
NTIA Report 90-266

Transmission Monitor and Control
Software Reference Manual

Richard N. Statz

u.s. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

Janice Obuchowski, Assistant Secretary
for Communications and Information

June 1990

DISCIAIMER

Certain commercial equipment and software products are identified in this
report to adequately describe the design and conduct of the research or
experiment. In no case does such identification imply recommendation or
endorsement by the National Telecommunications and Information
Administration, nor does it imply that the material or equipment identified
is necessarily the best available for the purpose.

iii

CONTENTS

Page

LIST OF FIGURES

ACRONYMS

GLOSSARY

ABSTRACT

vii

ix

xi

1

1. INTRODUCTION 1

2. OVERVIEW OF THE TRANSMISSION MONITOR AND CONTROL (TRAMCON) SYSTEM 2

3. THE TRAMCON ON-LINE SOFTWARE SYSTEM ENVIRONMENT 6
3.1 Hardware Configuration 6
3.2 Memory Allocation 10
3.3 Program Residency 14

4. PROGRAM SCHEDULING 15
4.1 TRAMCON System Initialization - INIT 15
4.2 Programmatic Scheduling 20
4.3 Run-string Parameters 23

5. TRAMCON COMMANDS 24
5.1 Command Format. 24
5.2 Command Parsing 25
5.3 Command Entry Restrictions 30
5.4 Adding, Changing, or Deleting TRAMCON Commands 31

6. REMOTE UNIT POLLING AND RESPONSE HANDLING. 32
6.1 Remote Unit Polling 32
6.2 Physical Response to Logical Response Transformation 34
6.3 The POLLjRESPONSE Interface Driver - DVA76 36
6.4 PHYSICAL vs LOGICAL Remote Unit 39

7. MAINTAINING THE MENU AND HELP TEXT FILES 41

8. SOFTWARE DEVELOPMENT AND MAINTENANCE 46
8.1 Software Development and Maintenance Tools 46
8.2 Software Development and Maintenance Procedures 47
8.3 Miscellaneous FMGR Procedure Files and Program Command Files 90
8.4 Source Code Structure and Writing Conventions 95

9. TERMINAL I/O MANAGEMENT
9.1 System Console vs Remote Display Terminal (RDT)
9.2 Logging ON/OFF Remote Display Terminal (RDT)
9.3 Terminal Configuration ..
9.4 Handling DOWNED Terminals

v

103
106
107
109
111

10.

11.

12.

13.

14.

15.

CONTENTS (cont.)

SYSTEM GENERATION
10.1 Switching to the New System
10.2 Loading System Utilities
10.3 Operating System Modifications

DATA STRUCTURE .
11.1 Type and Constant Definitions [RECR3
11.2 Shared Data (EMA)
11.3 Global Data Definitions - [TRVAR, [MPVAR, and [DTVAR
11.4 Disc Files

11.4.3 Run-time Data Base

RUN-TIME DIAGNOSTICS AND STATISTICS GATHERING UTILITIES
12.1 Use of Passwords
12.2 Statistics "Gathering (US command)
12.3 ALlAR Diagnostics
12.4 CR Diagnostics
12.5 DT Diagnostics
12.6 SE Diagnostics

SOFTWARE DISTRIBUTION AND SYSTEM RECOVERY FROM DISC FAILURE

CONFIGURATION DATA BASE DISTRIBUTION AND IMPLEMENTATION

SYSTEM POWER FAILURE AUTORECOVERY AND SYSTEM BOOT-UP

113
114
116
119

121
121
170
177
191
199

208
209
211
215
219
220
224 .

224

228

228

16. REFERENCES 232

APPENDIX A: PROCEDURE FILES FOR IMPLEMENTING PROGRAM "CONFI" 234

APPENDIX B: GENERATION ANSWER FILE "ANTR" 238

APPENDIX C: PROCEDURE FILE *LOAD6 . 248

APPENDIX D: PROGRAM "CHGREC" - USED TO CHANGE DISC FILE RECORD SIZE 257

APPENDIX E: DATALOK10, MODELS 1D AND IE, RAW RESPONSE FORMATS . 260

APPENDIX F: DATALOK10, MODELS 1D AND IE, DATA POINT ASSIGNMENTS 275

APPENDIX G: OPTIMIZING THE LOADING OF SEGMENTED PROGRAMS 281

INDEX

vi

293

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.

LIST OF FIGURES

TRAMCON system diagram.
TRAMCON Hardware diagram.
TRAMCON master computer backplane layout.
TRAMCON On-Line field system initialization.
TRAMCON initial bootup procedure file WELCOM.
Typical bootup messages on system console.

Program scheduling diagram.
Legal unprotected TRAMCON commands and their syntax.
TRAMCON command-type hierarchy.

List of command errors produced by parser.
Command restriction SETS.
Sample entry in file "CM.
Sample entry in file "HE.
Index file record definition.
Steps to change/add/delete TRAMCON command descriptions.
Procedure file for compiling TRAMCON On-Line software modules.
Sample screen output from Pascal compiler.
Sample screen from Pascal compiler for library module &TRLIB.
List of segmented programs.
INDXR command files.
Indexing and segmentation procedure.
EDIT command files for editing SGMTR output.
List of site status indicators for MA, amd SS displays.
DEVICE STATUS information in terminal reference manuals.
List of parameter TYPES and their settings.
DATALOKIO A/D data format.
Displays that are updated by "update._displays" .
LINK command files - #, ##, ###.

Linking nonsegmented programs.
TRMLDR - Procedure file for loading segmented programs.
Sample loader directive file #MTRP.
Installation of DRREL and DRRPL.
Sample execution of program DRREL.
Sample execution of program DRRPL.
FC command file - TRFC.
RN - Configuration data files rename procedure.
RE - New configuration data base REplacement.
Current contents of file)MISC.
Sample Pascal source file.
TRAMCON master - terminal communication cables.
TRAMCON terminal I/O processing.
TRAMCON master computer terminal device back-plane assignments.
Terminal configuration page for 2397A.
Remote datacomm configuration page for 2397A.
Global configuration page for 2397A.
Configuration pages for the HP-2627A terminal.
Handling DOWNED terminal devices.
Sample SWTCH - operator interaction.

vii

Page

2
8
9

16
17
19
22
25
26
28
30
42
43
44
45
48
50
50
51
52
54
56
61
68
72
78
80
81
82
8/+
85
87
88
89
91
92
94
94
99

104
105
107
110
110
111
112
113
115

LIST OF FIGURES (cont.)

Figure 49. List of modules loaded on-line after generation.
Figure 50. Modules necessary to execute procedure file *LOAD6.
Figure 51. Modifications to &LOGON, &LGOFF, and &LSUB2.
Figure 52. Items in data base that are DICTIONARY WORDs.
Figure 53. Transmission parameters currently supported.
Figure 54. Transmission equipments currently monitored.
Figure 55. List of HEAP (EMA) identifiers.
Figure 56. Global data declaration module [TRVAR.
Figure 57. Global data definition module [DTVAR.
Figure 58. Global data definition module [MPVAR.
Figure 59. GENERIC remote unit response format.
Figure 60. Contents of disc LU 2 for TRAMCON field system.
Figure 61. Contents of disc LU 10 for TRAMCON field system.
Figure 62. List of configuration data base disc files.
Figure 63. Run-time Data Base Files, All on disc LU 10.
Figure 64. US - TRAMCON operator command usage.
Figure 65. US - TRAMCON segment transmission statistics.
Figure 66. US - TRAMCON remote response timing.
Figure 67. US,TS - Real-time program state display.
Figure 68. DT - List of masters display.
Figure 69. DT - List of masters display with diagnostics.
Figure 70. DT - Contact master display with diagnostics.
Figure 71. DT - Data transmission display with diagnostics.
Figure 72. Pushbutton-save or restore procedure.
Figure 73. Configuration data base creation and distribution.
Figure 74. Master specific configuration data base files.
Figure 75. RE - New configuration data base REplacement.
Figure 76. Power failure automatic recovery system.
Figure A-I. FMGR procedure file for compiling CONFI - RUNCL.
Figure A-2. File for indexing, segmenting, and loading CONFI - RUNC.
Figure A-3. INDXR directive file for program CONFI - #RUNCL.
Figure A-4. EDIT instructions for CONFI segmentation file - A RUNCL .
Figure B-1. TRAMCON field system generation answer file - ANTR.
Figure C-l. FMGR procedure file *LOAD6.
Figure C-2. LINK and MLLDR command files used by *LOAD6.
Figure C-3. Procedure files referenced by *LOAD6.
Figure D-l. Source listing &CHREC. _

viii

117
118
120
150
152
154
171
178
184
185
189
192
195
199
199
212
213
214
215
220
221
222
223
226
229
230
230
231
234
236
236
237
238
248
253
256
257

ACRONYMS

DEB - Digital European Backbone

The American military communications system in Europe is in the process
of upgrading from analog to digital technology. The new digital system
is called the Digital European Backbone. The TRAMCON software system
has been developed in conjunction with the DEB, but is not limited to
monitoring only the DEB.

DS - Distributed Systems

Distributed Systems is a software package supplied by the computer
vendor (Hewlett Packard). This software manages a network (IPC, defined
below) that connects the TRAMCON computers.

EMA - Extended Memory Area

The Hewlett Packard 1000 minicomputer is a l6-bit word size machine that
limits addressing to 32767 (216 _1). This is inadequate for today's
applications. To allow a given program to access more than 32767 words
of data stored in central memory, a feature called EMA was added to the
RTE6/VM operating system. This EMA facility uses two-word addressing to
allow application programs, such as the TRAMCON programs, to access all
the memory that may be installed on the machine. The TRAMCON software
maintains all its static configuration data and real time data in a
portion of EMA memory. Another feature of this EMA that TRAMCON takes
full advantage of, is the ability of separate programs to share access
to the same data stored in EMA.

HP - Hewlett Packard Corporation

The TRAMCON application software is based upon an HP-1000 minicomputer.

HP-1000 - Hewlett Packard 1000, Series F minicomputer

This minicomputer is the hardware foundation of the TRAMCON On-Line
system. In this document the HP-1000 is also referred to as a TRAMCON
Master Terminal, or TMT.

IPC - InterProcessor Communication

The TRAMCON computers are connected to one another via a synchronous
2400-bps HDLC communications link. The network is defined so that any
given TRAMCON computer can communicate with any other TRAMCON computer,
although each computer is directly connected to no more than two other
computers. The DS software described above is used to perform the
communications over this IPC network.

ix

ITS - Institute for Telecommunication Sciences

The Institute, within the U.S. Department of Commerce, developed the
TRAMCON computer system and this document which describes the TRAMCON
system. ITS is the research and engineering unit of the National
Telecommunications and Information Administration (NTIA) and is located
in Boulder, Colorado.

I/O - Input/Output

The communication between any digital computer and the outside world
(e.g., peripheral devices, data lines) is referred to as I/O.

LU - Logical Unit

The TRAMCON software refers to the physical I/O channels on the HP-1000
minicomputer by using Logical Unit numbers. These LU numbers are
associated with default I/O channels at operating system generation.
They can be reassigned, either by the TRAMCON operator or
programmatically, to other I/O channels anytime while the software is
running. This flexibility allows programs to communicate with different
devices without being recompiled and reloaded.

RTE-6/VM - Real Time Executive operating system

The RTE-6/VM operating system, version A.85, was used to implement the
TRAMCON application software on the HP-1000 minicomputer.

TMT - TRAMCON Master Terminal

"TRAMCON Master Terminal" or "TMT" is the name given to the HP-1000
minicomputer used to implement TRAMCON. Each TMT consists of an HP-1000
F-series minicomputer with 1.5 Mbytes of central memory, a 65-Mbyte
Winchester technology disc drive (model 7912) with integral streaming
tape drive, and from one to four color display terminals.

TRAMCON - TRAnsmission Monitor and CONtrol

This manual describes the TRAMCON applications software developed by ITS
for the U.S. Air Force Electronic Systems Division (ESD) and serves as a
guide for the maintenance of this software. The TRAMCON software
monitors any communications equipment down to the Tl level. The TRAMCON
software also allows the reconfiguring of this transmission equipment
via remote controlled relays.

x

GLOSSARY

CATEGORY - The TRAMCON data collection devices (remote units) can report
information about the SITE equipment (e.g., battery voltage, door intruder
alarm) and information about up to three sets of communications equipment.
These sets of equipment are referred to as CATEGORIES.

LINKEND - A LINKEND is defined as one CATEGO~t or one set of communication
equipment that is located at a SITE and transmits/receives in a given
direction. A communications LINK consists of two LINKENDs communicating with
each other.

LOGICAL REMOTE UNIT - A LOGICAL REMOTE UNIT is composed of one or more
PHYSICAL remote units (see definition below). When a site contains more sets
of communications equipment than can be monitored by one physical remote
unit, several units must be used to monitor the entire site. Nevertheless,
the software presents all the information for any given site to the operator
as if it were monitored by one remote unit.

TRAMCON

MASTER - Each TRAMCON minicomputer is referred to as a TRAMCON master.
master's identification is derived from the site where it is located.
TRAMCON master polls a set of data collection devices (Remote Units),
receives responses from these devices, processes these responses, and
presents the status of the transmission and facility equipment to the
operator.

The
Each

MONITOR - Each TRAMCON master computer can operate in one of two modes,
either MONITOR or POLLER, for each TRAMCON segment (see definition below)
that it monitors. There is no difference between these two modes as far as
the data that are collected is concerned. For normal responses from the
remote units, the MONITOR mode just listens for a response from any remote
unit while the POLLER mode sends a POLL messa.ge to a selected remote unit and
listens for a response from that specific remote unit. One, and ONLY one,
master is designated poller on any given segment to avoid message collision
on the poll/response party line. The master that is in POLLER mode on a
given segment has primary responsibility for that segment.

NILL - A PASCAL constant defined in the TRAMCON software to represent the
undefined condition for certain integer subrange variables. For example, an
element in the array "linkend-info" is defined if it has a positive value.
That same element is NOT defined if it has the value "n ill".

POLLER - See the definition of MONITOR above" Along with sending polling
messages, the Master that is in POLLER mode on a given segment has the
capability to switch remote relays (see definition below) on that segment.

REMOTE UNIT - The TRAMCON system consists of the master units (HP-1000
minicomputers) and REMOTE UNITs. The remote units report alarm/status
information to the central master unit which, in turn, displays the
information to the TRAMCON operator. Currently, TRAMCON uses two mo.dels of a
remote unit known as a DATALOK10, the DATALOK10 lD and the DATALOK10 lEo
Both models are capable of monitoring up to three sets of communications

xi

equipment and one set of site equipment (e.g. batteries, door, etc.). To
observe the information from a particular remote unit, the TRAMCON operator
specifies the three letter designator for that remote unit. These three
letter designators, also called Site Codes, are assigned to each remote unit
by the communications system managers and must be unique for each location.

SEGMENT - The communications network that TRAMCON monitors is divided into
manageable portions called SEGMENTS. Each segment consists of a collection
of remote units connected to the TRAMCON master computer via an RS232, 300­
bps party line. To select a particular set of alarm/status indicators, the
TRAMCON operator must specify both a segment name and a remote unit name.
For operator convenience, the segments are given a short name (up to six
characters) in addition to their long names.

SITE - The physical location at which one or more sets of communications
equipment are being monitored is called a SITE. Each site can consist of any
number of sets of communications equipment that are monitored by TRAMCON.

TRUNK - A logical communication path for 24 channels (Tl) is given a TRUNK
identifier and starts at a given location (SITE), travels through a specified
sequence of sites, and ends at a specified location.

xii

TRANSMISSION MONITOR AND CONTROL
SOFrW'ARE REFERENCE MANUAL

Richard N. Statz*

This manual describes the functions of the TRAMCON (TRAnsmission
Monitor and CONtrol) On-Line software and the steps necessary to
maintain th~s software. This document emphasizes the software
semantics rather than the syntax. The structure of the software is
described and the design, and development strategies used in the
creation of the software is explained. This manual is intended to
provide assistance to experienced progrmners who want to change or
enhance the TRAMCON On-Line software.

Key words: automated technical control; data archiving; Digital European
Backbone; microwave radio; network management; polling; pulse
count; software; TRAMCON; transmission monitor and control.

1. INTRODUCTION

As any software system matures and passes from the development stage to the
maintenance stage, the need arises for a document that summarizes the
structure of the software and explains the design and development strategies
used to produce the software. This manual is just such a document for the
software system known as TRAMCON. Since this document is a summary, by
definition, it must be produced after the software system has matured. The
larger the software system, the more voluminous is the normal accompanying
documentation. This summary document serves as a condensation of the
information contained in the other volumes. Since it is produced after the
software has matured, any changes from the original design or errors in the
original documents can be clarified and/or corrected in this document. The
summary document also serves as a quick reference. For answers to most
questions concerning the software, this is the document that should be
examined first. As the software was developed, information on the use of
development tools and procedures for development were sometimes difficult to
find or, occasionally, incorrectly documented or not documented at all. This
manual carefully documents these hard to find items and procedures.

This manual is intended to supplement rather than replace the Computer
Program Configuration Item (CPCI) documents already produced and delivered to
the sponsor's software maintenance organization. Certain portions of this
document may be a repetition of information contained in those CPCI
documents. If so, it is presented in a slightly different fashi~n or from a
different viewpoint. This document describes the philosophy upon which the
software was written and the environment necessary to maintain and enhance
the software. The programer should consult the CPCI documents for detailed
objective discussions of the software. Lastly, it is the intention of the

*The author is with the Institute for Telecommunication Sciences,
National Telecommunications and Information Administration, U.S. Department
of Commerce, Boulder, CO 80303-3328

author that this document serve as a concise description of the Transmission
Monitor and Control (TRAMCON) software, placing answers to programers'
questions at their fingertips. It is assumed that the user of this manual is
familiar with the Hewlett Packard (HP) 1000 minicomputer and the terminology
used by HP. Information that can be found in more detail in the HP documents
or the CPCI documents is cross referenced in this manual.

2. OVERVIEW OF THE TRANSMISSION MONITOR AND CONTROL (TRAMCON) SYSTEM

The TRAMCON monitoring system was developed to reduce the per-channel-mi1e
cost of communication services by increasing the productivity of the
communication operation and maintenance personnel. It was also developed to
accommodate the introduction of a new maintenance philosophy required by the
upgrade from analog to digital communications equipment. The TRAMCON system
is a minicomputer-based data collection system that collects alarm/status and
performance parameter data from long-haul telecommunications equipment and
presents this information to the operator bo.th on video display and hardcopy
devices. In addition, at the operators direction, the TRAMCON system can
remotely reconfigure the communications hardware via relays. Figure 1 is a
block diagram of the TRAMCON system.

