector must be

T
¢, 1= (1/7) J('a<t)] . eTIZmM/T g (15)
0

where q(t)] is an extension of q(t)] from O0stsT to 0stgr. Thus,

q(t)] for 0stsT,
"does not matter" elsewhere.

q(t)]
(16)

With the help of the Fourier coefficients, cn], the Fourier integral
transform R(f)] of the MFSK pulses can be written down by inspection.

10



.
R ()] =~/ﬂ q(t)] » e 32ft gt
0

(17)

- (vizm 3 el (1-e~23n(FT-0T/1)y /gy,

N=—o

Equation (17) is the basic form for arbitrary t2T. For specific t values,
R(f)] can be simplified. For instance, t=T yields

R(F)] = (T/j2m) (1-e7320fT) ¢,1/(T-n) (18)

N=-0o

and so on for T=2T, 3T, etc.

One is finally at a point where the formulas for the complete spectra can
be written down. That is true, because both the continuous and the discrete
spectra of the angle modulated baseband, see v(t) in (3), are determined by
R(f)] as follows.

For the continuous spectral component of the assumed 4MFSK model one has

Poc(f) = (R(F) = [M] « R(F)])/T,
- ToT 2 IR; () - Rj(f)lz, (19)

1i5js4

where * denotes the complex conjugate, where [M] is our own shorthand for the
Prabhu and Rowe (1974) matrix

M)

]

(1/4)[1] - (W] - w)

(20)

(1/16)

3 1-1
-1 -1 -1
-1 3-1p

1 1 3

11



while R;(f) and Rj(f) are components of R(f)] in (18) and [I] is the identity
matrix.
The corresponding discrete spectrum is given by

Py (f) = (/T8)[w « R(EITIZ « D 6(fn/). (21)

N=-o

where §(f-n/t) represents the standard delta or impulse function (Papoulis,
1962) that, subject to non-zero coefficient, can contribute only to a unique
discrete frequency, i.e., the n-th multiple of 1/1. When t=T, spectral lines
can occur only at integer values of fT. However, when t=2T holds, lines are
possible at all n/2. For odd n this allows discrete lines at fT=+1/2, + 3/2,

., subject to non-vanishing coefficients in (21).

Substitutions of (19) and (21) into (4) and (5) yield the complete
spectra of the 4FSK modulations assumed above. Specific cases are illustrated
in the Sections to follow.

3. SPECTRA FOR 4FSK WITH SQUARE WAVEFORMS
The summary results of Section 2 are applied here to square or rectan-
gular waveforms. The generating waveform,

h(t) = k/2T for all OstsT, (22)

satisfies the modulation index convention of (6). Per (11), one obtains
for 0stsT,
q(t)] = eJnkA] . t/T. (23)

Its Fourier series expansion is carried out next, followed by all the other
terms called for in Section 2. In particular, that includes meticulous
evaluations of (15), (17), (19), and (21), plus subsequent substitution into
(4) and (5). The end result is the total, continuous plus line, power spec-
trum.

The expressions turn out different for different values of mod-index k.
The diversity starts already in the Fourier series of (14), where the most
convenient period t appears to be T for even k, and 2T for odd k. We treat
the distinct k cases separately.

12



Case for k=l
Set t1=2T and expand q(t)] into Fourier series (14). The coefficient

vector c,] follows from (15) and (16),

¢, = d(n,A1), (24)

where the latter symbol represents a vector or ordered 4-tuple of Kronecker
deltas. For any two integers, n and m, the Kronecker delta has the usual
meaning,

d(n,m) =1 if n=m, (25)

0 otherwise.

Equation (24) reduces the infinite sum in R(f)] (see (17)) to a single
four-component vector,

-2j "fTv

R(f)] = (T/jm)(1+e )/ (2fT-A]), (26)

which can be readily inserted into the baseband spectra formulas of (19) and
(21).
The complete power spectral density, as defined in (5), is

Pufef)  cos?(nfT) [ 1 9 8£27° ]
>
)

= + +
T 164 (Fere-1/ay)%  (£91%-0/8)%  (#21%-1/4)2 (£21%-9/4

+ (1/32) [%(fT—l/Z) + 8(fT + 1/2) + 6(fT-3/2) + G(fT+3/2{] (27)

The upper half of (27) 1is the continuous spectrum. The Tower half is the
four-Tline discrete spectrum. The complete expression can be inferred from
Anderson and Salz (1965).

Both k=1 4FSK spectra are plotted in Figure 2. The display is linear in
fT and it covers the main power region around the carrier frequency. Note
that the continuous spectrum has three symmetrical peaks, with the outlayers
slightly farther than f=1/T from the central peak. The nulls occur at all
positive and negative values of fT=5/2, 7/2, 9/2, ... . Thus the spacing
between adjacent nulls in Figure 2 is 5fT 1in the center and fT on both

sides.

13
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The spectral lines are also separated by fT. The Tisted trigonometric
integrals of Appendix B establish that the total continuous power is 3/8. The
individual power in a discrete line is 1/32. This verifies that the total
power in the frequency modulated signal (1) is 1/2, the total discrete Tline
power is 25 percent thereof, and the remaining 75 percent belongs to the con-
tinuous spectrum.

The following comment pertains to this and other MFSK cases. The state-
ments about locations of nulls and percentages of power in various spectral
peaks can often be supported theoretically by looking at the equations, such
as those in the first half of (27).

The cosine and sine functions cause periodic nulls, unless they are
cancelled out by the term in the denominator. To make the null versus no-null
recognition easier, the first part of Appendix B contains a number of useful
Timiting properties for the more common trigonometric functions. '

The percentage power in the continuous spectrum can be obtained by direct
integration of the appropriate terms in P,(f. + f)/T. The second part of
Appendix B contains a short listing of definite integrals that may expedite
this process in many practical instances.

Figure 3 plots the k=1 continuous spectrum on a logarithmic fT scale.
This type of graph is an expedient way to illustrate the asymptotic behavior
of the spectrum for large values of fT. Note that for very large fT the peak
spectral envelope falls off as (5/8n2)(fT)'4, which is expected for FSK with
discontinuous keying waveforms (see characteristic (b) in the Introduction).

Case for k=2
Set t=T and observe that the same Fourier coefficients of (24) apply to
the Fourier series for k=1 and k=2. It follows from (18) that

R(F)] = (T/j2m) (- 92™ Ty /(£1-07). (28)

The complete power spectrum for rectangular, k=2, 4FSK is then:

Pulferf) sin?(af) [ 1 9 32£272 ]
7
(29)

= + = +
T 47 (F212-1)2  (£41%-9)%  (#%1-1) % (¢%12-9)

+ (1/32) [6(fT—l) + §(fT+1) + §(fT-3) + 6(fT+3)] .

15
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Figure 3. The asymptotic continuous spectral behavior of the k = 1,
square-wave, 4FSK for large frequencies.
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As before, the first half of this is the continuous spectrum and the second
half is the discrete 1ine spectrum. For comparison, similar spectra are found
in Anderson and Salz (1965).

Both the continuous and the discrete components of (29) are shown in
Figure 4. The horizontal and vertical scales are linear. The main bulk of
the continuous power is concentrated in four spectral peaks that center near
fT=-3, -1, 1, and 3. In the central region nulls are separated by two fT
units, but further out that separation becomes one fT unit.

The four discrete 1lines are roughly collocated with the continuous
maxima. Appendix B again proves that the continuous spectrum integrates to
3/8. The total discrete line power is still 25 percent, as it was in the k=1
case considered earlier.

Figure 5 presents the Tog-log plot for large fT. The asymptotic peak
envelope falls off as (5/2n2)(fT)'4, as is determined from (29).

Case for k=4
Set t=T and note that the Fourier coefficients are now given by

c,] = d(n,241), (30)
where the Kronecker delta is defined as in (25). But then,
R(F)] = (T/52m) (1-e 92Ty (,T-2a7), (31)

and the complete power spectral density of the rectangular, k=4, 4FSK is

Pulfe*f)  sin?(qfT) 1,9 \ 128£272
T 7 (F21%-4)%  (£27%-36)°  (FOTP-m)2(£2T%-36)% | (32)

4-&1/32) 6(fT-2) + §(fT+2) + §(fT-6) + 6(fT+6ﬂ.

The two halves of this spectrum, namely the continuous and the discrete
components, behave in a manner consistent with previous derivations.

The central part of the power spectrum (32) is displayed in Figure 6.
The coordinate axes are linear as in Figures 2 and 4. Note that the power of

17



0.13

0.12 -

0.11 —

0.1 4

0.09 —

0.08 —

P (fc+f] 007-
T 0.06 —
0.05 —

0.04

0.03 )

0.02 —

0.01 —

Figure 4. The continuous and discrete spectra of square-wave 4FSK for

modulation index k = 2.

18



Log

Figure 5.

P (£ +f)

Slope = -4

0.5 06 07 08 09 1 1.1 1.2 1.3 1.4
Log (fT)

The asymptotic continuous spectral behavior of the k = 2,
square-wave, 4FSK for large frequencies.

19

1.5



0.13

0.12

0.11 —

0.1

0.09 —

0.08 -

Px[fc + f] 0.07 —
T 0.06 —
0.05 —

0.04 —

0.03 -- \ \

0.02

o ol Ll lan .

S s R S R T R N T N N O D O L
10-9 -8 -7 6 -5 4-3-2-1 012 3 456 7 8 910

fT

Figure 6. The continuous and discrete spectra of square-wave 4FSK for
modulation index k = 4.

20



the continuous component is centered around fT=-6, -2, 2, 6, which as hefore
coincides with the locations of the four discrete spectral lines. Thus, the
main peaks, including the delta functions, are separated by four fT units.
The nulls are nominally one unit apart, except at the main peaks, where the
separation is double. As in the previous cases of this Section, exactly
25 percent of the total power belongs to the discrete spectrum.

Figure 7 illustrates the asymptotic behavior of the k=4 case. Because of
the 1logarithmic scales, the "minus four" slope of the analytically
derived (10/1r2)(fT)~4 is quite apparent.

4. SPECTRA FOR 4FSK WITH SINE-PULSE WAVEFORMS
Consider the generator waveform to be a half-period upward loop of a

sinewave. One calls,
h{t) = (nk/4T)sin(nt/T) for 0st<T, (33)

the sine pulse with modulation index k. For convenience, Tet k be an even
integer. Then

q(t)] = ejn(k/Z)A] (1-cos(nt/T)) (34)

remains to be expanded in Fourier series (14). To benefit from the full-cycle
symmetry of the sinewave, set 1=2T. Then apply one particular version of the
Bessel generating function (see Appendix C or Watson, 1962),

o
ercose= j{: jan(z)eJnG’ (35)
==
to (34) with integer valued k/2. The result is an identity for Fourier coef-

ficients, .
c,] - (I/jn)eJ"(k/z)A]Jn(n(k/Z)A]). (36)

Substitution into (17) yields

o]

R(F)] = Te IT(FT-(K/2)A1) 3 S (n(k/2)a]) UL

=—o
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The ultimate expressions for the power spectrum are simpler if one intro-
duces for v=1, 3 the following two entities:

J, (vkn/2) 2 m JZm(vkﬂ/Z)
A (fT) = — 2fT -1)y" - , (38)
ST = L+ %:1( "y
(vkn/2)
2m+1
B (fT) 2fT (- 1)
Z (m+(1/2))

The power spectrum for the 4FSK, with sine pulse waveforms and modulation
index k an even integer, is then ‘

P (f +f)
SR 811[2 [(Al(fT) - Ay (FT) Psin?(afT) + 2(B2(FT) + B3(FT)) cosz(nfT)]

(39)
v (1/8) D (Ipn(kn/2) + 3y (3kn/2)) 26 (FT-n).