Communications Equipment
TRAMCONMonitored by TRAMCON

I

e.g.
FRCl71

r-- Remote FRC162/165
Unit Codenoll Fiber

Northern Telecom/Collins
Fiber/DNI

HP-IOOO FAC-3 Fiber
FRC80 and Siemens 120-6000

TRAMCON r-- FRC177 Troposcatter
Master FRC1l3
Terminal

(TMT) y

Y
-

Remote -
- Unit -

I I I

Figure 1. TRAMCON system diagram.

2

Data collection devices, known as "remote unit:s", are connected to the
alarm/status points of the communications equipment that TRAMCON is
monitoring. Currently, each PHYSICAL Remote lJnit is limited to monitoring up
to three sets of communications equipment by the software. For each unique
set of communications equipment monitored, thElre is an EQUIPMENT record in
the data base. These equipment records give English names to the
alarm/status indicators for each kind of equipment.

For every place that a given communications equipment type, such asa DRAMA
radio (FRC17l), is monitored, there is a pointer to the equipment record that
describes that equipment. Since all these pointers are to the same equipment
record, the software produces the same results for all DRAMA radio
installations. To allow for some uniqueness for any given installation, the
"specific_name" feature was built in.to the software and data base. Using
Specific Names, the data base Configurator can tailor the general
communications description to any specific location. For example, a DIGROUP
alarm on port 3 of the multiplexor can have a unique name for any given
location depending on the DIGROUP that happens to be using port 3. At some
locations, port 3 may even be used currently. Therefore, there would not be
a DIGROUP alarm for port 3. In the first case, the DIGROUP alarm for port 3
can be reported with the identifier of the DIGROUP that is currently using
port 3. In the second case, the software can be told to ignore the port 3
DIGROUP alarm at the given location by setting a nill pointer in the Specific
Name field.

A similar feature to Specific Names has been added to the remote relay
function to allow the data base configurator to define relay functions at
some locations and not at others.

To allow the TRAMCON software to monitor a new type of equipment, the data
base manager simply creates an equipment record that describes the new
equipment. Figure 1 lists the communications equipment currently monitored
by TRAMCON.

All of the alarm/status information that is collected by these remote units
is reported to the HP-1000 minicomputer which, in turn, analyzes the data
according to its data base description and produces displays for the TRAMCON
operator. Each minicomputer is capable of monitoring up to two sets of
remote units consisting of up to 21 remote units each. Combining these
numbers with the limit of three sets of communications equipment per Remote
Unit, we see that it is possible that a single TRAMCON operator may be
responsible for up to 126 sets of communications equipment and up to 42 sets
of site equipment.

Currently, operations and maintenance of the analog communications system are
performed on a site by site basis. That is, operations personnel are
stationed at every communications site and are responsible for the equipment
at their own site. This is costly, especially when the site is a simple
repeater located on a difficult-to-access mountaintop. The TRAMCON system
allows an operator to maintain not only the equipment on site, but all of the
equipment at the local site as well as several remote locations. Therefore,
the first reduction in manpower cost wou~d result from the unmanning of the

3

most inaccessible sites. From an ~ctive and well-staffed central location,
the unmanned mountaintop sites can be watched, their problems can be
diagnosed, switches can be made from malfunctioning equipment to redundant
functioning equipment, and the proper maintenance crews can be dispatched if
necessary.

The intent of TRAMCON is not to displace or reduce the responsibility of
human operators but rather to increase their span of control by placing
information of a more refined quality at their disposal to allow them to make
better control and troubleshooting decisions.

The functional requirements of the TRAMCON system were developed over a
number of years, starting with a very basic list of features. As the
operators gained experience with the initial installation (known as the
Enhanced Fault Alarm System, or EFAS) , enhancements of display capability and
of monitoring function were added at their suggestion. In parallel with the
installation of the digital communications system known as the Digital
European Backbone (DEB) and as a result of changes in system control
philosophy, the official functional requirements. for TRAMCON were articulated
by the Defense Communications Agency. This began in 1981 and culminated with
the issuance of a Concept of Operation in August 1984.

The basic functional requirements for the TRAMCON system, consisting of
master and remote units, are as follows: remote unit polling, alarm scanning
at the remote location, isolation of alarms to a particular location and
equipment, control of specified functions at a remote location, monitoring of
specified performance parameters at remote locations, presentation of the
information received from remote locations to an operator and to other
elements of system control as required, and allowing at least two master
units to share responsibility for any particular segment of the network.

To perform the functions described, a minicomputer handles the master unit
functions and does the required data processing to put the information into
the desired formats for presentation to the operators. This minicomputer,
referred to as the TRAMCON Master computer, sends poll messages to remote
units and receives and decodes the responses. The information in the
responses is processed to generate displays on a CRT terminal. These
displays present alarm, equipment status, and performance parameter data
gathered from the remote sites in easily understood English text formats
designed to show individual site and entire system conditions.

To improve the reliability of the monitoring system, at least two master
units are able to monitor each segment or group of communication sites. At
any given time, only one of the masters monitoring a particular segment will
be designated as the POLLING master for that segment. The polling master
will actually control the remote units on a segment while any other master
monitoring that segment will operate in a listen-only mode. The polling line
is a party line and is broken at segment boundaries so that only polling
messages intended for a particular segment's remote units appear on that
segments poll line.

4

The TRAMCON On-Line software system was based on an existing system called
the Enhanced Fault Alarm System (EFAS). The general concepts listed below
were continued from EFAS to TRAMCON.

1. Remote units (data collection devices) reporting to a central
master computer over an RS-232 party line.

2. The remote unit network is divided into segments that are sets of
remote units.

3. Each segment has at least two masters assigned to monitor it with
one master sending the polling messages and both listening to the
responses.

4. The information collected by a remote unit is categorized as
A. Two-state - single bit ON or OFF

LATCHING alarm or MOMENTARY (nonlatching) status
B. Analog - Voltages encoded into 8-bit bytes
C. Digital - Pulses counted and encoded into 8-bit bytes

The analog and digital data are calibrated and converted into
units familiar to the operator. The operator is allowed to adjust
this calibration and to set operati.ng thresholds for these values.

5. Radio or communication equipment being monitored can be
reconfigured remotely by the operator by activating relays in the
remote unit that are, in turn, wired to switches and relays in the
radio equipment.

6. The information collected by remotEl units is formatted and
presented to the operator on a terminal display device and/or
hard copy device. This information is requested by the operator
by command entry via a standard ASCII keyboard.

7. Several operator consoles can be connected to a given master.
8. Alarm/status data is archived on tlle disc and this history is

made available to the operator.
9. The master system has a battery-backed-up time/date clock so that

the system can survive power fluctuations and outages without
having to be restarted.

As indicated by the list above, the TRAMCON system had a solid, well­
developed foundation, and the functionality of TRAMCON does not differ
greatly from that of EFAS. A few major design improvements were made though,
based on experience with the EFAS system.

The primary improvement is in the TRAMCON software's ability to monitor
virtually any kind of communication equipment without a change to the
software. As a matter of fact, the TRAMCON software can monitor ANY kind of
equipment that is able to supply the types of data listed in item 4 above.
As an example, the TRAMCON system monitors many non-communication indicators
such as the door sensor or the generator fuel gauge. Although the EFAS
system possess~d this ability to monitor any equipment, a software change was
required to introduce new equipment into its repertoire. Everything about
any of these alarm/status values, including the English names, are hardcoded
in the software.

5

To allow TRAMCON to monitor any equipment that is introduced in the future
without ma~ing a change to the software, the TRAMCON system was designed with
two main parts. The On-Line software performs the actual data collection and
display ·functions of TRAMCON and relies on a configuration data base rather
than hard code to define its environment for any particular master. The
Configuration software (Configurator) maintains this data base for all
masters. Information that could change at any time, such as segmentation,
site names, alarm names, or information that differs from master to master is
placed into this Configuration data base. Any aspects of the system that are
the same on all masters, such as display formats or operator command
mnemonics, are incorporated into the TRAMCON On-Line code.

The TRAMCON hardware/software system development would not be complete
without a comprehensive document that describes the details of the software
structure and the software development procedures necessary to maintain and
enhance the TRAMCON system. With every software system there is guaranteed
to be unique, poor~y documented, and/or non-documented development procedures
that need to be brought to the attention of software maintenance people.
Also, during the initial software development, problems were encountered that
required a work-around or a correction from the vendor. These problems,
along with their solutions, must be documented to prevent further waste of
valuable development time rediscovering the solutions.

This manual is presented by the TRAMCON developers as an example of such a
comprehensive, timesaving document. Further maintenance and enhancement of
the software system which this document describes would not be practical
without the information that places at the programmers fingertips.

The structure and organization of the manual is also critical to its utility.
Some of the information is a repeat of that contained in the volumes of
documents supplied by the software developers and the computer vendor. The
information is repeated here to make it more accessible to software users and
to discuss certain software tools and procedures as they pertain to a
specific application.

The author believes that the reader will discover, in this document, a
valuable guideline for the production of a similar document for any software
system they may develop and that no software system is complete without such
a manual. Further, this document cannot be properly completed until the
software system is fully developed and the initial version is ready to be
fielded.

3. THE TRAMCON ON-LINE SOFTIlARE SYSTEM ENVIRONMENT

This section describes the minimum hardware and support software (operating
system) required by the TRAMCON on-line software. Hardware resource
allocation strategies that might optimize the efficiency of the TRAMCON
on-line software are discussed.

6

3.1 Hardware Configuration

The hardware constituting a TRAMCON data collection system is shown in
Figure 2. Most hardware was purchased from one vendor to reduce the
maintenance and logistic support problems that naturally result from multiple
vendors. The primary vendor was Hewlett Packard. Any hardware item that is
not HP was purchased from someone else only because HP did not make that
item, or that item was already being used in the predecessor system to
TRAMCON known as EFAS. The only items currently not HP are the modems and
the data collection device built by Pulsecom Corporation known as a
DATALOK10. Figure 2 shows the most recent TRAMCON hardware configuration.

Briefly, the hardware chosen for the development and implementation of the
TRAMCON master unit was the HP-1000 F-Series minicomputer running the RTE­
6/VM operating system version A.8S. The operating system version name was
derived from its release date of first quarter (A) of 1985. The original
system disc drive was the HP7906 20-Mbyte drive which has been replaced by
the 6S-Mbyte Winchester technology HP7912 drive with built-in streaming
cassette tape drive. The new drive has already been incorporated into the
TRAMCON system and will, therefore, be the hardware discussed in this manual.

With the newer releases of the RTE operating system, the user was offered two
choices of disc file systems. The older and more established file system is
known as File Manager (FMGR) and the new system, which introduces the more
advanced hierarchical structured file systerrl, is known as Command Interpreter
(CI). After careful consideration and consultation with HP, the choice was
made to use FMGR alone for the development of the TRAMCON system. Because of
its advances in flexibility and structure, CI would have been the clear
choice. But, the RTE operating system running on the F-Series machine could
not be completely divorced from the FMGR system. For the convenience and
simplicity of working with and maintaining just one file system, the choice
was made to stick with the required FMGR system. Therefore, all references
to file names and disc file manipulation throughout the rest of this document
are with regard to the FMGR system and require reader familiarity with that
system only.

7

Peripherals Remote Units

I/O Slot 2397A
25 Terminal

1.5 Mbyte

RAM 24 IUnused

23 Unused

22 Audible Alarm I
CPU

21 ModemI IIPC 21,

20 MOdem: 'IPC 11I Remote

ModemI :Modem~
2397A Unit 1

17 Terminal

16 'Modem l RemoteI I Unit n

15 'Modem l
II Remote

2397A Unit 1
14 Terminal

Floating 2397A 2932 Remote
13 Terminal - Printer Unit n

Point

Processor 12 79l2A Disc Streaming
Drive Tape

11 Clock Batteryl

Figure 2. TRAMCON Hardware diagram.

Figure 3 expands the TRAMCON master computer backplane description and lists
the logical unit (LU) numbers and equipment numbers assigned to each
input/output (I/O) slot (select code) in the backplane of the computer. With
the TRAMCON master computer, there is a one-to-one correspondence between I/O
slots and equipment numbers. This correspondence is set up at system
generation time (refer to Section 10) and cannot be altered without
regenerating because the equipment table is a fixed part of the operating

8

system. What can be changed, at any time, is the association between the
equipment and the LUs. This flexibility allows software to refer to
different equipment without being rewritten. The software does its I/O by
referring to LU numbers that, in turn, can be associated with a different
piece of equipment each time a program is executed.

Select Logical Equipment
Code Interface Driver Unit(s) Number

4 Power Failure DVP43 13 26

10 Floating Point Processor N/A N/A N/A

11 Hardware Time/Date Clock DVT43 31 18

12 79l2A Disc Controller DVM33 2,10 1

13 Terminal (System Console) DVX05 1,25 2

14 Terminal (Segment Console) DVX05 26 3

15 Segment 0 Poll Line DVA76 15 4

16 Segment 1 Poll Line DVA77 16 5

17 Terminal (RDT) DVX05 27 6

20 IPC Channel 1 (HDLC) DVA66 17 7,8

21 IPC Channel 2 (HDLC) DVA66 19 9,10

22 Digital Output (Audible) DVS72 14 11

23 Unused ---- - -- - -

24 Unused --- - - - - - -

25 Terminal DVX05 28 13

Figure 3. TRAMCON master computer backplane layout.

Also permanently associated with the I/O slot is the software driver that
processes the I/O requests for each kind of equipment. Only two of these
drivers, DVA76 and DVA77, are not standard device drivers. These two drivers
were written by the TRAMCON developers and are described in detail in Section
6.3. Any of the drivers can be updated and tested on-line by following the
procedures detailed in Section 8.2.6.

Because the IRU was planned from the start, TRAMCON software was designed to
support virtually any remote unit device with a minimum of additional code

9

necessary for this support. Code is already in place to support the
now-defunct IRU. This ability to support ANY remote unit feature is
currently demonstrated by the support of two models of the DATALOK10: model
1D and model 1E. Because the DATALOK10 is dumb, each model generates a fixed
response that is organized differently. Separate code is needed to process
the different responses and convert them into a generic response that"the
TRAMCON On-Line software can analyze (refer to Section 6).

As shown in Figure 2, the other major component of the TRAMCON hardware is
the TRAMCON Master Terminal (TMT). The TMT consists of a minicomputer,
several terminal display devices, a disc memory system with integrated
streaming tape, and several hardware interfaces that allow the TMT to
communicate with all its peripheral devices, with the network of remote
units, and with each other. The central processor portion of the TMT is an
HP-1000 model 2117F, also known as an F-Series computer. One Mbyte of
central memory has been installed and another .5 Mbyte is planned.

The basic hardware has been upgraded only when absolutely necessary to avoid
costly documentation changes and to avoid having more than one fielded
configuration. In other words, uniformity of both hardware and software was
a primary consideration when designing and implementing the TRAMCON system.
The first item upgraded was the HP-2647F display terminal. The primary
reasons for replacing the HP-2647F were cost and obsolescence. Hewlett
Packard no longer manufactures this terminal model and has replaced it with
better, less expensive models. Since there were so few HP-2647F terminals
fielded when the decision to change was made, for uniformity all HP-2647F
terminals were replaced with newer models.

The next major item replaced was the HP-7906 disc drive. The primary reasons
for this decision were obsolescence, high failure rate in the field, and a
need for larger capacity. The HP-7906 disc was replaced by the HP-7912 disc,
increasing the capacity from 20 Mbytes to 65 Mbytes and, hopefully,
decreasing the failure rate by using a Winchester-technology device that is
sealed from the outside environment. Again, for uniformity, the 13 HP-7906
units already fielded were retrofitted with the new disc.

The last item mentioned here is an addition rather than a replacement. The
increase in memory capacity to 1.5 Mbytes allows software designers some
flexibility in allocating memory to reduce possible bottlenecks caused by
program swapping and data storage and retrieval on disc. The 1-Mbyte
capacity was technically not enough for a fully configured TRAMCON master
computer with two segments or each, with 21 remote units.

3.2 Memory Allocation

As mentioned in the preceding section, the central memory will be increased
from 1 Mbyte to 1.5 Mbytes. The reason for the increased memory is that the
current system uses all of the 1 memory currently available. This allows
absolutely no room for future enhancements. Even in the 1.5 Mbyte system
allocation proposed above, compromises in system performance were made
because of a shortage of memory. Examples of compromises follow: fewer

10

time-critical programs are made memory-resident, not enough large segments
exist to accommodate heavy (multiple terminal) activity, and real time data
are not being kept in memory.

The memory has been repeatedly repartitioned to achieve the best performance
possible, given the already constraining size. The software may technically
function after an inordinate amount of massaging of the memory allocation,
but it does not function nearly as well as it can on the HP-1000.

Always, the overriding bottleneck is disc I/O. To reduce I/O to a minimum,
among other things, program swapping must be kept to a minimum. That means
making the time-critical programs, such as the polling processors, lock
themselves into a section of memory that no other software module can use.
Also, data that are often referenced should be memory-resident. As a general
rule, the more memory, the greater the reduction of costly disc I/O.

The following discussion details the information upon which the decision for
more memory was based. The memory can be divided into three major
components: (1) the operating system, (2) the TRAMCON application programs,
and (3) shared data.

First, we will look at the shared-memory requirements for the data base. The
following is a list of major data base components and their sizes.

Record name
heap
master
network
links
dictionary

* crt
segment
trunk
equipment
site

* remote
* link end
* remote status
* link status

Bytes
8,670

94
280

3,500
14,000

12
288
152

4,626
18
30

238
2420

1,528

16-bit words
4,335

47
140

1,750
7,000

6
144

76
2,313

9
15

119
1210

764

* Dynamically allocated only when non-NIL pointer encountered.