N=—0

As before, the upper half of the spectrum is the continuous part. The Tower
half is the discrete line spectrum. '

Figure 8 shows the total, continuous plus discrete, spectrum of (39) for
the special case k=2. The graph emphasizes the center of the band, which
coincides with the symmetric region around f=0. The coordinate axes are both
Tinear. There are four main peaks located approximately at fT values of 1.3
and +3.9. The central peaks are the largest. At f=0, (39) indicates that the
spectrum does not have a null, but a value of (Jo(n)—J0(3n))2/8=.OOZ. Nulls
do, however, occur near fT=+2.8 and at other higher frequency deviations from
the carrier.

The discrete spectrum has infinitely many lines. The lines are located
at frequencies that are integer multiples of 1/T. The lengths of the arrows
represent the amplitudes of the delta functions. Their numerical values agree
with the ordinate axis in the figure. The total discrete 1line power, as shown
in Appendix C, is

(1/8)2{: (Jzn(kn/2)+J2n(3kn/2))2 = (1/16)(2+3J0(kn)+2JO(2kn)+Jo(3kn)). (40)

N=—0o
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Appropriate Bessel function tables, such as those of the British Association
for the Advancement.  of Science (1950), help to evaluate (40) for a useful
range of k values. For k=2 one obtains a total discrete power of
approximately 0.194, or a 38.8 percent power content for the aggregate of all
spectral lines.

Figure 9 1illustrates the asymptotic behavior of this sine pulse, k=2,
continuous-phase 4FSK. The scales are logarithmic. Because the assumed sine
pulse is continuous everywhere, while its derivative is not, the slope must be
-6 asymptotically for very large fT. The actual computed peak envelope agrees
with (5/32)(fT)"6, which is analytically deduced from (39).

5. SPECTRA FOR 4FSK WITH RAISED-COSINE WAVEFORMS
The raised cosine (or squared sine pulse) parent waveform with modulation
index k is
h(t) = (k/2T)(1-cos(2nt/T)) for 0st<T. (41)

From now on, k 1is assumed to be an even integer for this raised cosine

pulse. Next,

q(t)] = ej(k/Z)A] o (21t/T - sin(2qt/T)) , (42)

which by setting =T and modifying (35) (see Appendix C) to read
(o]
ers1n9 _ :E:: Jn(z)eJne’ (43)
=—m

produces the Fourier coefficients by inspection:
o ayn-(k/2)A]
cn] = (-1) Jn_(k/z)A]((k/Z)A]) . (44)

It follows from (18) that

_s C J((k/2)A])
R(F)] = (T/me 3™ Tsin(nft) Z (1" Fr{RERTZTE] - (45)

M=—w

This equation differs from the corresponding result published in Rowe and
Prabhu (1975). [See their equation (116), p. 1113.] In as much as repeated
derivations of R(f)] all lead us to the same (-1)™ after the I sign, we assume
that an inadvertent typographical error could have occurred in the quoted BSTJ

article. In what follows we adhere to the R(f)] as given in (45).
25



Log

Figure 9.

Px[fc+f)

-10

-11 —

-12 T T T T T T | |

Slope = -6

05 06 07 08 09 1 11 1.2 13 14
Log (fT)

The asymptotic continuous spectral behavior of the k = 2,
sine-pulse, 4FSK for large frequencies.

26

1.5



The next step is to write down a formula for the spectrum. The problem
here is not difficult conceptually, but rather how best to keep track of
summation indices. We propose the following scheme. Let D and S be sets of
double and single integers, respectively, defined as:

{(19—1)s(193)s(1,_3)’(—133)3(_1a—3)9(39_3)} (46)
(1, -1, 3, -3}.

Then, if d=(v,u) denotes a double element in D and s stands for any particular

single number in S, introduce two auxiliary quantities,
o

J (vk/2)- J (uk/2)
n “n-vk/2 n-uk/2
A(FT) = D (1) el :
= (47)
B = 2;; Jn—sk/Z(Sk/Z).

With the aid of (46) and (47), dne writes the power spectrum of the
raised cosine 4FSK for k an even integer:

P (f +F) .2 2
XS ST S w2y + (1/32) > 8 6(fT-n), (48)
327 &
deD N=-ow

where the continuous and discrete spectral components are clearly separated.
This elaborate equation corresponds to the raised-cosine results presented
earlier by Rowe and Prabhu (1975).

Figure 10 ijllustrates the total, continuous plus discrete, spectra for
this raised-cosine pulse 4FSK with modulation index set at k=2. Again the
axes are linear and the emphasis is on the central region of the spectrum. A
focal minimum with a value (Jy(1) - J3(3))2/8 = .002 occurs at f=0. Two nulls
of the continuous spectrum seem to occur approximately at fT=13.4. Other
nulls are possible at Targer frequency deviations. The bulk of the power is
contained in the -8<fT<8 frequency region.