The records heap, master, network, links, and dictionary are the same size
for all TRAMCON masters. All other items listed above must be multiplied by
some factor depending upon the data base configuration for trfe particular
master. The following shows the storage requirements for a fully-configured
TRAMCON master and the factors used to derive these requirements:

11

Factors for a fully configured system

2 Segments per master
256 Sites per master

21 Remote Units per segment
4 Categories per remote (3 link plus 1 site)

30 Parameters per category
100 Trunks per segment

20 Equipment records per master
5 Terminals per master

Item size x factors listed above

Fixed data
Terminal x 5
Segment x 2
Trunk x 100 x 2
Equipment x 20
Site x 256
Remote x 21 x 2
Link end x 4 x 21 x 2
Remote status x 21 x 2
Link status x 4 x 21 x 2
Total Requirements
Total Memory Available

Bytes
26,544

60
576

30,400
92,520
4,608
1,260

39,984
101,640
256.704
554,296
512,000

l6-bit
words

13,272
30

288
15,200
46,260

2,304
630

19,992
50,820

128.352
277,148
256,000

The factors listed above are constraints of the configuration data base as
defined in the software in module [RECR3 (refer to Section 11.1). If any of
these values are changed, the TYPE or CaNST definitions in [RECR3 would have
to be modified and ALL TRAMCON software modules would have to be recompiled
and reloaded to incorporate the change.

The item sizes are multiplied by the appropriate factors to give the actual
memory requirements for a fully-configured system. A fully-configured system
has a very low probability of occurring in the real world. Therefore, the
shared memory requirements were based on the much more realistic average
system specified below. Some of the factors will be smaller for the average
system. For example, the average system will have only 3 categories per
remote unit rather than the maximum 4 categories.

Factors for the average system

2 Segments per master
10 Remote Units per segment

256 Sites per master
3 Categories per remote unit(2 link plus 1 site)

30 Parameters per category
40 Trunks per segment

4 Equipment records per master
2 Terminals per master

12

Item size times factors listed above

Fixed data
Terminals x 2
Segment x 2
Trunk x 40 x 2
Equipment x 4
Site x 256
Remote x 10 x 2
Link end x 3 x 10 x 2
Remote status x 10 x 2
Link status x 3 x 10 x 2
Total Requirements
Total Memory Available
RTE-6 Operating System
TRAMCON Program Space

Total

Bytes
26,544

24
576

12,160
18,504
4,608

600
14,280
48,400
91,680

217,376
500,000
162,000
350,000

512,000

16-bit
words

13,272
12

288
6,080
9,252
2,304

300
7,140

24,200
45,840

108,688
256,000

81,000
175,000

256,000

Based on the memory requirements for the maximum and average systems which
were just discussed, the following shows the currently employed memory
allocation scheme for the 1 Mbyte system and a proposed scheme for the 1.5
Mbyte system:

Operating System (RTE6/VM, Ver A,85)
Shared memory for configuration

and dynamic data storage
Miscellaneous (e.g., dictionary, crt info)
Dynamic alarm/status

(current space already inadequate for
2 segments of 21 remotes each requiring
300K minimum)

Time-critical programs
DS programs
PLRP
MTRP
CMMD
UP
POLL
Fault isolation programs
Partition for large segmented programs

Partitions for display programs (one per CRT)
Total

Current
204K

86K
294K

94K
94K

228K
1 Mbyte

Future
204K

lOOK
350K

30K
lOOK
lOOK

64K
52K
50K
64K

130K
256K
1.5 Mbyte

In the memory allocation scheme laid out above, the additional .5 Mbyte of
memory primarily would be used to place more of the critical software into
memory (i.e. make memory-resident). This would reduce disc swapping of
program modules that run periodically and thus increase the efficiency of the
TRAMCON On-Line system.

13

3.3 Program Residency

The most common bottleneck in most computer systems is the I/O between the
CPU and the mass storage device--in TRAMCON, the 7912 disc. In a multi­
tasking system with limited central memory, the disc I/O involved in swapping
programs can be significant and becomes a prime target for performance
improvement adjustments. The tradeoff here involves memory space versus
swapping delay. The ideal would be to have all the On-Line software memory­
resident, which would require NO program swapping. This extreme is not
feasible as illustrated in Section 3.2. The following table shows the memory
partitioning scheme currently used for the TRAMCON field system:

Partition
number

1
2
3
4
5
6
7
8
9

10
11

Size
(1024-word pages)

32
5
5

12
14
27
32
32
46
46

190

Use
Disc I/O Manager (D.RTR)
Small, periodic programs
Small, periodic programs
Small-medium programs
Small-medium programs
Small-medium programs
Full-size programs
Full-size programs
Program MTRP
Program PLRP
Shared data (EMA)

The memory allocation (partitioning) is specified to the system generator
(see Section 10) and can be adjusted without regeneration by setting bit 5 ON
in the S-register when booting the system (refer to the RTE-6/VM System
Manager's Reference Manual, Chapter 10).

The order in which partitions are defined is significant. The order shown
above ensures that the proper programs are assigned to proper partitions by
the scheduler. The program scheduler starts with partition 1 and searches
for the first partition large enough to hold the program being scheduled.
Defining the smallest partitions first ensures that the program which best
matches the partition's size is assigned to it.

Memory must first be allocated for the shared data. The more data that is
stored in memory, the less disc I/O that is involved in accessing the data.
Any memory left over can be allocated as program space for execution of the
TRAMCON On-Line programs.

14

A few small partitions were defined to hold small Distributed Systems (DS)
programs, such as UPLIN, and small TRAMCON On-Line programs, such as UP, that
run often and on a regular basis. The two main remote unit response
processing programs, MTRP and PLRP, were made memory resident to avoid
segment swapping for these extremely time-critical programs. Two partitions
(9 and 10) were set aside exclusively for these two programs. Both MTRP and
PLRP were segmented with all segments declared as memory-resident segments.
This step ensures that the entire program will be placed into memory any time
it is executing so that segment overlaying does NOT involve disc I/O, merely
memory map swapping. However, this step does not prevent the entire program
from being swapped and having to share its memory partition. Therefore, when
these programs are scheduled and are assigned the proper partitions, they
immediately lock themselves into memory (refer to RTE-6/VM Programer's
Reference Manual, p. 2-70, Program Swapping Control - EXEC 22) to prevent the
operating system from doing a complete program swap with them.

4. PROGRAM SCHEDULING

From a scheduling standpoint, each TRAMCON program falls into one of two
general categories. Some programs, such as the remote unit response
processing programs, are scheduled once at bootup and never terminate.
Others, such as display producing programs, are scheduled on operator demand,
run to completion, and are rescheduled at some later date. This section
discusses the scheduling of the various TRAMCON programs.

4.1 TRAMCON System Initialization - INIT

The HP-1000 minicomputer is restarted from a halted state by following the
bootup procedure specified in the TRAMCON (version 1.8) Operator's Manual,
Section 6.4. The HP-1000 minicomputer can be booted from several different
devices, but the field TRAMCON system is booted from the 7912 disc. The
bootup device is specified by the contents of bits 14 and 15 of the S
register as specified in the procedure. The bootup routines for each of the
possible devices are stored on ROMs located under CPU cards just behind the
front panel. The bootup ROM for the TRAMCON field system is located at
address 3, so both bits (14 and 15) are set ON. This bootup is referred to
as a SOFT boot because it is assumed that the RTE operating system software
and the TRAMCON software are intact on the 7912 disc and the disc system is
operational. The TRAMCON field system bootup process is diagrammed in
Figure 4.

15

Execute Bootup Procedure
(Described in Section 15)

Instructions in Procedure
File WELCOM Executed.
(Described in Section 4.1)

I INIT I
CURRENT

Data Base
(EQT
(MAST
(DICT
(SITE
(LINK
(LINKS
(TRUNK
(SEG
(NET
(REMOT
(CRT

Read CURRENT Data Base
from Disc and Place in
Shared Memory (HEAP).

Allocate and Initialize
Dynamic Data Area for
Each Segment, Remote ~

Unit and Link End Defined
on This Master

Allocate CLASS # "heap_class"
and Attach Two-Word Output
Buffer to it That Contains
First Word AddLess (FWA) of
Shared Memory Area (HEAP)

Schedule TRAMCON
Command Processing
Program CMMD and Pass
"heap_class" to it.

Shared Memory (HEAP)

Configuration
Data Base

Dynamic Data
Area

Figure 4. TRAMCON On-Line field system initialization.

The bootup ROM program transfers to a larger bootup program found at a fixed
location on the bootup device (the 7912 disc for the TRAMCON system) to the
HP-lOOO central memory starting in memory location 2, then branches to the
program just loaded. This larger bootup program proceeds to load the
memory-resident portion of the RTE-6/VM operating system into memory. Once
the loading of the operating system is complete, control is transferred to
the RTE operating system program scheduler, which schedules the program FMGR.
Disc files called PROCEDURE files can be created to contain commands for the
FMGR program. When the FMGR program is initially scheduled, it is told to
look in disc file WELCOM, which is one such procedure file, for its initial

16

instructions. This WELCOM file facility allows the user to
any function, automatically, when the system is booted up.
used for the TRAMCON field system is listed in Figure 5.

: SV ,4" IH
:SYCU,ON
:CT,1,30B,4l7B
:CT,1,3lB,1
:RU,PAKLU,QT
:IF,lP,EQ,0,2
:PK,lP
: IF, , EQ, , -4
:RU, SETCL
:RU, SETCR
:RU , CLNUP, ALL
:RP,EDITR
:RP,PROGL
:RP,VCPMN
:RP,LUQUE
:RP,SYSAT
:RP,RSM
:RP,#SEND
:RP,RFAM
:RP,DLIST
:RP,DSINF
:RP,OPERM
:RP,EXECW
:RP,EXECM
:RP,PTOPM
:RP,REMAT
:RU,DINIT,(DINIT
: SYAG, 100
:TR,RUINIT

perform virtually
The WELCOM file

Figure 5. TRAMCON initial bootup procedure file WELCOM.

The first FMGR command, "SV,4"IH", tells FMGR not to display any messages
that do not concern fatal problems. The next command, "SYCU,ON", causes the
execution of the diagnostic program CU, which displays CPU usage as the
contents of the S register on the front panel. The more the CPU is being
used, the more lights are set ON in the S register. The next two commands,
"CT,1,30B,4l7B" and "CT,1,3lB 1", are used to configure the RS-232 interface
associated with LU 1 (system console) and are used only when the system
console is connected to the interface via a modem cable (12966-60006).

The next four statements, "RU,PAKLU,QT", "IF,lP,EQ,O,2", "PK,lP", and
"IF"EQ,,-4", will automatically pick all the disc LUs defined in the system.
The data storage on the disc becomes fractured (data interlaced with unused
portions of the disc) as files are created, deleted, or replaced. In the
TRAMCON field system, there should be NO need for this packing if the disc is
packed before any new software is shipped. In normal TRAMCON field
operation, NO disc files are created or deleted and only the Configuration

17

data files are replaced. If these files were placed at the end of disc LU 10
and purged before the new data base is placed onto LU 10, NO fracturing would
occur. The disc space released by purging files at the end of the used
portion of any disc LU is automatically recovered.

The next statement, "RU,SETCL", executes the small program SETCL which sets
the software time/date clock from the battery-reinforced hardware clock.
During normal operation (when the machine is not halted), the time/date is
derived from the software clock, which is maintained in memory by 10 ms
interrupts on the time base generator interface in Select Code 118. If the
hardware time/date clock loses the correct time/date, program SETCL can be
used to set the hardware clock from the software clock by issuing the
statement, "RU,SETCL,-l". This assumes that the software clock is set to the
correct time/date. The software clock can be set with the operating system
TM command (refer to RTE-6/VM Quick Reference Guide, p. A-8).

The next statement, "RU, SETCR", executes the· small program SETCR to set the
cartridge ID for disc cartridge 10 to SYSTEM so that the DS software can
access files on this cartridge. The cartridge ID is mentioned in the
RTE-6/VM Programer's Reference Manual, p. G-4. On any TRAMCON system, this
flag must be set to SYSTEM, but occasionally during software development it
could inadvertently be altered. Nothing is lost by running this program.

The next statement, "RU,CLNUP,ALL", executes the small program CLNUP to
search disc directories for files that might have been left open when the
system halted. Any file found open to a program that is no longer running,
will be closed. At this point, the WELCOM file is open to FMGR which, of
course, is running and therefore, this file is NOT closed. This program was
acquired from the HP-lOOO user's group.

The next 15 "RP" statements make the 15 DS programs available to the
operating system by loading their executable codes into the system scratch
area and assigning a program ID segment to each of them.

Following the "RP" statements, "RU,DINIT,(DINIT", executes the program DINIT,
to initialize the DS software and InterProcessor Communication (IPC) network.
The program DINIT is an interactive set of questions about the network
configuration and answers to these questions are found in disc file (DINIT.
Most of the answers in (DINIT are generic, or the same, for all TRAMCON
masters. Only a few of the answers, such as "Local Node Number", are unique
for each master. All of the answers for each master are known to the
Configurator program. File (DINIT is automatically generated by the
Configurator when it generates a master specific data base (refer to
Section 14). The DINIT program establishes a given TRAMCON master as an
active node on the IPC network.

Figure 6 shows the information that should typically appear on a system
console screen after the programs CLNUP and DINIT have been run. This
information will appear briefly before the program INIT clears the screen and
presents the TRAMCON logo.

18

The next statement, "SYAG,100", is an operating system command to set the
aging delay for program swapping. The value 100 is suggested by HP. Program
swapping on the HP-1000 is very elementary, and the setting of the swap delay
probably is insignificant.

SET TIME
Checking 2
YELCOM: : 2 is open shared to FMGR - OK
Checking 10
END DINIT

DS MSG: LU # 17 JUST CAME UP
TIME: DAY 214 8 : 19: 23
DS MSG: LU # 19 JUST CAME UP
TIME: DAY 214 8 : 19: 23

RFAM: LIMITED DISC SPACE, THE NUMBER OF FILES HAS BEEN LIMITED TO 5

Figure 6. Typical bootup messages on system console.

The next statement, "TR,RUINIT", is the most important command in the WELCOM
file. This statement activates the TRAMCON On-Line software. Technically,
this command transfers FMGR command processing control to procedure file
RUINIT. This indirect step was necessary during development because program
INIT had several options that could be passed to it as run string parameters.
All but one of these run string options has disappeared during development.
The only remaining option is the third parameter that, if set to 73, will
start the TRAMCON On-Line software with the master password entered
("restricted_access" is false, refer to Section 12.1). This is still a
desirable convenience for software maintenance, but undesirable in the field.

Program INIT allocates the EMA partition called SHARI as the HEAP area that
is to be shared by all TRAMCON On-Line programs. The information stored in
the HEAP is described in detail in Section 11.1 of this manual, which
discusses the INCLUDE module [RECR3. Basically, INIT reads the Configuration
data from the 12 Configuration data base files (see Section 11.4) and places
the records from each file into the HEAP. The data in these files are
hierarchically structured with records from one file containing pointers to
records in other files. The Configurator does not know where, in EMA, each
of these records will be at the time the TRAMCON software is booted up. All
the Configurator program knows is how the records are connected together.
For example, if a record such as the master record contains a pointer to a
particular site record, the value placed in the field in the master record by
the Configurator is the record number corresponding to the desired SITE
record in file (SITE. Since these values will be translated by INIT into
actual two-word EMA addresses, they are defined as two-word integer values.
To accomplish this translation from integer values to EMA addresses,
two almost identical TYPE definition modules, [RECR2 and [RECR3, are
maintained. The module [RECR2 contains near-duplicates of all the record
TYPE descriptions for the Configuration data base records. The only
difference between the two definitions is in the TYPES of these record
pointer fields. Module [RECR2 defines these pointers to be of TYPE integer
and [RECR3 defines these pointers to be Pasca.l pointer types. As INIT
allocates space for these records in the HEAP, it creates a pointer (two-word

19

EMA address) for each record. Program INIT substitutes the newly created
actual memory addresses into the records as it places them in memory.

NOTE

Although the only reference to the INCLUDE module [RECR2 is in the
program INIT, it is mandatory that the definitions in [RECR2 and
[RECR3 match. Any time that TYPE definitions for any of the
11 Configuration data base disc file record definitions change,
the change must be made to both [RECR2 and [RECR3.

After transferring all the Configuration data to the HEAP, program INIT
allocates a large portion of the HEAP for the dynamic run-time data described
in detail in Section 11.1. Program INIT terminates the FMGR program and
schedules the TRAMCON command processing program CMMD, passing to it the
CLASS number that leads to the first word address (FWA) of the newly created
HEAP.

NOTE

Since program FMGR is terminated by program INIT, any further
commands in file WELCOM beyond "TR,RUINIT" will NOT be executed.

Program INIT's function is complete and it terminates.

4.2 Programmatic Scheduling

Programs on an RTE system can be scheduled in either of two ways. First, a
program can be scheduled directly by using the RTE commands RU or ON. The
second scheduling method is programmatic. That is, one program can schedule
another by issuing a call to the system routine EXEC. A program may be
scheduled by either of the above methods to execute immediately or at some
later time. That same program may also be scheduled to execute repeatedly at
future fixed time intervals.

The TRAMCON On-Line programs use all of the scheduling methods described
above. In normal operation, the operator does not have to explicitly execute
any TRAMCON program.

The only program executed by using RTE commands is the TRAMCON initialization
program INIT. Even the command to schedule INIT is not entered by the
operator. Instead, the program INIT is automatically scheduled by an RU
command, which is the only instruction in procedure file RUINIT located on LU
10. The instruction to execute the INIT program is not located directly in
the bootup procedure file WELCOM because of development options that can be
included in the execute instruction. Currently, the only option remaining is
to exe~ute INIT with the "access_restricted" password entered. This is done
by setting the third run-time parameter to 73 as in "RU,INIT",73". If this
password entry convenience is no longer desired,

20

then the code to process the run time parameters could be removed from 1N1T,
plus the procedure file RU1N1Tcould be removed from LU la, and the statement
":RU,INIT" could replace the statement ":TR,RUINIT" in file WELCOM. As
mentioned above, the program 1N1T is the only TRAMCON On-Line program
scheduled, explicitly using an operating system command. Program 1N1T, in
turn, schedules the program CMMO as its last function before terminating
permanently.

All other TRAMCON programs are scheduled programmatically, and all of them
are initially scheduled by the program CMMD. The program HR is initially
scheduled by CMMO, runs to completion, and reschedules itself to run on the
hour every hour until TRAMCON is halted. Another set of programs is
scheduled by CMMO when the system is being initialized. These programs,
which include PLRP, MTRP, KYBRO, LOF, LON, and POLL, never run to completion.
Rather, they continuously loop, spending most of their time waiting for input
from the operator, another device, or another program. The remaining TRAMCON
programs are scheduled on random demand from t:he operator or from another
program. Programmatic scheduling'is accomplished by calling the system
routine EXEC with the function code 24 (see RTE-6/VM Programer's Reference
Manual, p. 2-57). This will cause the operating system to place the program
to be scheduled into the "run immediately" que,ue. The program scheduling
process is summarized in Figure 7.

Before discussing program scheduling further, a few words should be said
about program type, which is an important aspect of a program running under
the control of the RTE operating system. Program types are summarized in the
RTE Programer's Reference Manual, p. 0-2. The TRAMCON On-Line programs are
type 6. A type 6 program can be kept on disc in executable form without
having to constantly occupy a program 10 segment. Program 10 segments are a
finite resource, and are used by RTE to track the status of programs that are
currently executing.

There are many more programs in the TRAMCON software system than there are 10
segments. For example, although there are 40 10 segments generated into the
TRAMCON system, once the continuously-running programs are started, only 10
to 12 10 segments remain for any other programs that may want to run. These
programs are randomly scheduled programs such as various display and data
transfer programs. How many of these programs will run, and when, depends on
operator activity. Program CMMO schedules these programs by calling the
routine "clone_and_run", which is defined in the system library called TRL1B.
Routine "clone_and_run" proceeds to actually schedule the given program by
performing certain steps. A program is assigned a free 10 segment by the
operating system through calls to the FMGR routines OPEN, IDRPL and CLOSE.
Routine OPEN is called to open the type 6 program disc file. Routine 10RPL
programmatically performs the FMGR function RP (Restore Program), which
places the executable program code into the RTE scratch area on LU 2.
Function RP then places the 10 segment template, found with the executable
code in the opened disc file, into a free 10 segment. Finally, the routine
CLOSE is called to close the disc file. Now the program is known to the
operating system and may be run using the RTE routine EXEC with function code
24.

21

Bootup FMGR
Commands in
file WELCOM

DINIT
DS Initialization

INIT
TRAMCON
Initialization

Schedule La -----------------------1
Schedule Default Display Program -----------ICMMD

Schedule Temporary Program ------I

Permanently Scheduled Programs

on
the

hour

SM
Command
Entered

Temporarily Scheduled Programs

FMGR
(System
Console)

LOGON
(Remote
Display
Terminal)

TROFF

(System
Console)

ST
Command
Entered

La

(Remote
Display
Terminal)

Figure 7. Program scheduling diagram.

22

It is desirable to be able to run several copies of many of these programs at
the same time. For example, at three terminals on the same TRAMCON master,
each operator may wish to schedule the SS display program at the same time.
If only one copy of SS was available, two of the three terminal operators
would have to wait while the SS display was being painted on the third
terminal. This CLONING of programs is accomplished by composing a unique
program name consisting of a two-letter command mnemonic concatenated with
the two-character ASCII representation for the logical unit number
corresponding to the terminal at which the command was entered. This
"cloned" program is then executed by calling Routine "schedule" (alias EXEC)
with function code 24. To further avoid running out of ID segments, before a
new program is RESTORED (RP) , old programs are removed from their ID segment
by issuing the RTE "OF" command.

4.3 Run-string Parameters

Vital information is passed to each program as it is scheduled so that the
programs can do such things as access the shared EMA and communicate with the
appropriate terminal device. The RTE routine EXEC, called with function
code 24, schedules programs and allows the caller to pass five one-word
integer values to the program being scheduled. The scheduled program can
recover these five values by calling the RTE routine RMPAR as the program
begins to execute. Programs written in Pascal in the TRAMCON system recover
these five one-word parameters by calling the routine "get_parms", which is
an alias for the Pascal routine "Pas.NumericParms". An alias is used for
"Pas.NumericParms" because identifiers cannot have a period in them in
Pascal. The "Pas.NumericParms" routine is used instead of routine RMPAR
because "run-time start-up code executed by all Pascal programs makes the use
of RMPAR unreliable" (refer to Pascal/1000 Reference Manual, p. F-3).

Most programs need to access the large amount of data stored in a sharable
partition of central memory. In the TRAMCON programs, this shared data area
is referred to as the HEAP. The data stored in the HEAP are well structured
in a hierarchical fashion. Therefore, to gain access to these data, a
program must be given the address of the first word of data only. Given this
single address, the newly scheduled program can determine any other address
within the HEAP. The first problem is that this first word address cannot be
passed directly in these one-word integer parameters because the HEAP, being
larger than 32000 words, is referenced with two-word (32-bit) addresses.

NOTE

In HP PASCAL programs, this type of two-word addressable HEAP is
referred to as HEAP 2. The HEAP 2 compiler OPTION appears in each
program in the first line that begins with the PASCAL OPTION.

Therefore, the first run-time parameter, parm[l], is
that has a two-word input buffer associated with it..
HEAP, programs must call the RTE routine EXEC with a

23

actually a CLASS number
To gain accesS to the

function code of 21

(CLASS GET) and reference the CLASS number passed in "parms[l]". Refer to
Section 8.2.4 for details.

The last set of scheduling events deals with the orderly shutdown and
subsequent start-up of TRAMCON software when executing the data base
switchover command, CO. Refer to Section 14 for details on Configuration
data base implementation.

5. TRAMCON COMMANDS

The operators of the TRAMCON system communicate with the TRAMCON computer by
entering anyone of the legal TRAMCON commands described in this section.
The command is entered via the terminal keyboard. This section discusses the
format of the operator commands and how the software maintainer can add or
delete commands.

5.1 Command Format

This section describes the general format of the TRAMCON operator commands.
Detailed descriptions of each command can be found in the TRAMCON Operator's
Manual and on line using the ME command. To view the data being collected by
the TRAMCON On-Line software, the operator must enter one of the legal
TRAMCON commands listed in Figure 8. The commands are entered on a standard
ASCII keyboard in response to the TRAMCON command prompt "Enter Command: "
The prompt is displayed by the TRAMCON module KYBRD. Refer to Section 9 of
this manual for details of the TRAMCON command processing.

Each TRAMCON command is distinguished by its unique two-letter command code.
This two-letter command code is the minimum operator input required for every
TRAMCON command entry. Other information may be optional or required,
depending on the particular command. Figure 8 lists the legal TRAMCON
commands with their corresponding format, including the required portions and
the optional portions.

The metalanguage used in Figure 8 to describe the format is interpreted as
follows. The REQUIRED information in the command is NOT enclosed in brackets
([] or (}). The square brackets signify a single OPTIONAL field. If this
field has further mutually exclusive options, then it is enclosed in the
curly brackets with the enclosed options separated by the word "or". For
example, "AL[, short_segment_name] [,remote_id] {[,A] or [, P] }" says that the AL
command requires the two letters "AL". The rest of the command, which is
enclosed in brackets, is optional. The term "remote_id" indicates that a
three-letter site code is accepted there. These site codes are unique for
each location and are officially created and assigned by DCA. The optional
field labeled "short_segment_name" stands for either a single digit "segment
ordinal" or a six character "short segment name". These short segment names
are defined by the Configuration Data Base Manager and must be spelled
exactly as defined in the data base. The accepted spelling for these short
segment names and their corresponding segment ordinals can be viewed on the
TRAMCON terminal screen by entering the TRAMCON command, SE. The other

24

optional fields are single letters (A, D, or P) and specify the general
command directives ALL, DIAGNOSTIC, and PRINT. The curly brackets around
"[,A] or [,P]" imply that the "A" and "P" options are accepted for the AL
command, but only one or the other at any given time.

5.2 Command Parsing

The parsing of TRAMCON commands entered by an operator is done by the
procedure "parse_cmd" in the central TRAMCON module CMMD and is described in
detail in the CPCI documentation provided by ITS. The discussion in that
document is more of a line-by-line English translation of the "parse cmd"
routine. This type of information is very useful and is NOT restated here.
Instead, this document presents a discussion of the parsing process in more
generic terms and discusses the changes or additional features that have
occurred since the CPCI documents were written.

AC[,short segment name] [,A] [,remote id] ... [,remote id]
AL[,short=segment=name] [,remote_id][,P] -
AR[,short_segment_name] [,remote_id]
CC[,short_segment_name] [,remote_id] [,opposite_remote_id]
CN[short_segment_name] [,remote~id][,S] or [,P]
CO
DE{ [,SS] or [,MA]}
DI r, remote_id]
DT
ED
EN[,short_segment_name] [,A] [,remote_id] ... [remote_id]
HE[,procedure_id] [,P]
HI[,short_segment_name] [,remote_id] [,opposite_remote_id]
IN[,short_segment_name] [,A] [,remote_id] ... [,remote_id]
LS [, short_segment_name] [,remote_id] [, P]
MA[,short_segment_name]
ME[,command][,CAT][,P]
OP,operator_id
PA[,short_segment_name]{[,remote_id] ... [,remote_id] or [,A])[,P]
PC[,short_segment_name]
PF[, P]
PH[,short_segment_name]
PM[,short_segment_name]
PO[,short_segment_name]{[,remote_id] ... [,remote_id] or [,A])
PR
SE [, P]
SR
SS[,short_segment_name]
ST
SW[,short_segment_name] [,remote_id] [,opposite_remote_id]
VE
WH

Figure 8. Legal unprotected TRAKCON commands and their syntax.

25

A working knowledge of the PASCAL set construct is required to fully
understand how the command parsing works since the set construct is used
extensively by the parsing code. The following sets of ASCII characters are
defined globally in the program CMMD and are initialized at start-up in the
routine "Initialize".

The set "valid chrs" is initialized to include the characters 'A' through
'z' , -' '+' " '&' 'I' and ,*, The set "digits" is initialized to, , '- " .
include the characters '0' through '9'. The set "signs" is initialized to
include the characters '-' and '+'.

The command string is treated as a sequence of TOKENS, which are separated by
commas. The parser accepts two general types of TOKENS. It accepts
alphabetic tokens, those that begin with a character from the set (A - Z),
and numeric tokens, those that are composed of characters from the set called
"digits", which is defined above. The TOKEN gathering routine, "nextok",
treats the comma as a command TOKEN delimiter. TOKENS are the "words" of the
TRAMCON command language and the valid typeg of tokens are discussed in
Section 5.1. Token length is limited to 2"0 characters, which is more than
enough for all tokens currently in use. If a new TRAMCON command is
introduced that requires a longer token, the appropriate arrays and loop
limits must be increased in program CMMD. Since the comma is a token
delimiter, it cannot be used as part of a token.

An exception to this general rule would be a token that is used exactly as ­
entered. For example, in the OP command, the only token other than the
command code OP is the actual operator name. Any key-press is allowed in the
operator name and nothing is automatically capitalized. As this example
shows, a token can be used exactly as it is entered because the procedure
"nextok" collects TOKENS both exactly as entered and as legal TRAMCON command
tokens. Therefore, if a future command requires a token with NO
modifications, the value in "as_is_tok" can be used instead of the modified
token value, which is placed into "curtok". The token gathering routine
"nextok" modifies tokens, to produce the legal token value, as follows. All
lowercase characters (a - z) are capitalized. Any character that is NOT in
the set "valid_chrs" described above is ignored, except the comma,which is
treated as the token delimiter as mentioned above. To adjust the legal
operator key-presses, simply change the initialization statement for the set
"valid chrs" found in the procedure "Initialize" in program CMMD.

Figure 9 lists the hierarchy of token types and their allowable number of
occurrences in anyone command string.

TOKEN Type Hierarchy
1. Command Code
2. Segment Name
3. Three-letter Site Code
4. Single-Letter Directive
5. Numeric

Number of Occurrences
1
1
21
1 each directive
any number

Figure 9. TRAMCON command-type hierarchy.

26

The parser imposes the following order to the tokens in a given command
string. The first token must be a one- or two-letter token and is
interpreted as the command code. The first two alphabetic characters of the
first legal token are interpreted as the command code and must match any two­
letter entry in the command string literal "cmd_alfa", which is mentioned in
Section 5.4. No other tokens are processed if the first legal token does NOT
match a valid TRAMCON command.

NOTE

Single-character command codes are accepted by the parser ONLY when
the master password is entered ("access_restricted" is false) and
ONLY for selected single characters. This single character feature
was originally introduced to reduce keyboard input requirements and
increase the usability of the TRAMCON system.

After the command has been identified, the parser sets flags to determine
what other token types to look for based on the particular command. This is
done by setting the BOOLEAN flags "check_segname", "check_scode",
"check_link", and "checkyrint" according to the contents of the appropriate
set of commands. For example, if the AL command allows for the entry of a
three-letter site code, then the set "cmds_with_scode" will include the "al"
command. These sets are initialized in the routine "Initialize" in program
CMMD. Adding a particular command to a set will cause the parser to look for
that particular token type when processing the given command. These flags
determine whether the parser looks for any occurrence of the given token
type. If the flag is set, then the token type hierarchy list in Figure 9 is
used by the parser to determine which type of token to attempt to match
first.

The number of occurrences for each token is also important. As each token is
identified according to the hierarchy listed in Figure 9, flags are set to
indicate that certain token types have been found. This prevents the parser
from attempting to turn every token into the token type at the top of the
list. It also speeds up the parsing process by avoiding needless token
processing if all the required parts of the command have been found. For
example, if the AL command allows a segment name to be specified, each token
received is first matched against the legal segment names. If the token does
not match any segment name, is three characters long, and is NOT numeric,
then it is interpreted as a three-letter site code.

Once a token is matched with a segment name, the flag "seg_specified" is set
to true so that the parser does NOT attempt to interpret subsequent tokens as
a segment name, since only one segment name is allowed per command. If the
TOKEN does NOT match anything so far, a check ~s made for the single letter
command directives, which are 'P' for PRINT, 'A' for ALL, and 'D' for
DIAGNOSTIC. The Diagnostic directive is allowed only if the master password
has been entered (heapA.access restricted is false). Refer to Section 12 for
an explanation of the Diagnostic flag. The Print directive tells the

27

computer to route the display output to the printer rather than the monitor.
The ALL directive is a shorthand way of specifying ALL the remote units on a
given segment.

All command qualifications such as "system console only" or "poller only" are
implemented using sets of commands. To add or remove commands from any of
these checks, you must change a line in the routine "Initialize" in program
CMMD. For example, if you want to allow the SW command to be entered from
any master regardless of Poller-Monitor status, simply remove "sw" from the
statement in "Initialize" that assigns a value to the set "poller_only".
Refer to Section 8 to implement the change.

After the input string has been successfully parsed, the parser does some
preliminary syntax error checking. If a password is required, the parser
prompts the operator for the password. If any syntax problems with the
command are detected, the global variable "cmd err" is set to the proper
error number as shown in Figure 10.

No particular significance is attached to the order of the errors listed
below. They are not in sequence because errors were created and deleted as
the software was developed. In fact, the list shown in Figure 10 was
extracted from the error message routine, "err_msg".

Error message number 1 is displayed any time the parser does NOT match the
Command Code entered or any time a command that requires the master password
is entered and the master password has NOT been entered ("restricted_access"
is true).

Error message number 5 is displayed any time the parser receives a command
from a terminal other than the system console and that command is included in
the set "sys_console_only".

Error
Number

1.
5.
6.
7.
8.

11.
12.
13.
14.
16.
17.
19.

Error Description
Command Unknown, check MENU
This CRT NOT System Console
Invalid CRT Location
NOT Polling this segment
Invalid Command Parameter
No Link from xxxx to xxxx
No remote unit specified
Diagnostic in use
No such remote on xxxxxx
Printer NOT defined
Printer NOT connected
This CRT CAN'T be OFF-LINE

Figure 10. List of command errors produced by parser.

28

Error message number 7 is displayed whenever a command is received that is in
the set "po11er_only" and the given master is NOT in Po11er mode on the given
segment. An example of this type of command is the SW command. To avoid
confusion developing from more than one master sending asynchronous messages
on a given party-line poll chartne1, only the master that is exclusively in
polling mode on the given segment is allowed to switch transmission
equipments on the given segment. If this were NOT done, the result would be
similar to allowing more than one master to s:end polling messages to remotes
on a given segment. Most poll messages would collide on their way to the
remote units, and any responses to the poll messages that did get through
would also collide.

Error message number 8 is displayed when a given token cannot be matched with
any valid token type.

Error message number 11 is displayed when the parser has found two site code
tokens, but no link is found connecting these two sites on the current
segment ("linkord" equals -2). To further ai.d the operator, if a link must
be specified ("link_required" is true) and the operator specified only one
site code, then the parser prompts the operator for the opposite end. The
choices are deduced from the data base remotE~ unit record. If there is only
one possibility ("max_link" = 1), the software automatically chooses the
opposite site and no prompting is done. If t:here are choices, the
three-letter site codes for the opposite ends are displayed in the function
key labels.

Error message number 12 is displayed when a site code is required
("seode_required" is true) by a particular command and none was entered
("scode_entered" is false).

Error message number 14 is similar to error 12, except in this case a site
code was entered ("scode_entered" is true), but it did NOT match any site on
the current segment ("remotes_entered" is empty).

Error message number 16 is displayed when the Print option ('P') is included
in the command string and the configuration data for the given terminal
indicates that this terminal does NOT have a printer attached
(printer_type=O).

Lastly, error message number 17 is similar to error 16, except that the
configuration data for the given terminal indicates that this terminal should
have a printer attached. However, the returned value of the function
"printer_status" is greater than zero, which implies that the actual status
request sent to the terminal device indicated that a printer is NOT connected
to the terminal (see appropriate Terminal Reference Manual, Device Status
Request, <esc>&p<device code>A).

29

5.3- Command Entry Restrictions

This section discusses the various restrictions imposed by the parser on
entry of individual commands and groups of commands. The parser enforces
various restrictions on individual commands by checking for the inclusion of
the given command in a set of commands which, as mentioned above, are
initialized by program CMMD in routine "Initialize". The command
restrictions currently enforced are listed in Figure 11.

All the sets listed above restrict the entry of their member commands by
requiring certain environmental conditions to be true. The set "poller_on1y"
requires that the given master be in po11er mode for the current segment.
The set "sys_console_only" requires that the command be entered from the
system console. The set "restricted_cmds" requires that the master password
flag, "restricted_access" be set to false. For example, any command included
in the "poller_only" set will be accepted ONLY if the TRAMCON master at which
the command was entered is in the polling mode for the current segment. Any
command included in the "sys_console_only" set will NOT be accepted from any
terminal on a given master except the system console. With these two sets we
restrict the use of the SW command, for example, to one terminal on one
master at any given time. The SW command is a member of both sets. Since
the SW command is in "poller_only" and only one master can be Po11er on a
segment at one time, it is restricted to one master. Because the SW command
is also in set "sys_console_only", it is further restricted to one terminal,
namely, the system console, on that one master.