As it was for the sine pulse, the discrete spectrum again consists of an
infinite number of 1lines. The amplitudes (arrows) of the discrete lines are
drawn to represent coefficients 1/32 an on the ordinate scale. In some

cases, when the coefficients are too small, the arrows are omitted.
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Neighboring lines are separated by a frequency spacing of 1/T. For k=2 the
total power in the spectral lines is

(1/32) Z B = (1/16) (2433, (2)+20, (4)+34(6)) » (49)

==

as shown in Appendix C. Tables of Bessel functions yield a relative total
discrete Tine power of 48.3 percent. ;

Figure 11 is the 1log-log presentation of the 4FSK spectrum, where the
pulse waveforms are raised cosines and the modulation index is k=2. Because
the Towest discontinuous derivative is the second derivative, the slope of the
envelope must be asymptotically approaching -8 as fT tends to infinity.
Equations show that the actual peak asymptote must be (5/21r2)(fT)_8

6. SPECTRA FOR 4FSK WITH SQUARED RAISED-COSINE WAVEFORMS
The generator waveform, for what we choose to call the "squared raised-
cosine" 4FSK with modulation index k, is

h(t) = (k/3T)(1-—cos(2ﬂt/T))2 for 0gtsT. (50)

Its 4FSK baseband vector (see (11) above) is then

q(t)] = ej(k/12)A]0(12ﬂt/T—851n(2ﬂt/T)+sin(4nt/T)). (51)

This 1is apparently a more complicated case than the sine pulse and the raised-
cosine pulse cases studied in the two previous sections. To simplify, assume
k=2 for this squared raised-cosine waveform.

As we have done before, let t=T and expand q(t)] in Fourier series with
coefficients c,] (see (14) and (15) above). This expansion 1is rather
involved. Its details are delegated to Appendix C. The result is

ey = Ip_yp(=(4/3)41,(1/6)81), (52)

where for integer valued n and real numbers u and v, the function In(u,v) is
defined to be
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In(u,v) = :E:: Jn—Zm(u)Jm(v)

M=—ow

(53)
T
(1/m) [ cos(using + vsin2e - ne)de.
0

Appendix C offers proofs and several other expressions for this indexed,
bi-variate function I, (u,v). For computational purposes, either of the two
forms in (53) can be used. If fast subroutines are readily available for
Jp(x), a truncated version of the infinite series of (53) may work. Other-
wise, rapidly converging quadrature techniques can benefit from the second
part of (53).

Let
Ao m = Tn-1(-4/3,1/6) 1,1 (-4/3,1/6) + 1, 1(4/3,-1/6) I . (4/3,-1/6)
14 (-4,1/2) T 5(-4,1/2) + T,,5(4,-1/2) 1_ ,(4,-1/2) N
and | (54)
By = Iy (-4/3,1/6) + I,1(4/3,-1/6) + I 5(-4,1/2) + I ,(4,-1/2).

Then the power spectrum for the k=2, squared raised-cosine, 4FSK is given
by

Py(fe+f) _ sinz(nfT) = A mBnBy .
T 3972 D ATy
n,Mm=-w
® (55)
+ (1/32) :E: B2 §(T-n).

N=—w

The first half of this equation is the continuous spectral component.
The second half is the line spectrum.

Figure 12 shows the main central region of the composite spectrum (55)
for the postulated continuous-phase, no overlap, k=2 4FSK with squared raised-
cosine waveforms. The coordinate axes are linear. The continuous spectrum
does not have nulls in the region indicated, although there are pronounced
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minima at fT=0 and 14.5. The main signal power is contained within
-10<fT<10.

The discrete spectrum consists of infinitely many equi-distant lines,
spaced 1/T Hz apart. The total power in the discrete spectral lines is .296
or 59.2 percent, as can be computed from the identity

S [ ) (5 9) i) o0

N=~0w
The proof of (56) follows from the generalized form of the Neumann
Addition Theorem, given in Appendix C for the I, (u,v) functions.
Figure 13 1is a logarithmic representation of the continuous spectrum.
Emphasis is on large fT values. Because for the squared raised-cosine pulse,
the lowest discontinuous derivative is the fourth derivative, the asymptotic

sTope of the power spectrum should be (40/n2)(fT)_12, as predicted from (55).

7. BACKGROUND AND SPECTRA FOR BINARY SQUARE-WAVE FSK
The binary, or M=2, FSK has probably received the most attention in the
past. To summarize it in the present vector context, a large portion of the
equations derived above remains valid. With the understanding that two-dimen-

sional A] - (_%)

(1 -1) (57)
-1 1
1]

are to be used, earlier (11), (14) to (18), the first part of (19), and (21)
to (24) all remain valid for arbitrary integer-valued modulation index k. The

M] =

W] =

N —

discrete spectrum exists.

Case for k=1

Set t=2T and note that the Fourier coefficient c,] satisfies (24). But
then the R(f)] vector function must be as defined in (26). Substitution in
earlier (19) and (21) yield the continuous and discrete baseband spectra.

Another substitution into (4) and (5) produce the desired spectrum at radio
frequency.

The total, continuous plus discrete, spectral density for the phase-
continuous, square-pulse, 2FSK with modulation index k-1 is
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Px(fc+f) _ cosz(nfT) 1

+ L (8(FT-1/2) + §(FT+1/2)).  (58)
T 8nl(F21e-1/4)% 8

The first half of this equation is the continuous power spectral density. The
second half 1is the discrete component. This result was apparently first
derived by Bennett and Rice (1963), later by Anderson and Salz (1965), and
others, .

The 2FSK, k=1, spectrum is plotted in Figure 14. The display is linear
in both coordinates. The region around fT=0 is emphasized. Centered on fT=0
is the single symmetric peak of the continuous part. The nulls occur at
fT=43/2, 5/2, %7/2, and so forth. The spacing between adjacent nulls in
Figure 14 1is generally one fT unit, except at the origin where that spacing is
three units.

There are two discrete lines shown. They occur at fT=:1/2 and their
individual power content is 1/8. This is the same power as contained in the
continuous spectrum (see Appendix B for details of needed integration). Thus
the total Tine power is 50 percent of the total FSK power.

Figure 15 displays the continuous binary FSK spectrum on a logarithmic
scale. For large fT values the predicted peak asymptotic envelope
is (1/8n2)(fT)“4. That fact is quite as expected, because the elementary
waveform h(t) is discontinuous.

Case for k=2
Set 7=T and use the Fourier coefficient c,] of (24). The R(f)] is of the
same form as given above in (28).

The spectral density for the phase-continuous, square-pulse, binary FSK
with modulation index k=2 follows again by the same substitution process:

Px(fc+f) sinz(nfT)

T 2l (f2r2 )2 | B

(6 (FT-1) + §(fT+1)). (59)

This formula illustrates the, by now quite familiar, continuous and discrete
components of the spectral density. The same result has been previously
derived by Bennett and Rice (1963), Anderson and Salz (1965), and others.
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Figure 16 illustrates the central part of this power spectrum. Both
coordinate axes are linear. Notice that the continuous component has two
prominent peaks at fT=tl. Thus, there are no nulls at :1, but there are nulls
at all other positive and negative integers.

Two discrete spectral lines coincide with the continuous peaks, as they
are also located at fT=:l. Just like in the k=1 case, the power content of
each line is 1/8. The total power of the two continuous peaks equals 1/4, as
is seen from the integrals in Appendix B. Thus, the discrete spectrum again
contains 50 percent of the total binary FSK power.

Figure 17 shows the asymptotic behavior of the k=2 2FSK for the assump-
tions cited above. The horizontal and vertical scales are both logarithmic.
As fT tends to infinity, the predicted asymptotic slope 1is given by
(1/27%) (1) 2.

8. SPECTRUM FOR BINARY FSK WITH SQUARED RAISED-COSINE WAVEFORMS

Binary FSK, or 2FSK, is perhaps the most studied case of FSK systems with
different waveforms (see Bennett and Rice, 1963; Anderson and Salz, 1965; and
elsewhere). In this section, the apparently less familiar waveform of squared
raised-cosine (or 1its equivalent sine-pulse to the fourth power) is pre-
sented. The formulas follow immediately from earlier derivations of Sections
5 and 7.

The parent waveform h(t) is the same as in (50). Assuming that A] and
[M] are as defined in (57), that the mod-index k=2, and that one denotes
=-4/3 and v=1/6, the power spectrum is given by

Pxlfct)  sin(qfT) i (In-l(usv) = I (mus-v) ) 2
T ) fT-n

8“2 N==0o
(60)

[e4]

C8) 2o (1 () + I (-u,v)) 6 (fTn)

N=-o

where I, (u,v)is the function defined earlier in (53).

Figure 18 shows the central parts of the continuous and discrete spectra
of this squared raised-cosine pulse 2FSK. Note that there are two main maxima
at fT=+1.5 and a null at fT=0. Other nulls are not only possible, but do
occur at higher values of fT, such as for fT 2 12.
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As observed for the 4FSK with the ijdentical parent waveform, and as
follows from the second half of (60), the discrete spectrum contains an
infinite number of lines. The amplitudes of the three central lines exceed
the vertical scale. Their values are indicated in Figure 18 numerically, such
as by 0.1641 at fT=0. These lines occur at all integer values of fT. For the
assumed modulation index of k=2, the total power in the Tine spectrum is
estimated to be 0.374. That amounts to 74.8 percent of the total signal
power. This number is deduced from either side of the identity,

2 2
:z: (To_q(u,v) + I 1 (-u,-v)

nN=—w

= 2(1 + IZ(~2u,—2v)). (61)

Just as in the case of the corresponding identity (56) for 4FSK, the justifi-
cation of (61) depends on the extension of Neumann series from Bessel func-
tions to the I, (u,v) functions.

Figure 19 is a log-log plot of the 2FSK continuous spectrum, where k=2,
and the pulse shapes are squared raised-cosines. Because the lowest discon-
tinuous derivative is the fourth, the slope of the asymptote must become -12
as fT increases. The exact value of the predicted peak asymptote
is (8/1%)(f1) 712

9. SPECTRUM FOR THE ALTERNATE-PAIR 4FSK SCHEME PROPOSED BY ROCKWELL/COLLINS

Assume a modulation format, where M=4 frequencies are keyed with certain
restrictions that alternate from one T-interval to the next. An example is a
scheme proposed by Rockwell/Collins, where in even numbered intervals one has
a binary square-wave choice of fy, and in odd numbered intervals a different
binary square-wave choice of +3f;. Here f; can be any assigned frequency
deviation from the carrier frequency, including the particular Hz values
implemented by Rockwell/Collins.

One could treat +f{ as a generating pulse in each (0,T) interval, but
that would destroy the premise of statistical independence between pulses., It
would invalidate the entire theoretical framework assumed in previous sections
(Prabhu and Rowe, 1974). A second option is to combine successive intervals,
such as (0,T) and (T,2T) into one "super-interval" (0,2T). The super-interval
carrijes 2 bits, as is usual for 4FSK. The 2T-approach has the unfortunate
side effect that the formulas become longer and more complicated.

We follow the second approach. Let the modulation index be simply
defined as 2f1T and assume that its value is k=2. Furthermore, let
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h(t) = /T for 0<tsT ,

(62)
=0 elsewhere,
and define two vectors
1
- (1),
. 3 63
o 3) .