The "restricted cmds" set includes all commands that will be allowed only if
the "restricted_access" flag, which is found in the shared EMA HEAP, is set
to false. Refer to Section 12 for a detailed discussion of the master
password and the "restricted_access" flag. If "restricted access" is true
and a command in the set "restricted_access" is entered, the error message,
"Command Unknown, Check MENU" is displayed at the terminal where the command
was entered.

These restricted commands are NOT documented in the operator's manual, thus
there is NO indication during normal operations that these restricted
commands exist. Commands that are and should be included in this set are
commands that are NOT vital to TRAMCON operation, but are useful for
diagnosis, statistics gathering, and general troubleshooting. Again, refer
to Section 12 of this manual for a detailed discussion of the current
functions protected by the "restricted access" flag.

SET Identifier
poller_on1y
sys_conso1e_on1y
restricted cmds

Current Value set by Initialize in CMMD
[po,sw]
[cf,co,dt,ed,10,pm,po,pw,sc,sr,sw]
[cf,cr,dn,eq,10,lu,ms,off,ru,sc,sm,up,us]

Figure 11. Command restriction SETS.

30

5.4 Adding, Changing, or Deleting TRAMCON Commands

The following is a list of valid TRAMCON commands:

l. ae 9. de 17. hi 25. of 33. pr 4l. ss
2. al 10. di 18. in 26. op 34. pw 42. st
3. ar 11. dn 19. 10 27. pa 35. ru 43. sw
4. ee 12. dt 20. Is 28. pc 36. se 44. up
5. ef 13. ed 2l. lu 29. pf 37. se 45. us
6. en 14. en 22. ma 30. ph 38. si 46. ve
7. co 15. eq 23. me 3l. pm 39. sm 47. wh
8. er 16. he 24. ms 32. po 40. sr

The above list of commands is embodied in tl;J.e software in the TYPE definition
module [RECR3, approximately lines 98-100, with the class definition:

emds = (un,ma,ss,al,ar,pa,me,he,hi,cn,pc,ph,sw,er,ee,ef,po,ae,
ih,en,dt,pm,op,se,sm,si,de,pr,ls,se,sr,ms,eo,st,
di, 10,wh, lu, eq, up, dn, off, ru, ve, us ,pf, pw,ed, il).

The 47 legal commands listed above are bracketed by the two illegal commands
"un" and "il", which stand for "undefined" and "illegal." This allows the
parsing routine, described in Section 5.1, to more easily scan the command
class to determine if a given command is valid. Also, this allows commands
to be added or deleted without having to Cha!lge the code that checks these
sets for command validity because the code loops are written to start with
"un" and repeat until they get to "il". These checks are still valid as long
as commands that are added or deleted are placed between these two bracketing
commands. Each of the commands specified in "emds" has a corresponding
two-letter designator defined in the string constant definitions "emd alfasl"
and "emd_alfas2" in [RECR3 approximately lines 94 and 95:

emd alfasl
emd alfas2

'UNMASSALARPAMEHEHICNPCPHSWCRCCCFPOACINENDTPM';
'OPSESMSIDEPRLSSCSRMSOLCOSTDILOWHLUEQUPDNOFRUVEUSPFPWEDIL'.

Every two letters in the above two strings represent a valid operator entry.
For clarity, whenever possible, the two letters used for the command
identifier denoted in "cmds" above, are the same as the corresponding
two-letter entry in the string literal "cmd_alfasl" and "emd_alfas2" above.
The only exceptions to this rule occur when the desired command mnemonic
happens to be a reserved identifier in PASCAL such as "in" or "of". In these
cases, the mnemonics are kept as desired, but the command identifers in the
software are slightly altered to avoid conflict. For example, the RTE
command to terminate a program is "OF", so the two-letter mnemonic is set to
"OF", but the command identifier is changed "to "off" so it will not conflict
with the PASCAL reserved word "OF". It is not just coincidence that the
command identifiers and the mnemonics appear to be in the same order. That
order must be maintained or the desired action will not result from a given
command entry. That is, the order in "cmds" must match the order in
"emd alfasl" + "cmd alfas2". The mnemonics are separated into two parts,
"emd-alfasl" and "c;d alfas2",'so that they would fit on an 80-column screen.
They-are logically th; same string literal, and new commands can be placed

31

into either one as long as their combined order matches that of the set
"cmds".

NOTE

There is one more restriction concerning where a new command may
be placed among the existing commands. This restriction is a result of
the initialization code in routine "Initialize" in program CMMD, which
copies the contents from these two-string literals into one local
string array. Two FOR loops perform the transfer. The first loop
indexes from "un" to "pm" and the other goes from "op" to "il".
Therefore, either these loop indices must be changed, OR the new
command must be added between "un" and "pm" or between "op" and "il".

To ADD a command, a new, unique two-letter designator must be placed in
"cmds" and either "cmd_alfasl" or "cmd_alfas2", paying special attention to
order. The command can be placed in any position between "un" and "il"
(also, follow the NOTE above). To speed the command parsing, the commands
used most often might be placed near the beginning.

To DELETE a command, just remove the identifier from "cmds" and the
corresponding two-letter mnemonic from "cmd_alfasl" or "cmd_alfas2". After
the new commands have been added or the old commands deleted or changed, the
programs CMMD and US must be recompiled and relinked.

NOTE

When DELETING a command, all references to that command must also
be removed. The only programs that have explicit references to
individual commands are CMMD and US, with the majority of
references occurring in CMMD. Most of the command references in
program CMMD occur in routines sched_dspJ>rog, parse_it,
process_simple_cmds and Initialize.

6. REMOTE UNIT POll.ING AND RESPONSE HANDLING

This section discusses how the TRAMCON remote units are polled by on-line
software and how the software analyzes responses received from the remote
units.

6.1 Remote Unit Polling

The main function of the TRAMCON system is to collect alarm/status
indications from remote sensing devices (remote units), analyze the
information, and present it to the user in a meaningful format. The
communication between the master computers and the remote units is a serial
asynchronous party line. The remote units currently used by TRAMCON respond

32

only when they are asked to. A POLL message must be sent by the master
computer asking for the alarm/status informa1:ion known to a particular remote
unit. Since the communication link is a party line, the POLL message must
contain identification infor~ation that is recognizable by one, and only one,
remote unit at a time. Because the particular make/model of remote unit
currently used by TRAMCON is a non-computer-based dumb machine, no more
information is necessary. Refer to Section 6.3 for a description of the POLL
message.

Because .of the party line arrangement, if more than one TRAMCON master is
connected to the communication line, only one of those masters can be sending
POLL messages to the remote units or POLL message collision would result.
The Poller/Monitor flag "poll_monitor" indicates status for each segment on a
given master.

NOTE

Although improper setting of these flags could cause devastating
results, the coordination of the flags between masters remains a
manual operation and the responsibility of TRAMCON operators.
Operators must rely on phone communication with other master
operators to confirm the status of other masters. Further,
all, the TRAMCON masters are connected in another communication
network known as the IPC, which is fully capable of
informing other masters of their Poller/Monitor status flags if
not actually programmatically ensuring 1:hat the single Poller
rule is obeyed. This capability exists but has NOT been implemented.

Further, POLL messages from independent, aSyl1chronous modules on that one
master must be presented to the communicatiol1 channel in a serial fashion.
To reiterate the main TRAMCON function is to collect alarm/status data, and
that function can be kept serial by using a single module, namely PLRP, to
issue POLL requests. There is a secondary function of TRAMCON, which
requires that POLL messages be issued--the activation of relays at the remote
units. This function is separate in all respects from that of the normal
polling function. Therefore, this function is performed by another code
module, namely, SW. Since these two modules run independently of each other
and each module sends POLL messages over the same communication channel, a
third code module was created to act as the POLL message "clearing house" and
organizer. The name of this module is POLL. Using CLASS I/O, PLRP and SW
send their POLL requests to the program POLL. Program POLL builds the actual
polling message from information passed to it from either of those two
programs. These messages are then sent over the communication channel to the
remote units in the order they were received"

33

6.2 Physical Response to Logical Response Transformation

The TRAMCON system is composed of two main parts: the master computer and
the remote units. The master computer receives responses from One or more
remote units in a format dictated by the make and model of the remote unit.
A remote unit with a new RAW response format NOT currently supported by
TRAMCON constitutes a new remote unit type. The RAW response formats for
currently supported DATALOKIO remote units (models lD and IE) are:

Normal RAW response for DATALOKIO Model lD (50, 70, or 90 bytes)

Nine l2-pt encoders (latching 2-state, 18 bytes)

Analog-to-digital (3, 6, or 9 A/D modules, 5 bytes per module)

three l8-ptencoders(nonlatching 2-state,9 bytes)

Frame Error Count (1, 2, or 3 FEC modules, 5 bytes per module)

Remote id (3 bytes)

Both response formats begin with the three-byte remote unit identifier and
both end with the ASCII <DELETE> character.

The two-state alarm/status information is reported by the modules referred to
as l8-point encoders and l2-point encoders. Each l8-pt encoder module
reports 18 I-bit status indicators (6 bits per-message-byte). These status
indicators represent the state of the equipment at the instant the remote
unit was polled. They say nothing about the state of the equipment between
polls.

Twelve alarm indicators are reported by each l2-pt encoder (6 bits per
message byte). Unlike the l8-pt encoder data, these indicators are latching.
That is, if a l2-pt indicator is set ON at any time between polls, that
indicator stays ON until the remote unit is polled. The number of l8-pt and
l2-pt· encoder modules installed in each model of the DATALOKIO is fixed.
Therefore, the number of alarm/status indicators reported does not vary
regardless of how many sets of communications equipment are being monitored
by the given remote unit.

Notice, however that both the lD and the IE response diagrams show three
valid response lengths. The model lD response can be 50, 70, or 90 bytes
long, and the model lD response can be 129, 145, or 161 bytes long. This

34

variable length results from the fact that each unit is defined to be able to
monitor up to three link ends (three sets of radio equipment). A DATALOKIO
model lD remote unit that is wired to one set of radio equipment will respond
with a 50-byte message (NOT including the DELETE character). Since the
response length is variable, the <DELETE> character is used by the poll
channel driver (DVA76, see Section 6.3) to determine the end of the response.

This variable response length is also indicated by a variation in the amount
of hardware modules installed in any given unit. The variant modules are
installed at the end of the unit and, therefore, report their information at
the end of the response. In each model, the number of Frame Error Counter
(FEC) modules is variable depending, again, on the number of sets of radio
equipment being monitored by that unit. Also, in the older model lD, each
A/D value is reported by a single A/D module. Therefore, the number of A/D
modules in the lD model is variable. The diagram for the model lD response
indicates that there can be 3, 6, or 9 A/D modules and 1, 2, or 3 FEC modules
installed, depending upon whether the remote unit is monitoring 1, 2, or
3 sets of communications equipment.

The A/D module for the model lE is referred to as a MUX card because it can
report up to 16 A/D value.s from one module. The model lE always has one A/D
MUX module installed, regardless of how many sets of communications equipment
it is monitoring. The number of A/D values ,that are actually reported by the
A/D module are specified by two additional bytes (A/D card select and A/D
mode/point) in the polling message sent by the master (see Section 6.3). The'
TRAMCON software program POLL currently requ1asts 14 of the 16 possible values
from the remote unit by setting the fourth and fifth bytes of the poll
message to the constants "a2d_card_select" and "a2d_nbr_values". These two
constants are defined in INCLUDE module [RECR3. Each A/D value reported adds
five bytes to the response.

Each FEC module reports two binary-coded-decimal (BCD) values in four bytes
of the response. The model lD FEC modules also report a l-byte identifier,
since the A/D information preceding the FEC data varies in length. For the
software to interpret the FEC data from the model lD properly, strap 13 on
each FEC module must be set to "A" causing the FEC card to report an
identifier byte. Further, the first FEC module must have the S3 rocker
switches set to 001110. Software routine "unpack_response" in $MPLIB checks
for the ASCII character "c", which corresponds to the S3 setting just
mentioned, to determine the end of the A/D data and the start of the FEC
data.

One of the prime TRAMCON design goals was to make the TRAMCON software able
to support any new remote unit type with a minimum amount of code change or
code addition. To accomplish this goal, most of the remote unit response
processing code was written to process a generic response format, defined in
Section 11.3. The GENERIC response is defined by the RECORD type
"unpacked_response" found in INCLUDE module [RECR3 (refer to Section 11.1.2).

The majority of the code does not have to be adjusted each time a new remote
unit type is added to the list of remote units supported by TRAMCON. In
other words, each unique response received from a given physical remote unit

35

is immediatel.! translated (by routines "unpack_response" and
"transform_ordinal" in $MPLIB) into the same generic response format as any
other response. Therefore, the only additional code required to support
another physically different remote unit is a few lines in the transformation
routine that translate the uniquely formatted response into the generic
response format. Once this transformation is complete, the new response
looks just like any other response from any other remote unit.

Normal RAW response for DATALOK10 Model 1E (129, 145, or 161 bytes)

Twelve 12-pt encoders (latching 2-state, 24 bytes)

Frame Error Count (2, 4, or 6 FEC modules, 4 bytes-per-modu1e)

four 18-pt encoders(non1atching 2-state,12 bytes)

Ana1og-to-Digita1 mux (14 A/D values defined, 5 bytes-per-modu1e)

Remote id (3 bytes)

The routines that must be modified to accommodate a new remote unit are
"transform_ordinal", ",unpack_respons3", and "print_response" in $MPLIB and a
few lines in the program SW to handle the new relay switch assignments.

The TRAMCON On-Line software currently supports two models of the Pu1secom
DATALOK10 remote unit. Even though the models 1D and 1E are both DATALOK10
remote units, their responses are physically different and therefore they are
seen by TRAMCON as different remote unit types.

6.3 The POLL/RESPONSE Interface Driver - DVA76

The device driver, DVA76 , is used to handle I/O between a TRAMCON master and
the Pu1secom DATALOK10 remote units over an RS-232 serial port using a HP
BACI hardware interface plugged into port 15 (octal) of the TRAMCON master
computer's backplane. This driver is a modification of the HP terminal
driver, DVA05, and is written in HP-1000 macro language and standard HP-1000
driver format.

36

There are two entry points into the driver:

(1) IA76 , the initialization entry point. Each time an I/O request is
started by the operating system on channel 15, the driver is entered
through the initialization entry point.

(2) CA76 , the continuation/completion entry point. Each time the
operating system returns to the driver to continue or complete an I/O
request, the continuation/co~pletionentry point is used.

There are only two I/O requests processed by module DVA76: (1) a write
request, which is a TRAMCON rem()te unit polling request or a remote unit
relay switch request, and (2) a read request, which is a TRAMCON master
request to receive a re:;ponse transIJiitted by a remote unit. If a TRAMCON
master is in MONITOR mode for a particular segment, only read requests will
be issued to DVA.76 by the program MTRP. It the master is in POLLER mode for
a given segment, the program PLRP will issue write requ~sts followed
immediately by read requests to·· accept the response from the remote unit for
which the write (poll or relay switch) request was issued. Write requests
are also issued by the program SW in response to an operator request to
activate a relay. Both PLRP and SW do not actually issue the write request
directly to the driver. Instead, to ensure that all requests issued on a
given channel are kept in sequence, the originating programs such as PLRP and
SW send their requests to a central request handler, POLL, that actually
issues the write request to the driver. POLL's request has the format:

Normal poll request for DATALOKIO Kodel ID (4 bytes)

I Remote id (3 bytes) I DELETE I
Normal poll request for DATALOKIO Kodel IE (6 bytes)

Remote id (3 bytes) A/D Card Sel A/D, Mode/Pt DELETE

The TRAMCON software program POLL currently requests 14 of the 16 possible
A/D values from the model IE remote unit by setting the fourth and fifth
bytes of the poll message to the constants "a2d_card_select" and
"a.2d_nbr_values". These two constants are defined in INCLUDE module [RECR3.

Relay Switch request (6 bytes)

Remote id (3 bytes) card select relay select DELETE

The read request is issued to the driver either by program POLL immediately
after the write request, or by program MTRP when in MONITOR mode on a given
segment. Processing of the read request starts at label LISTN. The caller's
buffer pointers are initialized, and the BACI interface is set to receive
mode by issuing a master RESET. The BACI is also set to CHARACTER mode so
that an interrupt will be generated when any character is received. The

37

driver is exited with JSB EXITl (approximately line 299) and will resume at
this position if a character is received before time out. There are
two values 'for this wait-for-response time out, a 4-second time out for
POLLER mode where the read is issued immediately after the write and a 1­
minute timeout for a read request issued by MTRP. When in POLLER mode, the
longest possible response from the currently used DATALOK10 is 6.5 seconds.
Coupled with the fact that a DATALOK10 responds immediately after receiving a
poll request, this allows us to know that if a complete response is not
received within approximately 7 seconds, the. given remote unit is not
responding properly. On the other hand, if the given master is simply
monitoring .the given segment for any response, a much greater time must be
allowed before giving up waiting for a'response. If a character is received
by the BACI before this read timeout, it is assumed that a remote response is
coming in, and processing resumes just after the JSB EXITl (approximately
line 300). Once a response has started arriving, it will continue without
interruption at 300 baud until the DELETE character is received. Since the
transmission speed is slow relative to the rate at which the characters can
be removed from the BACI buffer and transferred to the. caller's buffer, the
BACI buffer will periodically ,empty, causing the BACI to generate a BUFFER
EMPTY interrupt. If so, the driver is exited with the return address set to
label CKINT.

These two requests are the only TRAMCON master-to-remote unit communication
requests processed by DVA76 .. The write request is TRAMCON master- to-remo,te
unit communication and the read is from remote unit to TRAMCON master. The
write request is completed by the driver when an ASCII DELETE character is
transmitted to the remote unit. The read request is terminated/completed by
the driver when either an ASCII DELETE character is received from the remote
unit or the request times out. The driver is set to handle its own
interrupts. That is, when the operating system receives an interrupt on
channel 15, it branches into the driver, DVA76 , to process the interrupt.
The only interrupts processed by DVA76 on a read request are Special
Character (DELETE), BACI Buffer Half Full, BACI Buffer Full, BACI Buffer
Empty, and Parity Error. All other interrupts are treated as spurious and
ignored.

Other than the two I/O requests, there are a few BACI interface
configuration/control requests that are processed by DVA76. The following
parameters can be programmatically set on the BACT interface:

Baud rate - 110 to 9600 bps
STOP bits - 1 or 2
Parity - none, odd, or even
Data bits - 7 or8

Since the Pulsecom DATALOK10 is a hard-wired, non-programmable device, the
BACI configuration must be done only after any power failure instead of
before each I/O request. For the DATALOK10 remote unit, the BACI interface
is configured by program CMMD as follows:

Baud Rate: 300 bps, STOP bits = 2, parity

38

even, data bits 7

Another control request sets the read request time out value, which was
chosen to be 1 second until receipt of the first response byte after a write
(polling) .request has been issued and 1 minute for any response from any
remote unit on channel 15 (octal) if no polling requests are being sent for
the given segment on the given TRAMCON master (master is in MONITOR mode for
the given segment).

The TRAMCON master channel over which DVA76 communicates is hard-coded by the
statement "CARD EQT 13" to be slot 13 (15 OCTAL). The only difference
between DVA76 and DVA77 is the hard-coded channel number which is 13 (15
OCTAL) for DVA76 and 14 (16 OCTAL) for DVA77. Other than that, the above
description applies, word for word,todriver DVA77.

6.4 PHYSICAL vs LOGICAL Remote Unit

A single physical TRAMCON remote unit (currently the Pulsecom DATALOKlO) was
defined to be able to monitor up to th:ree sets of communIcations equipment
plus the SITE equipment. This limit of three sets of communications
equipment per remote unit is a result of the number of alarm/status points
available on the DATALOKIO Model IE and the number of alarm/status indicators
to be monitored on the DRAMA radio equipment, which was the first set of
equipment to be monitored by TRAMCON. A margin of about 10% was built in for
additional alarms or support of new equipment with more alarm/status points'
than the DRAMA system.

This three-way limitation for a single remote unit on a given segment proves
to be quite adequate for most locations monitored by TRAMCON. Early on in
the TRAMCON implementation, a few locations had more than three sets of
communications equipment that needed to be monitored by a single remote unit
on a given segment. These requirements do not seem to be isolated cases and
additional similiar situations are anticipated.

The solution to this problem was to introduce the concept of a LOGICAL remote
unit. A LOGICAL remote unit consists of one or more PHYSICAL remote units.
The TRAMCON operator interacts with LOGICAL remote units while the On-Line
software continues to process responses from PHYSICAL remote units. By
continuing to process the PHYSICAL responses individually, a minimum of
software change was necessary to implement the greater than three-way remote
unit. Both configuration data and run-time data, kept the same three-way
definition. PHYSICAL remote units can now be associated with one another via
a linked list to comprise a LOGICAL remote unit. The linked list is
implemented with the two fields "extent_of" and "next extent" in the run-time
Remote record "remote status record".

These list pointers are initialized by the program INIT when the TRAMCON
software is booted up. A few simple assumptions are made by INIT when
setting these pointers. First, all remote unit records on a given segment
that have the same SITE record pointer are considered to be components of a
LOGICAL remote unit and are linked together. Note that these remote units do
NOT have to be contiguous. When more than one record with the same SITE

39

pointer is found, the first record defined is considered to be the MAIN
component. The MAIN component of a MULTIPLE Remote is used by the On-Line
software to supply the SITE alarm/status information. The MAIN component is
marked by setting the pointer "extent_of" to -1. The field "next_extent", in
all components including the MAIN component, is given a value greater than -1
if this is not the last component of the MULTIPLE remote unit. For most
remote units that are single units, both "extent of" and "next extent" are
set to -1.

The value of these pointers is actually an index into the array "remote_info"
in the "segment_record". For example, assume that on segment DEB4C the
remote units pointed to by "remote_info[2]" and "remote_info[3]" both have
SITE record pointers that point to the same SITE record AND. The MAIN
component will be the first one encountered, namely the record pointed to in
"remote_info[2]". In the corresponding run-time data record
"remote_status[2]"", the field "extent_of" would be set to -1 and the field
"next extent" would be set to 3 pointing to the next component of the
MULTIPLE remote unit. For the second component, "remote status[3]"", field
"extent_of" would be set to 2 indicating that this component is NOT the MAIN
component and is an extension of the MAIN component in "remote_info[2]". The
field "next extent" would be set to -1 to indicate that there are no more
components of this MULTIPLE remote unit.

NOTE

Which communications equipment is connected to which physical Remote
Unit is transparent to the TRAMCON operator since all categories of
data are presented to the operator as if they are being monitored by
a single remote unit. On the other hand, this is of great concern
for installation personnel and the configuration data base
maintenance personnel. Both of these groups must be aware of the
assumptions made by the On-Line software mentioned above.
First, the SITE category must be wired to the MAIN or first unit
defined in the array "remote_info". Second, the SITE record
pointer for all components must be exactly the same. The On-Line
software does not require that all categories be defined in one
unit before a category can be defined in the next component unit.
But close coordination must still be maintained between the
installation drawing team and the data base designer so that the
the data base Remote record definitions exactly match the drawings.

All programs that formerly dealt with single physical remote units must now
include the procedures in the module [EXTNT. This module will present the
response data from any number of physical remote units to the operator as if
it is the data from one remote unit. The module [EXTNT contains CaNST, TYPE,
and VAR sections followed by two procedures, and must be included just before
any other procedures declared in the program. The best location for most
TRAMCON programs is immediately after the $INCLUDE "[TRVAR"$ statement.

40

When displaying the alarm/status information for a selected remote unit,
programs such as AL must not only search for all categories defined in one
"remote_record", but they must now also follow the chain indicated by the
value "next_extent". In the past, when the defined categories for a given
"remote_record" were displayed, the entire remote units response was
displayed. The entire response is now displayed only when all defined
categories are displayed and the "next extent" pointer equals -1.

7 . MAINTAINING THE MENU AND HELP TEXT FILES

Two information facilities have been developed to provide the TRAMCON user
with On-Line help in using the TRAMCON system and performing other site
specific functions. These two aids are referred to as MENU and HELP. Both
aids are similar in structure and operation and differ only in the type of
assistance they provide.

First, the MENU provides the operator with On-Line text descriptions of the
TRAMCON commands. These descriptions can be displayed or hard copied by
entering the TRAMCON command ME. Theoretically, the only TRAMCONcommand
that the new operator must be informed of is the ME command, since entering
this command will lead the operator to descriptions of ALL TRAMCON commands
including ME.

The HE command produces similar text results, not for TRAMCON commands, but
for procedures related to the operation of TRAMCON or any other operational
aspect of the particular site. This file can and should be altered by each
site to reflect the site's particular way of performing its functions.

The data are stored as text information on type 4 disc files
(variable-record-length TEXT). Even though these two commands deal with
different data, the storing and maintenance of the text files is identical.
First, the data are divided into two levels. The first level is the list of
all commands/procedures that are currently described in the text files. This
list contains a one-line entry for each command/procedure. This one line
must have the two-letter command/procedure identifier as the first two
characters in the line, followed by any phrase that briefly describes the
command/procedure. The two-letter identifier must be unique within both sets
of information.

The menu (TRAMCON command) list has one other aspect that the HELP
(procedures) list does not have. That is, the commands are grouped into
categories or sets of commands that perform similar functions. The
categories are indicated by a one-line entry similar in format to the command
entries described above with the two-letter identifier set to XX. Therefore,
there can be no XX command in TRAMCON. All commands following a given
category, up to the next category, are included in the given category. The
second level is a detailed description for each command/procedure. These
descriptions have no particular format, but are simply text that might aid in
the use or understanding of a particular command or procedure. The text data
described above are stored in the following type 4 files on disc, Logical
Unit 10.

41

"CM1 - This file contains a one-line title for each TRAMCON command. If
any command is added or deleted, the appropriate line must be added or
deleted from this file using the TEXT file editor EDIT.

"CM - This file contains the detailed descriptions of the TRAMCON
commands. The command descriptions within the file are separated within the
text file by a line of text consisting of the two characters "" as the first
(and usually the only) two characters in the line. Figure 12 shows the entry
for the ME command.

ME[,command][,CAT][,P]
This command is used to provide a list of operator commands and to
provide information on the use of each of the operator commands. If the
command "ME" is entered alone, the list of commands in alphabetical order
with one-line descriptions will be shown on. the screen. If the entry is
followed by any of the other two-letter commands, a descriptive paragraph
concerning the command and its entry syntax will be brought to the
screen. If either of the preceding entries is made followed by a IIp'',
the menu or the descriptive paragraph will be printed out. If the
command "ME, CAT" is entered, the menu of commands will be listed on the
screen by category and if this entry is followed by ",P", the menu will
be printed in this order.

Figure 12. Sample entry in file "CM.

Figure 12 shows that the first line of each entry should be a sample of the
specific command format written in the metalanguage discussed in Section 5.1
of this manual. To maintain this file, the operator simply runs the HP text
editor program EDIT, which is provided with the TRAMCON system.

"HE - This file contains the detailed procedure descriptions that are
referenced by the HE command. A sample of the data in this file is shown in
Figure 13.

Just like the "CM file above, the first two characters of each line in file
"HE are the keys to the rest of the line. The two characters "" are used to
separate one procedure description from another. The first line of each
description should be a phrase describing the procedure. This line should
begin with the two-letter procedure identifier followed by a descriptive
phrase that starts in column 11. For example, the first line of the entry
for the BO procedure shown in Figure 13 reads as follows:

42

"Bootup System bootup procedure".

Unlike the command file, this first line does affect what the HE command
displays on the screen for the Procedures menu. The operator can alter the
text information for file "HE using the TRAMCON command ED. When the
operator is finished altering the information, the program ED automatically
updates the index and title information as di.scussedbelow.

Fill this in later with Tech control SOP
lIn

BOot-up System boot-up procedure
The procedure given here is used to re-start: the computer if after a
repair or other problem situation the "RUN" light on the computer is
not lighted.

PROCEDURAL STEPS
1. Press the computer "HALT" button.
2. Select the "s" register.
3. Set bits 15, 14, 12, 9, 7, 1 (151202 octal) ON in the "S" register.
4. Press "STORE".
5. Press "PRESET".
6. Press "IBL".
7. Press "PRESET" (again).
8. Press "RUN".

This procedure will start the computer if the proper programs are
loaded. The disc memory will rattle a bit, the default display will
be shown on the terminal and TRAMCON will bEl running. If this result
is not observed, it may be necessary to reload the system software
tape following the "TAPE LOAD" help procedure. If this does not
correct the problem, follow the "FAilure" procedure to have
the computer restored to service.
1111

FAilure Restoring the TRAMCON master to service
In the event that the master computer cannot be brought up using the

Figure 13. Sample entry in file "HE.

The following discussion encompasses for both the TRAMCON command and the
procedure information.

As the text files shown above grow, especially the procedure file, the time
needed to search for a selected entry increases. To speed up this search,
the text files were indexed and the indexes stored in a type 2 (fixed record
length, random access) file on disc. Since t:he text files are type 3 or 4,

43

the addresses of the individual recQrds within the file will vary as the
information is corrected, changed, or added. Whenever the text information
described above is altered, the corresponding index file must be updated.
The index files for the command and procedure indices are named "CMIDX and
"HEIDX respectively. The record definition for these files is shown in
Figure 14.

me index record ARRAY [1 ..max_ idx1 OF RECORD
idx_key: two_chars;
title: text_line_type;
titlelen, recnbr, block, wrd: INT
END;

Figure 14. Index file record definition.

The first thing to notice when studying the record definition in Figure 14 is
that there is more than just the record address stored here. The record
address is a physical disc address and consists of the three one-word values
"recnbr", "block" and "wrd". These three values represent a disc address as
explained in the HP Programer's Reference Manual, pp. 3-61, LOCF Calls. The
"idx_key" is the two-letter value used to uniquely identify each command or
procedure mentioned above. The "title" field is an ASCII character string,
80 characters long, that is a one-line description of the given
command/procedure. The maximum length for the title is 80 characters, but
the title can actually be any length up to 80. Therefore, for display
purposes, the actual title length, in characters, is stored in the variable
"tit1elen".

nCMIDX - This file contains the index records for all the currently defined
TRAMCON commands. There is one record for each command. Figure 14 describes
the index records. The information contained in these records is updated by
the program MEIDX. Each time the contents of file "CM is altered by
software maintenance people using the program EDIT, the program MEIDX must be
executed to place the new pointer values into this file. To execute program
MEIDX, the operator should be in FMGR or Session Monitor. At the colon
prompt, the operator enters "MEIDX <R.ETURN>". MEIDX automatically updates
the values "recnbr", "block", and "wrd" to correspond to the actual record
addresses in text file "CM described above.

nMEIDX - This file contains the same information as described above for file
"CMIDX except that the information in this file applies to the procedure
function instead of the TRAMCON command function. Also, updating of data in
this index file is done automatically by the program ED after the TRAMCON
operator has changed the contents of file "HE using the TRAMCON command ED.
Unlike the TRAMCON command function, the index and title information is
automatically updated by the program ED instead of requiring the operator to
manually update this information by running MEIDX.

For each'command entry in' file II CMIDX , the actual physical disc address of
the first word of the corresponding command description in file "CM is
computed by calling the FMP routine LOCF. In the text file there are many
disc records, but only the addresses of the first word of each command

description is desired. To locate these first words, MEIDX reads text file
"CM until the command description separator is found. The record
following this is the first word of the next description. It is easy to see
that there is dependance on order between the two files "CM and "CMIDX. That
is, the first command description found in file "CM must correspond to the
first entry in the index array in file "CMIDX and so on.

Deleting a command requires that the description be removed from "CM and, at
the same time, the index for the given command must be removed from the array
in file "CMIDX by moving all entries following the deleted entry forward one
location.

Updating of the commands function is not as automatic as that for the
procedures. This must be accomplished manually by software maintenance
personnel as follows. First, the updates must be made to the two text files
"CM and "CMl using the program EDIT being careful to maintain order and a
one-to-one correspondence between these two files. Second, the command
titles must be extracted from file "CMl and placed in index file "CMIDX by
executing the program MEDXl. Last, the disc addresses must be updated in the
index file by executing MEIDX. The steps necessary to implement a change to
the TRAMCON command descriptions are summarized in Figure 15.

When the operator is finished changing the TEXT descriptions in file "HE, the
program ED updates the information in file "HEIDX as follows. Each line of
text is read from file "HE. If this is the first line of a given procedure
entry, the first two characters are assumed to be the procedure identifier
and are stored in the index record variable "idx_key". The disc address of
the first word of this first line is determined by a call to the FMP
procedure LOCF and stored in the index record in variables "recnbr", "block"
and "wrd". Starting with character position 11, the rest of the first line
is assumed to be the descriptive phrase for this procedure and is stored in
the index record variable "title". The length of the title is stored in the
index record variable "titlelen". Therefore, even though the TRAMCON
operator does not explicitly update the index record for these procedures,
the information that goes into the index is directly dependent on the
information entered by the operator in line one of the text description.
Also, the format of that first line is critical. The first two character
positions determine the procedure identifier. Positions 3 through 10 are
ignored and the rest is used as the procedure title. The identifier and the
title are used by program ME to display the list of procedures that are
defined. They are also displayed as the first line by ME when displaying the
procedure description for a particular procedure as shown in Figure 13.

1. EDIT,"CM
2. EDIT, "CMl
3. MEDXl
4. MEIDX

Change command description
Change command two-letter ID and/or title
Update titles in File "CMIDX
Update disc addresses in File "CMIDX

Figure 15. Steps to change/add/delete TRAMCON command descriptions.

45

8. SOFTWARE DEVELOPMENT AND MAINTENANCE

Section 8.1 -enumerates the eight steps necessary to develop and implement the
TRAMCON s~ftware.

The remainder of this section discusses how the tools listed below are used
to develop and maintain the TRAMCON software.

8.1 Software Development and Maintenance Tools

The eight steps involved in software development and maintenance along with
the software modules used to accomplish each step are listed below.

1. Operating System Generation/Configuration
RT6GN - Operating system generator

RTE-6/VM On-Line Generator Reference Manual, Part No.92084-90010
SWTCH - Program to implement a newly generated operating system

RTE-6/VM System Manager's Reference Manual, Chapter 5
Part No. 92084-90009

2. Source Code Creation and Editing
EDIT - The Source Code Editor

EDIT/1000 User's Manual, Part No. 92074-90001

3. Compiling/Assembling
PASCL - Pascal compiler

Pasca1/1000 Reference Manual, Part No. 92833-90001
FTN7X - Fortran compiler

Fortran 77 Reference Manual, Part No. 92836-90001
MACRO - HP-1000 assembler

Macro/1000 Reference Manual, Part No. 92059-90001
SXREF - Assembler Cross Reference

Macro/1000 Reference Manual, Part No. 92059-90001, Appendix F

4. Segmenting (for large programs)
SGMTR - Large program segmenter

RTE-6/VM Loader Reference Manual, Chapter 6, Part No.92084-90008
INDXR - Creates Indexed-Merged files for the Segmenter and Loader

RTE-6/VM Loader Reference Manual, Part No.92084-90008, p.6-41

5. Indexing (for libraries)
LINDX - Library indexer

6. Linking/Loading
LINK - Program linker

RTE-6/VM LINK User's Manual, Part No. 92084-90038
LOADR - Program loader

RTE-6/VM Loader Reference Manual, Part No. 92084-90008
MLLDR - Loader for large segmented programs

RTE-6/VM Loader Reference Manual, Part No. 92084-90008

46

DLX
LST
CLASS
SAM

7. File Creation, Backup, and Recovery

FC - File Copy Utility
RTE-6/VM Utility Programs Reference Manual, Chapter 4
Part No. 92084-90007

8. Debug, Status, Troubleshooting, Utility

WHZAT - Snapshot of Program Activity
RTE-6/VM Utility Programs Reference Manual, Chapter 2
Part No. 92084-90007

LGTAT - Log Track-Assignment Table Utility
RTE-6/VMUtility Programs Reference Manual, Chapter 2
Part No. 92084-90007

LUPRN - System Configuration Utility .
RTE- 6/VM Utility Programs Refer,ence Manual, Chapter 2
Part No. 92084-90007

- FMGR Directory Utility, from HP-1000 User's Group
- TEXT File Listing Utility, written by ITS
- CLASS I/O Information Utility, from HP-1000 User's Group
- System Available Memory Status Utility, from HP-1000 User's

Group

8.2 Software Development and K.:'lintenance Procedures

The following figures are lists of procedure files that were used to develop
the TRAMCON On-Line software. These procedure files should be executed in
total to redo the entire TRAMCON On-Line software system, or, should be
consulted to discover how each individual module might be redone (compiled,
segmented, indexed, and linked, or loaded). The procedure files for the
compiling and loading of data base Configurator program CONFI are listed in
Appendix A of this manual.