Then the waveform vector (compare with (9)) for a pulse in the (0,2T) interval
can be expressed as a direct-product type of function of the two vectors:

Al « h(t) for 0<tsT,
A"] e h(t-T) for T<ts2T. (64)

h(t)]

The corresponding baseband vector, see earlier (11), now becomes

ejZﬂA] o t/T

q(t)] = for 0<t<T,

_ GJ2na e t/T (65)

for T<tsg2T,

and the probability vector w] is the same as in (12) for the (0.2T) interval.
The discrete line spectrum exists. The Fourier integral transform R(f)]

may be computed directly, without a need for a Fourier series expansion:

2T .
R(F)] / q(t)] e 32ty
0

(66)
o-J2nfT

T 1
(Frogy * 78T

- Efi(l'

e—jZWfT)

To compute the spectrum, the earlier (19) and (21) are still valid. In
(21) one must set 1=2T. That permits, at least in principle, the existence
of 6(fT-n/2) for any, odd or even, integer valued n. To simplify, introduce
the abbreviation

m+l/2

Con = W7 72) e372) (m-172) (=572 °

(67)
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Then, after a long and careful substitution of (66) into (19) and (21), one
obtains the power spectral density for the continuous-phase, no overlap, one
bit per T, Rockwell/Collins type of 4FSK with modulation index k=2:

Pylfcf) sinz(nfT) [ 1 9 ]

+ 2]
T P fIn? ()2

(1/32) [G(fT—l) + 6(fT+1) + §(fT-3) + 6(fT+3)]

+

. ;%- zz: c; [6(FT-m-1/2) + 6(fFT+m+1/2)] .
m=0

This equation consists of three parts. The first part is the continuous
spectral density. The remaining two parts show two distinct Tline spectra.
The middle term represents the periodicity inherent in the underlying 1/T
keying format. The third term shows an infinite set of spectral lines that
decays as l/f6 with increasing frequency. Its presence appears to be due to
the alternating-interval constraint introduced above.

Figure 20 illustrates the central region of the total power spectrum in
(68). Both coordinate axes are linear. The continuous component has four
prominent peaks at fT=xl and +3. The nulls occur at integer values of fT,
They are separated by two fT units in the central interior region and by one
fT unit in both exterior regions.

The two families of the discrete lines are quite different. First, the
four major delta functions, each of power 1/32, coincide with the four con-
tinuous peaks. That feature of the alternating Rockwell/Collins waveforms
agrees with the plain square-wave 4FSK for k=2 (see Figure 4). The rest of
the T1ine spectrum is new. The new lines occur at all fT values that happen to
be odd multiples of 1/2.

The power in the two terms (or four peaks) of the continuous spectrum
adds up to 1/4. This is seen from the definite trigonometric integrals in
Appendix B. The power in the four lines, at 1/32 per 1line, totals another
1/8. That leaves the rest, or 1/8, for the infinite sum of delta functions
with the Cé coefficients. The conclusion is that the total of the composite
discrete line spectrum is 50 percent of the total 4FSK power. Noteworthy,
such a 50 percent line spectrum ratio 1is rather typical of 2FSK systems (see
Section 7).
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Figure 20. The continuous and discrete spectra of the alternating, square-
wave pulse, 4FSK scheme proposed by Rockwell/Collins.

46



Figure 21 shows the asymptotic behavior of this, so called 4FSK, with
alternating waveform pairs. Both coordinate axes are logarithmic. As fT
increases beyond all bounds, the slope of the peak envelope must tend to minus

four. The exact peak asymptote is given by (5/2n2)(fT)—4.

) 10. SPECTRUM FOR THE 8FSK PROPOSED BY MITRE/HARRIS

The 8FSK considered here is a digital modulation with M=8 square-wave
pulses. It is also called the 8-ary or octal FSK. In a recent joint venture
by MITRE and Harris Corporations, a continuous-phase 8FSK system of this
general type has been proposed for a National automated system standard.

After the formal framework development for the 4FSK and 2FSK systems (see
Sections 2 to 7), the extension to 8FSK spectra is straightforward. It seems
that the biggest problem is how best to write 8-dimensional vectors and
matrices. Vector A] has the equivalent transpose representation,

a1t -1, -1, 3, -3, 5, -5, 7, -7). (69)

Matrix [M] that corresponds to (20) is now

7-1-1-1-1-1-1-1
-17-1-1-1-1-1-1
-1-17-1-1-1-1-1
[M] = (1/64) 1-1-17-1-1-1-1 (70)

1-1-1-17-1-1-1
-1-1-1-1-17-1-1
1 -1-1-1-1-17-1
1-1-1-1-1-1-17

Assume k=2 and set t=T. Then all the results for even k, up to and
including (28) for R(f)], apply here. For the derivation of the final spec-
tral expression, a lengthy and detailed substitution remains to be carried
out. To do so, define a set S of integers:

S = {1, 3, 15, 17}. (71)
Then the power spectral density for the phase-continuous, square-wave pulse,
8FSK with modulation index k=2 is
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Figure 21. The asymptotic continuous spectral behavior of the k = 2, alternating
square-wave pulse, 4FSK scheme proposed by Rockwell/Collins.
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Both the continuous and the discrete components are clearly discernible
in this spectrum.

Figure 22 shows graphically the spectrum of this 8FSK scheme advocated by
MITRE/Harris. Note the eight collocated density peaks and discrete lines at
fT=t1, +3, 5, #7. The placement of peaks, if not their number, is consistent
with other k=2 square-wave modulations (see Figure 4 for M=4 and Figure 16 for
M=2). The nulls occur in the central region, that is for |[fT| < 8, at even
integers, while for |fT| > 8, nulls occur at every integer.

As implied, there are eight discrete spectral lines. They are separated
by two fT units. Each spectral line has a power of 1/128. The definite
integrals in Appendix B yield the fact that the continuous spectral component
has a power content of 7/16. Therefore, the total discrete Tine power is
12.5 percent of the total 8FSK power.

Figure 23 confirms, on a log-log scale that for 1large fT the power
density falls off as (21/21%)(fT) %,

11. CONCLUSIONS

There are three main conclusions to be drawn from this study:

First, the MFSK waveforms considered here represent only a few selected
examples from an infinity of possible waveforms. The selection has been based
on practical applications, as well as on mathematical tractability. For many
other waveforms, one is hard pressed to express the power spectra with manage-
able formulas, as has been done here. More extensive computer runs then would
seem to be the only way to produce the plots of power spectral density versus
frequency. This can and should be done, whenever a particular waveform is
proposed and its spectra need to be ascertained.

Second, all the pulse shapes considered here have discrete spectral
lines. But one should not jump to the conclusion that it is so in general.
The fact is (see the conditions given in Section 2) that for arbitrary symbol
waveforms, with arbitrary symbol probabilities, one obtains T1ine spectra
whenever the modulation index k 1is an integer. If the index is not an
integer, the Tine spectrum vanishes.
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Figure 22. The continuous and discrete spectra of square-wave 8FSK for

modulation index k = 2.
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Figure 23. The asymptotic spectral behavior of the k = 2, square-wave,
8FSK for large frequencies.
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Third, there 1is the issue of the asymptotic spectral slopes. For a
raised-cosine pulse, the logarithm of the peak envelope of the continuous
spectrum decays with a slope of -8 versus frequency f, as f tends to
infinity. For a squared raised-cosine waveform, that slope is -12. For
raised cosine to the n-th power, as no surprise, the asymptotic peak fall-off
must be -4(n+l), where n=1,2,3 ... . Because all such waveforms can be
written as weighted sums of cos(2m mt/T), where m=1,2,3 ..., the spectral
results involve infinite sums of finite products of ordinary Bessel
functions. Thus, while arbitrarily steep slopes are possible, they do entail
mathematical complexities that may not be worth the effort. Numerical methods
remain as perhaps the only workable way to generate the corresponding spectra.
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APPENDIX A. SPECTRUM NOTATION USED BY SELECTED AUTHORS
To facilitate the comparison of MFSK power spectra derived by different
workers, in particular the graphs and relevant equations, we present a brief
digest of their notation. The 1ist is selective with respect to authors and
symbols.

Bennett and Rice (1963):
Spectral density fswu(f)/A2 is plotted versus (f-f1)/f,

where

A Signal amplitude.

f1 Lowest of the two binary-FSK frequencies.
fq Signaling or keying frequency or 1/T.

W, (f) Spectral density function.

Anderson and Salz (1965):
Normalized spectral density G(B)/AZT is plotted versus B8,

where

A Signal amplitude.

B Normalized frequency or (w—mC)T/2n=(f—fc)T.
fe Carrier frequency.

G(B) Spectral density.

T Switching or keying interval.

W, Angular carrier frequency or anc.

Lucky, Salz, and Weldon (1968):
Normalized spectral density V(B)/AZT is plotted versus B8,
where

V(B) Spectral density.

[A11 other directly involved quantities are the same as in
Anderson and Salz (1965)].
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Prabhu and Rowe (1974), Rowe and Prabhu (1975):
Normalized spectral density P, (f)/T versus fT,

where

Py (f)
T
v

Baseband spectral density.

Signaling or keying interval.

Same as V(t); a complex angle modulated baseband signal with
unity amplitude.

This report (1989):
Normalized spectral density P,(f. + f)/T versus fT,

where

fC
Py(fc + F)/T

Carrier frequency.

Spectral density of real signal x at frequency f from the
carrier. [Same as P, (f)/2 in Prabhu and Rowe (1974), also
in Rowe and Prabhu (1975)].

Keying interval.

Same as x(t); a real MFSK, unity amplitude signal at carrier
frequency.
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APPENDIX B. USEFUL TRIGONOMETRIC PROPERTIES
A number of trigonometric limits, definite integrals, and related iden-
tities are useful for spectral manipulation. This appendix collects in one
place the most used properties. These properties, by all means, may be
derived from the basics or found scattered through various texts. For what
follows, our most used reference has been Gradshteyn and Ryzhik (1980).

Limit Values of Interest

, 2 .
Timig SO0 42 Timit SIZM) _ 5y
X +n (x-n) X +n X=n
Timit coszgnx) - “2 Timit cos(2mx) _
X + n+l/2 (x-(n+1/2))2 X + n+l/2 x=(n+172)"
. 2 _tj2mx
Timit LK) _ g Timit 28 - gjon
X +n X +n
limit —T—7—°°5 (mx) _
X + n+l/2 n+1/2)
Definite Integrals of Interest
For real a:
.f iiﬂégﬁl dx = % sgn o
0
® . 2
f 519—%951 dx = ma
- X
For integer n:
. 2 ® 2
sin (n;) dx = cos (mx) Azrdx ) Tr2
Zo (xin) o (xx(n+1/2))

.f sin’ (mx) dx = T

(x2 nz)2 2n



00

2
cos~(mx) dx = — T __
J! (xz—(n+1/2)2)2 2(n+1/2;2—

and for integers n#m:

© . 2 " ® 2
sin”(nx) dx = cos (mx) dx = 0
:£ (x2-n?) (x%-m?) Yo (X% - (n+1/2))2(x%-m +1/2)%)
.? xzsinz(nx) dx = 1
AN PN I I Ry
.? xzcosz(nx) dx = n2
o (2-(n+1/2)2)2 (x%-(m+1/2)%)? (n-m)Z (n+m+1)2
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APPENDIX C. USEFUL BESSEL FUNCTION PROPERTIES

Different Forms of the Generating Function

Start with the basic generating function for Bessel functions (Watson,
1962) in the form

e(2/2) (t-1/t) j{: t") (z)  for tw0,

N=-o
and note that a substitution t=jexp(jB) gives (35) in Section 4 of the main
text. Another substitution, t=exp(jf8), yields (43) in Section 5. The last
version is used to get Fourier series coefficients cp] for the q(t)] function
in Section 6. Set k=2 in (51). Expand

o]

o~J(4/3)A1  sin(2nt/T) > Jn(_(4/3)A])ej2nnt/T,
oJ(1/6)A1  sin(4nt/T) _ i Jm((I/G)A])eijt/T’

and substitute their product into (51). Then
A = 3 I pgoan(- (4730813 ((1/6)a1)eI2ME/T,

n,M=-w

and by inspection

c,] = Z In-a1-2m(~ (431813, ((1/6)A1)
M=—o

In-a1((473)41), ((1/6)A]).