8.2.1 Editing

The editing of software modules is done using the text file editor EDIT
supplied by HP. The editor creates and maintains type 4 text files on disc.
The file naming conventions are:

(1) All program SOURCE file names begin with the letter n&n, followed
by the executable program name. (e.g., program AL has source file
name &AL)
NOTE: Most program names are two letters long and match the

corresponding two-letter TRAMCON command mnemonic.
(2) All INCLUDE modules begin with the letter n[n

See Section 8.4 for a discussion of the structure of these source files.

47

8.2.2 Compiling and Assembling

Figure 16 is the procedure for compiling and assembling all of the TRAMCON
On-Line software.

:SV,4
:RU,P,&AL, ,%AL: :10
:RU,P,&ARPTR, ,%ARPTR: :10
:RU, P, &BROAD, , %BROAD: :10
:RU,P,&CC, ,%CC: :10
:RU , P,&CF , ,%CF: :10
:RU,P,&CHECK, ,%CHECK: :10
:RU,P,&CMMD,,%CMMD::10
:RU,P,&CN, ,%CN: :10
:RU,P,&CO, ,%CO: :10
:RU,P,&CR,,%CR: :10
:RU,MACRO,&CRSET,,·
:RU,MACRO,&DSNRV,,­
:RU,P,&DT,,%DT::10
:RU,MACRO,&DVA76,,­
:RU,MACRO,&DVA77,,-
:RU ,P ,&ED, ,%ED::IO
:RU,MACRO,>TIM,,·
:RU,P,&HI,,%HI::10
:RU ,P ,&HR, ,%HR: :10
:RU,P,&INIT, ,UNIT: :10
:RU ,MACRO, &JULIN ,.,-
:RU , P,&KYBRD, , %KY8RD:: 10
:RU,P,&LO, ,%LO: :10
:RU,P,&LOF, ,%LOF: :10
:RU , P,&LON, , %LON : :10
:RU,P,&LS, ,%LS::10
:RU,P,&MA, ,%MA: :10
:RU, P,&ME, ,%ME: :10
:RU,P,&MEDX1,,%MEDX1::10
:RU,P,&MEIDX,,%MEIDX::I0
:RU,P,&MPLIB,,%MPLIB::10
:RU,LINDX,%MPLI8,$X::IO
:PU,$MPLIB
:ST, $X, $MPLIB: :10: 5 :-1
:PU,$X
:RU,P,&MS, ,%MS: :10
:RU,P,&MSG, ,%MSG::10.
:RU,P,&MTRP,,%MTRP::10
:RU ,P ,&PA, ,liIPA: :10
:RU,P,&PC,,%PC: :10
:RU,P,&PF, ,%PF::10

Figure 16. Procedure file for compiling TRAMCON On-Line software modules.

48

:RU, P,&PH, , %PH: :10
:RU,P,&PLRP, ,%PLRP: :10
:RU,P,&PM, ,%PM: :10
:RU,P,&POLL,,%POLL: :10
:RU,P,&PR, ,%PR::10
:RU , P, &RMAST , , %RMAST: :10
:RU , P, &SC, , %SC: :10
:RU , P,&SE, , %SE:: 10
:RU,P,&SETCL, ,%SETCL: :10
:RU,P,&SETCR, ,%SETCR: :10
:RU, P, &SETDT, , %SETDT: : 10
:RU,P,&SETVE, ,%SETVE: :10
:RU,P,&SI, ,%SI: :10
:RU,P,&SR,,%SR: :10
:RU,P,&SS, ,%SS: :10
:RU,P,&SW, ,%SW: :10
:RU,MACRO,&T2,,-
:RU, P, &TIMPA, , %TIMPA: :10
:RU , P, &TIMSE, , %TIMSE:: 10
:RU , P,&TRLIB, , %TRLIB: :10
:RU ,LINDX, %TRLIB, $X: :10
:PU, $TRLIB
:ST,$X,$TRLIB: :10:5:-1
:PU,$X
:RU , P,&TROFF ,,%TROFF: : 10
:RU,P,&TS, ,%TS: :10
:RU,P,&UP, ,%UP: :10
:RU,P,&US,,%US: :lD
:RU,P,&WZ,,%WZ: :10
:RU,P,&X, ,%X: :10
:SV,O

Figure 16. (cont.)

For convenience, the name of the PASCAL compiler was shortened from PASCL to
P. Also, for all PASCAL compilations, the re1ocatab1e file name was
explicitly stated because the version of thE~ PASCAL compiler used to develop
the software would not place the output on the same disc cartridge as the
source file was on. If the default specification ",,-" was used, the
re1ocatab1e file was placed on the first cartridge defined (LU 2) rather than
on cartridge 10 where the source is located. The typical output to the
operator's console from the Pascal compiler is shown in Figure 17. Notice
that the output of the Pascal compiler is assembler code, which must be
assembled by the program MACRO. Also remember, even though a particular
module appears to be small, any INCLUDE modules are also part of the source
code and must be compiled. The rather large INCLUDE module [RECR3 is part of
almost every TRAMCON module and must be compiled for each module in which it
is included.

49

Pascal :
Pascal :
Macro :

o errors in file &X
Macro scheduled
No errors total

Figure 17. Sample screen output from Pascal compiler.

For the two library modules, &TRLIB and &MPLIB, the information displayed by
the compiler is slightly different, as shown in Figure 18.

1 0: $PASCAL 'TRAMCON Library, Ver. DEV', SUBPROGRAM, HEAP 2, HEAPPARM
S OFF$
o *** Warning: This feature is HP-IOOO Pascal

Pascal
Pascal
Macro :

o errors and 1 warnings in file &TRLIB
Macro scheduled
No errors total

Figure 18. Sample screen from Pascal compiler for library module &TRLIB.

The warning is not fatal and refers to the compiler SUBPROGRAM directive,
which is an HP enhancement to the Pascal system. The use of Pascal and Macro
directives is discussed in detail in Section 8.4 of this manual.

The two Library modules, &TRLIB and &MPLIB, are compiled and indexed using
the following FMGR commands:

:RU,P,&MPLIB,,%MPLIB::IO
:RU,LINDX,%MPLIB,$X::IO
:PU,$MPLIB
:ST,$X,$MPLIB::10:5:-1
:PU,$X
:RU,P,&TRLIB,,%TRLIB::lO
:RU,LINDX,%TRLIB,$X::IO
:PU,$TRLIB
:ST,$X,$TRLIB::IO:5:-1
:PU,$X

The indexed module is placed in a temporary file $X because the version of
LINDX that was used to develop the software would not return the unused disc
space when a size of "-I" was specified. Both the problem with PASCAL and
the problem with LINDX occurred in the versions that were used for
development and may have been corrected in subsequent releases. The library
files are stored with -1 for the size parameter so that they will be created
without extents and use only the disc space they actually require.

8.2.3 SEGMENTING Large Programs

Figure 19 is a list of TRAMCON programs that are too large to fit in a single
32 K partition and therefore, must be segmented and loaded using the multi­
level loader MLLDR. The HP-1000 F-Series computer using the RTE6/VM

50

operating system is a l6-bit minicomputer with no code and data separation.
With single l6-bit word addressing, the maximum address is 32767. If any
program is larger than 32 K, it must be segmented or divided into 32 K
portions that can overlay each other. For efficient operation, when
possible, TRAMCON On-Line programs were kept small enough so that
segmentation was not necessary.

A segmented program could be designated MEMORY or DISC-resident. A
memory-resident program is wholly contained in memory when executing, while a
disc-resident program has only the main portion and the current segment(s)
loaded into memory at any time during execution. The advantage to memory
residency is that no disc I/O is required when swapping segments. Keeping
disc I/O to a minimum was a prime directive for software design and
development. Because memory is limited, most of the segmented programs must
be disc-resident.

The programs that run most often, PLRP and MTRP, are not only memory resident
but also lock themselves into memory once they begin execution. Two memory
partitions were made that are just big enough to hold these two programs. So
far, when TRAMCON boots up, the sequence of execution of programs causes the
operating system, to place these programs into the desired partitions. If
these programs are changed, their required partition size (indicated by the
loader when the program is loaded) should be checked and the special
partitions adjusted accordingly, either by regenerating or by using the
On-Line configuration at bootup (see Section 15).

Before segmenting any of the programs listed in Figure 19, all of the
software modules must be gathered together into one disc file. The modules
are gathered together and indexed for quick reference using the HP supplied
program INDXR (refer to RTE6/VM Loader Reference Manual, p. 6-41). The names
of the files containing the various relocatable modules to be grouped
together for a particular program are present1ed to the program INDXR in a
command file. Naming conventions for these INDXR directive files are:

(1) They are five characters long
(2) The first character is "#"
(3) The second and third letters are the first two letters of the

program being indexed (e.g., for INIT the file name is #INDX)
(4) The last two letters are "DX"

A list of these command files is presented in Figure 20.

1. CF
2. DT
3. INIT
4. MTRP
5. PLRP
6. SR

- Data file initialization program.
- Master-to-master data transfer program.
- TRAMCON on_line software initialization program.
- TRAMCON monitored segment response processor.
- TRAMCON polled segment response processor.
- Master to master time synchronization program.

Figure 19. List of segmented programs.

51

INDXR Command File for CF - #CFDX
CR,@CF: :10
IN,%CF
IN, $TRLIB
IN, $PLIB
IN,$PLDH2
EN

INDXR Command File for DT - #DTDX
CR,@DT: :10
IN,%DT
IN, $TRLIB
IN,$PLIB
IN,$FMP6
IN, %DSNRV
EN

INDXR Command File for INIT - #INDX
CR,@INIT: :10
IN, %INIT
IN, $TRLIB
IN,$PLDH2
IN, $PLIB
IN ,$FMP6
EN

INDXR Command File for MTRP - #MTDX
CR,@MTRP::10
IN,%MTRP
IN, $MPLIB
IN, $TRLIB
IN, $PLIB
IN,$PLDH2
EN

INDXR Command File for PLRP - #PLDX
CR, @PLRP: :10
IN,%PLRP
IN ,$MPLIB
IN, $TRLIB
IN, $PLIB
IN ,$PLDH2
EN

INDXR Command File for SR - #SRDX
CR,@SR: :10
IN,%SR
IN, %DSNRV
IN, %JULIN
IN, %GTTIM
IN,%CRSET
IN, $TRLIB
IN ,$PLIB
IN,$FMP6
EN

Figure 20. INDXR command files.

52

The output of the program INDXRis an indexed collection of all the
relocatable modules that are referenced by t:he specific program being
indexed. The file naming convention used for these indexed files is

(1) The first letter is "@"
(2) The next one to five letters are the first to fifth letters of the

executable program name (e.g., for INIT, the file name is @INIT).

File names can be seen in Figure 20 as the first directive for each program
being indexed. These files should NOT be in existence when INDXR is run.
INDXR will give a WARNING if the file specified in the CR directive already
exists. It will probably be all right to overwrite this already existing
file, but it is safer to purge the file before running INDXR.

In each file shown in Figure 20, the remaining directives are (1) an INCLUDE
directive, that instructs the indexer program INDXR to include a particular
RELOCATABLE module (%); or (2) an entire Library of modules ($) in the
indexed file being created. Libraries $TRLIB and $MPLIB contain several
user-created TRAMCON utilities that are described in Section 8.2.4. Library
$PLIB is the main PASCAL library. Library ~;PLDH2 contains the routines to
handle the type 2 HEAP (EMA). Library $FMP6 contains a few special routines
used by programs DT, INIT, and SR.

NOTE

$SHSLB and %PRERS are not included in the segmenting and loading of.
these segmented programs. These modules are included in the linking
of all the other TRAMCON On-Line software but would be most useful
with these large programs. The library $SHSLB contains the short
versions of the HEAP management routines and module %PRERS contains
the short version of the Pascal run-time error reporter. Including
either of these modules would reduce the size of the executable
program and hopefully the number of segments. Refer to the
Pascal/1000 Reference Manual, pp. 8-51, for a discussion of space
savings. It is recommended that these routines be included with
the segmented programs. To make the segmenter use the version of
a specific routine from these modules instead of the Pascal library
$PLIB, the directives "IN,$SHSLB" and "IN,%PRERS" would have to be
added to the files in Figure 20 just before the directive "IN,$PLIB".

WARNING: Do NOT run INDXR with an incorrect command file name
For example, the author has mistakenly run INDXR using the MLLDR
command file #INIT instead of the INDXR command #INDX for
the program INIT. If an incorrect comnland file name is used the error
will be discovered immediately, because the indexer will display
runaway error messages and the user will have to terminate the INDXR
program. This not only confuses the program INDXR, it also corrupts
one or more of the libraries such as $PLIB or $TRLIB, depending on
which library was being indexed when INDXR was terminated.

53

Before the programs listed in Figure 19 can be loaded, they must be
segmented. That is, they must be organized into executable pieces, none of
which is larger than 64000 bytes, and all of which will execute by overlaying
each other. The segmentation can be done by hand or by using a segmentation
utility program, called SGMTR, supplied by HP. The segmentation job done by
SGMTR proved adequate in all cases, so no hand segmentation has been done.
For a complete discussion of the program SGMTR, refer to the RTE6/VM Loader
Reference Manual, Chapter 6. Figure 21 shows the procedure for indexing and
segmenting all the programs listed in Figure 19.

:************************************
:** Index and Segment Program CF **
:**
:PU ,@CF: :10
:RU,INDXR,#CFDX::10
:RU, SGMTR,@CF: :10 ,#XX: :10,29, CF,D
:RU,EDIT,#XX: :lO,TR,#E: :10/
:PU,#XX: :10
: PU ,#CF: :10
:RN,#Z::10,#CF
:************************************
:** Index and Segment Program DT **
:**
: PU ,@DT: :10
:RU,INDXR,#DTDX: :10
:RU,SGMTR,@DT: :10,#XX: :10,17,DT,D
:RU,EDIT,#XX: :10,TR,#ESRDT::10/
: PU ,#XX: :10
:PU,#DT::10
:RN,#Z: :10,#DT
:************************************
:** Index and Segment Program INIT **
:**
: PU,@INIT: :10
:RU,INDXR,#INDX: :10
:RU,SGMTR,@INIT: :10,#XX: :10,29,INIT,D
:RU,EDIT ,#XX: :10, TR,#E: :10/
:PU,#XX: :10
: PU ,#INIT: : 10
:RN,#Z: :10,#INIT
:************************************
:** Index and Segment Program MTRP **
:**
: PU ,@MTRP: : 10
:RU,INDXR,#MTDX: :10
:RU,SGMTR,@MTRP::10,#XX::10,28,MTRP,M
:RU,EDIT,#XX: :10,TR,#E: :10/
: PU ,#XX: :10

Figure 21. Indexing and segmentation procedure.

54

:PU,#MTRP: :10
:RN,#Z: :10,#MTRP
:************************-1<:***********
:** Index and Segment Program PLRP **
:**
:PU,@PLRP: :10
:RU,INDXR,#PLDX: :10
:RU,TR,@PLRP: :10,#XX: :10,28,PLRP,M
:RU, EDIT ,#XX: : 10, TR,#E: :10/
: PU ,#XX: : 10
:PU,#PLRP: :10
:RN,#Z: :10,#PLRP: :10
:************************************
:** Index and Segment Program SR **
:**
:PU,@SR: :10
: RU , INDXR, #SRDX:: 10
:RU, SGMTR,@SR: : 10 ,#XX: : 10" 17, SR,D
:RU, EDIT ,#XX: : 10, TR,#ESRDT: :10/
:PU,#XX: :10
:PU,#SR: :10
:RN,#Z: :10,#SR
:TR

Figure 21. (cant..)

After creating the indexed file of relocatable modules using the INDXR
program, the segmenter program SGMTR is run to create the directives file to
be used by the loader program MLLDR to load each of the six segmented
programs. The various executions of the segmenter, as shown in Figure 21,
require five run-string parameters.

The first parameter is the file name of the indexed relocatable module file
previously created by program INDXR.

The second parameter is the file name of the output from the segmenter (#XX)
that will contain directives to the loader.

The third parameter specifies the maximum segmentation path length in memory
pages. This parameter is set to the relatively low value of 17 for programs
DT and SR because they both use the DS software, which consumes a lot of
memory and is not included in the segmentation process. By setting the path
length to 17, room is allowed for the DS routines at load time. The other
values are set to 28 or 29 out of a possible 30 to allow for some system
overhead due to use of HEAP 2 (EMA - see RTE6/VM Loader Reference Manual,
p. 6-3, paragraph 1).

The fourth parameter is the name of the executable program being segmented.
The fifth parameter specifies whether each segment is to be memory or disc
resident. Refer to the RTE6/VM Loader Reference Manual, p. 6-1, for further
discussion of these run-string parameters.

55

To speed the loading process a bit and to reduce the size of the loader
directives file, the segmentation output is placed into a temporary file
called "#XX". This file is then edited with the source file editor, EDIT.
The editor is told to look for instructions in the disc file whose name
begins with "#E". These editor command files are text files that are
interpreted by the editor as instructions on how to edit file #XX. Editor
command files are listed in Figure 22.

The interpretation of the editor command files listed in Figure 22 is (1)
Both files are text strings representing commands to the program EDIT, and
(2) Each editor command is separated from the following command by either a
"CR","LF" combination or the character "I".