The last Tine is the quoted identity in Section 6, (52).
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Properties of the Function I, (u,v)

Function I, (u,v) is defined as the infinite sum of Bessel function pro-
ducts, see (53). To derive its integral identity, consider the standard
integral definition of the Bessel function (Watson, 1962). This implies

Im(u,v) ='——l—§ gb ﬂ'fej(ucos¢+(n—2m)(¢-n/2))d¢ . .F ej(vcose+m(e—1r/2))de
(2m) =" - S

1 1 P j(ucos¢+vcosB+n(d-n/2)) .. N jm(0-2¢+n/2)
= —— dp [ dee Tim > e .
(2n)" == !; N+o m=-N

This double integral can be reduced to a single integral with the help of the
Fourier-series kernel (Papoulis, 1962), which asserts that

N N

Tim Z QI2mt/T _ 7y E & (t-mT).
N+>o

m=-N N>o N

Insertion of the kernel produces

m
I, (uv) = 71 ~/”ej(ucose+vcosze+n(e-n/2))de
m ‘
-1

While simple in principle, this I, (u,v) integral tends to confuse the real and

imaginary parts of the integrand. The fact that a change in variable, such as
9=8"+n/2, generates

1 T -j(usinB+vsin26-np)
In(u,v) = 5z !e de

may appear at the first glance as not much of an improvement. However, when

one discards the odd-symmetry parts around 6=0, a completely real integral
materializes:

m

J(.cos(usin6+vsin26-ne)d6.
0

In(u,v) =

=t
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This 1is the formula cited for its apparent utility in (53) of Section 6.
While it clearly can be modified and expressed in many other egquivalent ways,
none seem to possess enough advantages to displace the above.

Like the ordinary Bessel functions, whose generating function is (Watson,
1962)

[ 1]
Z thn(Z) _ ez/Z(t~1/t)’
=-

the I,(u,v) functions also possess a generating function:

O 2 2
E t"I (u,v) = QU/2(t-1/t) + v/2(t°-1/t%)

N=-ow
Generating functions are convenient to derive such identities as,

hod N
:E:: 1 (u,v) - 1 if j -
==0 =Uu + 2v =
- (u+ 2v)? -
= (u + 2v)3 + (u + 8v) =
= (u + 2v)4 + 4(u + 2v)(u + 8v) =
= (U +2v)2 + 10(u + 2v)2(u + 8v) + (u + 32v) -

- -

- ]

Gl AW N = O
-

which are needed to ascertain asymptotic properties.

Neumann Series and Total Power in Discrete Spectral Lines

To prove the identity claimed in (40) for sine-wave pulses, use the
Neumann Addition Theorem (Watson, 1962) in one of its simplest forms,

o]

Jm(u—v) = Z Jm+n(u)Jn(v).

=—o
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Then for m=0 and u=v=x,

®

2
1. Y B,

N=—o

while for m=0 and u=-v=x,

0

Bp2x) = Y 0N,

==

Addition of the above yields

(]

1+ Jy(2x) = 2 Z 25 (),

=00

which for x=kn/2 and x=3ku/2 takes care of the two infinite sums of squares in
(40). Likewise, setting u=3x, v=x, to be followed by u=3x, v=-x, and summing

produces for m=0:

®
J0(2x) + J0(4x) =2 Z JZn(X)‘]Zn(3X)'
N=—o
For x=kn/2, this applies to the remaining cross-product term in (40).

To prove (49) for raised-cosine pulses, use the same Neumann Addition
Theorem, but with different values of m. From (46) and (47), note that each
Bﬁ contains four square terms and six cross~product terms. The square terms
follow from m=0 and are all equal to unity. The cross-product terms are more
complicated, but tractable, as shown next.

From m=2,
J,(2) = ;mdn—l(l) Joap(-1) if u=-1, v=1,
= Zdn_l(l) Jp_3(3) if u=l, v=3,
N=—w
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23]
- ;mel(—l) Jo43(-3) if u=-3, v=-1.

From m=4,

2]

D 9 (1) 3 5(-3) if u=-3, v=I,
N=-w

34(4)

0

= Jn+1(—1)Jn_3(3) if u=-1, v=3.

Finally, from m=6,

-]

Jg(6) = Z Jy_3(3)9,,3(-3) i u=-3, v=3.

N=—w

Substitution of these identities into (46) to (48) yields the right side
of (49).

To evaluate the total power in the discrete spectra, it is sometimes
expedient to use a generalization of Neumann's Addition Theorem in the form

[++]

Im(u-s, v-t) = :E:: Im+n(u,v)In(s,t).

N=—-0w
It is proved by expanding its left side in the Bessel function series of
(53).

A final result, useful to evaluate the I,(u,v) functions for fixed argu-
ments u and v, is the recurrence relation:

U[T _q(usv) + I (uv)] + 2T 5 (u,v) + 1 o (u,v)] = enl (u,v).
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Its proof follows from substituting the recurrence property of ordinary Bessel
functions (Watson, 1962),

X[, _1(x) +d,.1(x)T = 2nJ (x)

into the series definition of I,(u,v), as given in (53).
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