The file #E begins with the editor string-search command "f" and instructs
the editor to search for the string "TOTAL PROGRAM SIZE". A few of the
comments, specifically the program size and the number of nodes (segments),
are left in the segmenter output file for future reference. The information
is contained on two lines in this file. When the first line (containing the
string "TOTAL PROGRAM SIZE") is found, the next line is deleted with the "k"
command and the two lines of data to be kept are joined into one line with
the "j" command. This new line is temporarily marked with a first character
of "=" so that it will not be deleted by the following comma.nds. Also, any
spaces on this line are temporarily changed to "_" with the "g/ /~" command
so that they will not be deleted by the following commands. Next, the loader
"SH" directive is inserted after line 1, and a loader "LI" directive is
inserted after line 3. The second line of file #E causes the editor to use
regular expressions to delete all unwanted comment lines and spaces from the
file being edited (refer to the RTE6/VM Loader Reference Manual, p. 6-18).
Finally, the first character in the comment line that was protected is
changed back to the "*" .character and anew, edited version of the segmenter
output is created with the file name #Z: :10. For programs DT and SR, some
additional editing must be done before that which was just described is done.

File #E
f/TOTAL PROGRAM SIZE/I/lkl-lljlp=lg/ /~Illjl SH,SHARll31 LI,$PLDH2
sere onI3$x/ //qI3$d/A[A-Z,=]/aqlllsewcl,llf/=/lsewclp*lg/~/lec#Z::lO

File #ESRDT
31 OP,BGI OP,SSllITR,#E/

Figure 22. EDIT command files for editing SGMTR output.

56

The additional editing is directed by the EDIT command file #ESRDT listed in
Figure 22. The programs DT and SR use the DS software and, therefore, must
be loaded as BackGround (BG) and have access to the Subsystem Global Area
(SSGA). File #ESRDT places these two directi.ves into the loader directive
file, then transfers to file #E for the rest of the editing directives. The
"/" character, which appears at the end of the only line in file #ESRDT and
at the end of each "RU,EDIT" command shown in Figure 21, instructs the editor
to transfer immediately to the command file specified without asking if it is
all right to do so.

Since the editor created a new file, #Z, the old segmenter output file, #XX,
can be purged with the FMGR command ":PU,#XX::lO". Finally, the old MLLDR
directive file is purged for the specific program and the newly created file,
#Z, is renamed for the specific program, according to the naming convention
mentioned above. For example, for program SR, the purge and rename
instructions are ":PU,#SR::lO" and ":RN,#Z::10,#SR". The indexed file
("@SR") and the loader directive file ("#SR") are now ready for the loading
process discussed in Section 8.2.5.

8.2.4 Library Creation and Maintenance

A library is a collection of SUBROUTINES and FUNCTIONS that are referenced by
more than one program module. These libraries can be compiled as separate
modules and stored as relocatable code that i.s ready to be incorporated into
an executable module. For Pascal library routines, to prevent the Pascal
compiler from trying to interpret the library module as a program module, the
PASCAL directive line must include the SUBPROGRAM directive.

The TRAMCON On-Line software package includes two libraries of routines. In
keeping with HP file-naming conventions, any library module names begin with
character "$". The two TRAMCON libraries are called $TRLIB and $MPLIB and
are referred to in the literature as the TRAMCON library and the
Monitor/Poller Library respectively. Library $TRLIB contains a collection of
general-purpose routines used by most of the TRAMCON On-Line programs.
Library $MPLIB contains routines used mainly by the response-processing
programs PLRP and MTRP. Separating the routi.nes into the two libraries
speeds up the linking and loading processes because all routines do NOT have
to be included in the search for externals each time a program is linked or
loaded. That is, the library $MPLIB must be included when loading programs
MTRP, PLRP or SW.

The routines described in this section were written in Pascal. Each
description starts with the Pascal PROCEDURE or FUNCTION header showing the
routine name and the formal parameter definit:ions. This header line is
followed by a list of TRAMCON programs that reference this routine. In order
to reference these routines, the program must include the formal procedure
definition exactly as shown in these descriptions, followed by the directive
"EXTERNAL;". For example, the procedure "capitalize" is represented in a
program module by the statement "capitalize (VAR ch: CHAR);EXTERNAL;".

57

Parameters are passed to.subroutineseither by "value" or by "reference" (see
HP Pascal Reference Manual, p. 4-31). Call-by-reference parameters are
designated in the formal declaration by preceding the formal identifier with
the reserved word "VAR". All other parameters are call-by-value. As
explained in the manuals, changing a call-by-reference parameter will change
the actual parameter in the calling routine, whereas changing a
call-by-value parameter will change a local value, leaving the calling
routine unaffected.

8.2.4.1 $TRLIB Routine Descriptions

Routines included in this library are referenced by more than one TRAMCON On­
Line program. This library is included in the linking process for all
TRAMCON programs.

PROCEDURE set_data_frame (segmentlu:INT;remotetype: remote_types);

Ref by POLL, MTRP, and CMMD (for monitored segments)

The "set_data_frame" procedure is used to program the BACI interface for the
polling channels. The values set are Parity, Parity Sense, Data Bits, and
number of STOP bits. The BACI interface must be initialized before each I/O
request because these values are stored in RAM on the interface and power may
have been lost since the last setting. These values were originally set with
hard-coded commands before each POLLING or LISTEN request was issued because
only one remote unit type was in use. This more general procedure was added
to make the software flexible and able to accommodate other types of remote
units. This routine sets the I/O interface specified by the "segmentlu" to
the settings desired for the given "remotetype".

Program POLL calls this routine before each polling message is sent.

Programs MTRP and CMMD call this routine before issuing a LISTEN request on a
given polling line. In this case, MTRP and CMMD can only guess at the
"remotetype" by passing the type of the remote unit from which they logically
expect to hear a response next. This is all fairly moot since only one
remote unit type is being used. If the system is upgraded to a different
remote unit in the future or upgraded to support remote units for other
systems, such as the AT&T ACORN system or the Rockwell/Collins FACS system,
then the software support is already in place.

PROCEDURE set cat_vars;

.Ref by process_response, update_cn, and update_al in $MPLIB, and LS

This routine can be used by any program to set the link-end category
maintenance variables "equip", "oppo_site", "siteptr", "linksptr",
"linkendptr", and "local_end" that are defined in the INCLUDE module [TRVAR.
Considerable execution time can be saved by setting these values once rather
than de-referencing the full identifiers each time they are referenced. This
routine can be used instead of routine "get_category" if the full function of
"get_category" is not required.

58

Ref by SETCR

The Function "get_entry_address" is used to search the system and user entry
point tables for a match of the. five-character name passed in "entry_name".
This table, which is stored on disc, starts at the disc address stored in the
system communication area at memory address 1009 (176lB). The number of
system entry points contained in the table is found at memory location 1012
(1764B) and the number of user-available entry points is found at memory
address 1010 (1762B).

If a match is made, the memory address of the entry point is returned as the
value of the function. If NO match is made, the value of the function is -1.

PROCEDURE off-prog (pname: six_chars; cloned: INT);

This routine programmatically issues the operating system command OF to
terminate the program specified by "pname". If the program is a clone, the
value of "cloned" will be the CRT ordinal or i.ndex into the array
"current crt". If cloned, the program name is modified with the terminal LU
number, which is located in the HEAP, by using the value of "cloned" as the
index into the array "heap.... current_crt[cloned]". The cloned program name is
composed of the first two characters of the parameter "pname" concatenated
with the alphanumeric value of the terminal Llf. For example, the name AL25
refers to a cloned copy of program AL and is composed by taking the first two
letters of the program name AL and attaching the ASCII representation of LU
number 25.

FUNCTION capitalize (ch: CHAR): CHAR;

Ref by CMMD

The value of character "ch" is passed to this routine by NAME. If this value
is between the ASCII characters "'" and "{" (i.e., if it is any character
from "a" to "z") then the corresponding capital letter.is returned to the
calling program as the value of the function.

FUNCTION ElapsedTime (resettimer: BOOLEAN): INTEGER;

Ref by poll_remote

The routine "ElapsedTime" is used for timing of various functions of the
TRAMCON On-Line software. Timing values are kept separately for each TRAMCON
segment. If this routine is called to start t:he timer ("resettimer" is true)
for a segment (indicated by global "segord"), The local value of "basetime"
for the given segment is set to the current ti.me, otherwise the time elapsed
since the last setting of basetime is returned as the value of the function.

59

FUNCTION TimeNow : INTEGER;

Ref by DT, INIT

This routine reads the system clock, converts the time/date into a two-word
integer value representing the seconds since 00:00 1 January 1970 and returns
the time/date in this form to the caller as the value of the function.
Program DT calls this routine to time its data transfer operations.

PROCEDURE Day_Time (tm: INTEGER; VAR tm str: twenty8_chars);

Ref by MA, SS

The routine "Day_Time" is passed a time/date value in the two-word integer
format representing the number of seconds since 00:00 1 January 1970. The
time/date is unpacked into the Julian day, year, month, day, hour, minutes,
and seconds, is converted to ASCII, and returned to the caller in the string
"tm_str". This is the time/date string displayed at the bottom of the MA and
SS displays.

PROCEDURE poll_remote (caller, seg, rem: INT; cmd: CHAR);

Ref by PLRP, CMMD, PM, SW

Routine "poll_remote" formulates a FULL or NORMAL Poll request and sends it
to the program POLL using a CLASS I/O call with the LU set to zero. The
caller supplies only the segment ordinal, the remote ordinal, the "cmd" (FULL
or NORMAL) and 'the callers ID in "caller". If polling transmission is being
timed, the timer is started with a call to "ElapsedTime".

Ref by CMMD, MA, PM, SS, update_displays in $MPLIB

This function returns a two-character value representing the most severe
status indication for the site represented by the global values "segord" and
"remoteord" as the value of the function. These indicators are displayed on
the MA and SS displaysjust to the left of the site identifier. Programs MA
and SS call this routine to refresh the entire display as it is being painted
on the screen. Programs MTRP and PLRP call indirectly through routine
"update_displays" to refresh the status indicator for one site. Programs
CMMD and PM call to update the status indicators for all the remotes on
existing MA and SS displays. The parameter "ss_dsp" is passed to this
routine because the status indicator has slightly different values for the MA
and SS displays. The site status returned as the value of the function can
have any of the following values that are listed from most to least severe in
Figure 23.

If a caller wants the site status returned for the SS displ9-Y ("ss.:.,.dsp" is
true), any status value greater than 4 is reported back to the caller as two
BLANK characters. Otherwise, the caller wants the site status for the MA
display that is returned according to the list in Figure 23.

60

O. NP - Remote unit NOT being polled.
1. NA - NO Answer from any of the PHYSICAL units constituting

the LOGICAL remote unit.
2. na - NO Answer from at least one but NOT all of the PHYSICAL

units constituting the LOGICAL remote unit.
3. PE - The BACI Interface detected a parity error in at least one

byte of the response.
4. BR - Bad Response indicating that the remote unit ID in the

response was unrecognized or the response length was
invalid.

5. ME - At least one Major Equipment alarm was detected.
6. MS - At least one Major Site alarm was detected.
7. PA - At least one analog or digital parameter crossed a RED

threshold.
8. mE - At least one minor Equipment alarm was detected.
9. mS - At least one minor Site alarm was detected.

10. pA - At least one analog or digital parameter crossed an Amber
threshold.

11. ok - None of the above.

Figure 23. List of site status indicators for MA. amd SS displays.

:E1ROCEDURE down_crt (dev:icedown: BOOLEAN);

Ref by CMMD, LO, crt_status_check

This routine is called when a program has failed to communicate with the
terminal device indicated by global value "crtord". Certain terminal status
indicators in the shared data area are set to prevent any software from
attempting to communicate with this terminal until it is repaired. To
further prevent any TRAMCON software from doing I/O to this device, the LU
number used by the software to communicate is made to point to the bit bucket
by issuing the operating system command "LU.nn,O", where nn is the terminal
LU number. The program UP is informed through a CLASS I/O call that the
terminal is down. Refer to Section 9.4 of this manual for further detail on
the handling of downed terminals.

PROCEDURE crt status check (crtord: INT);

Ref by keypress, LO

The value of "crtord" is passed to this routine by name. Any time physical
output to a CRT is completed, this routine is called to determine if the CRT
is still operational by issuing a short write statement to the CRT pointed at
by the value of "crtord". Originally this routine was widely used, but has
been reduced to references in the few programs listed above for two reasons.
First, most output to a CRT is now terminated with a call to the central
routine "key press," which has the call to built in. Secondly, the buffer
size for the CRT text file "outunit" was increased to approximately one

61

screenful, requ~r~ng fewer physical output statements. That is, several
LOGICAL output statements are now issued by most programs before a "writeln"
or "prompt" statement is issued. With the larger buffer, the operating
system can ~uffer more information before actually sending it to the terminal
device. The status of the device has to be checked only when data are
actually'sent to it.

PROCEDURE ring_audible (broadcast: BOOLEAN);

Ref by update_displays in $MPLIB

This routine rings the proper audible alarms located in the TRAMCON master
cabinet. The alarms activated are determined by the values in the HEAP
variable "ss_alarms" unless the parameter "broadcast" is true. IF
"broadcast" is true, all the audible alarms are turned on to signal a
catastrophic failure of the communication system.

FUNCTION read_dict (p:dictionary-ptr;VAR w:dictionary_word):INT;

Ref by most TRAMCON programs

This is one of the most frequently referenced routines. The value of VAR
parameter "w" is set to the word from the data base dictionary, which is
pointed to by parameter "p". Parameter "p" is actually an index into the
large character array called "heap".dictionary", that was placed in the HEAP
at bootup. The length (the number of characters) of the dictionary word is
returned as the value of the function. Notice that dictionary words are
terminated within the dictionary by the ASCII character DELETE.

PROCEDURE disable_keyboard ;

Ref by CMMD, KYBRD, update_displays in $MPLIB

This procedure is called when a program module wants to have key presses
ignored locally by the terminal and usually precedes output to the terminal.
A terminal firmware flag that disables the keyboard is set by
programmatically sending the Escape sequence "Esc c".

PROCEDURE save_cursor ;

Ref by MSG, update_displays in $MPLIB

This procedure was intended to allow a program module to interrupt another
program's terminal input operation temporarily to display urgent messages.
Once the message was displayed, the cursor would be returned to the position
it had been in before the interruption. That cursor position was saved in
the HEAP variable "heap".current_crt[crtord].last_cursor" by calling this
routine with "crtord" pointed to the appropriate terminal device. The cursor
position is requested from the device by issuing the Escape sequence "Esc a"
and reading the terminal's response into "last_cursor". An inconvenience
with this process is that any input up to the point of interruption, is lost,
but no indication of this 10s5 is given to the operator. One possible

62

correction would be to store the starting cursor position for each terminal
input request and, after interruption, set the cursor back to the starting
point and erase any previous echoes of this input.

PROCEDURE keypress (func: INT);

Ref by most TRAMCON programs

Procedure "keypress" is the most important procedure in this library and the
most widely used of all the TRAMCON library routines. This routine is the
heart of the terminal I/O system. Refer to Section 9 of this manual for
details on the terminal I/O system design and how the routine "keypress" fits
in. This procedure issues keyboard input requests using the CLASS I/O system
so that the input information can be rigidly controlled and routed. The
various options concerning the actual request are specified by the caller in
the single parameter "func", which is passed to "keypress" when it is called.
No information is returned directly to the caller. Instead, the keyboard
input requests are attached to the appropriate CLASS number for the terminal
specified by the value of the global variable "crtord".

Generally, the length (in characters) of the input desired is represented by
the abso:Lute value of parameter "func". If the request is for FUNCTION keys
then the value of "func" will be the number of FUNCTION keys defined (from 1
to 8) added 'to 2000.

If it is a FUNCTION key request and the labels are displayed in big letters
on the graphics display, then the value is the number of FUNCTION keys
defined plus 2010. If it is a FUNCTION key request, procedure "keypress"
will turn on the FUNCTION key menu, set the buffer length to one
character (-1), set "echo" to false, and only allow the ASCII characters 'I'
to '8' as input. All the parameters defining a new input request are stored
in the HEAP for the given terminal so that an interrupted or cancelled input
request can be restored. A value of -1 (nill) for "func" is the most common
call to "keypress". A program calls "keypress" with "func" set to nill when
that program wants to put the terminal back into its IDLE state, the state
where it waits for any key to be pressed. ~~en a key is pressed, the program
KYBRD is notified.

PROCEDURE check_more (short-pg: BOOLEAN);

Ref by AL, LS, ME, PA, PC

This procedure is called by any display program which produces information
that is potentially more than one screenful. For instance, the AL display
could be an arbitrary amount of lines long, depending on the status of the
site being displayed. As each line of data is LOGICALLY displayed with
"write" statements, this routine is called. The count of lines displayed is
compared to the maximum number of lines allo,~ed for this particular display,
which is stored in the HEAP variable "max_dsp_ln". If the screen is not
full, a LOGICAL line is completed by adding the characters LF and CR to the
output buffer. If the screen is full, the LOGICAL output stored in the

63

global I/O buffer "outunit" is PHYSICALLY sent to the terminal device by
calling routine "keypress" which, in turn, issues the PHYSICAL output
instruction "prompt". This call to "keypress" is a FUNCTION key request.
That is, the terminal will be set up by routine "keypress" to prompt the
operator for a FUNCTION keypress. A FUNCTION key request is indicated by
adding 2000 to the parameter in the "keypress" call. Each program that uses
this routine must set the' global variable "nbr_defined" to a number between 1
and 8 to indicate how many of the possible eight FUNCTION keys are defined
for use in this program. Refer to Section 9 for details on the terminal I/O
processing. The value of "nbr_defined" is also added to the value of the
parameter passed to "keypress".

Several bookkeeping values for the current display are stored in the HEAP
variable "heap"'.current_crt[crtord]. These values include "pgs_remaining",
"nbr_lines", "cur-'page", "line_nbr", "prev_pages", and "lines[cur_page]".
Refer to Section 11.1 for details on the meaning of these values.

PROCEDURE wait_for_big_softkey (labels, ln2:soft_key_labels_type;
nbr_defined: INT;
paint_sc,clear_sc:BOOLEAN);

Ref by CO, DT, PM, SC, SR

This routine is called when a program wants to prompt the operator for a
FUNCTION keypress and display the FUNCTION key menu in large text on the
graphics display. The labels for each FUNCTION key are passed by the caller
in the parameters "labels" and "ln2". Each key label can be two lines long
with the first line contained in "labels" and the second line in "ln2". The
menu is displayed in graphics TEXT mode with character size 3. Therefore,
the label line size is limited to 26 characters for a 2397A terminal. Data
on the alphanumeric display is left intact and turned off, so that the
information can be redisplayed by sending a simple escape sequence later.
Sometimes the graphics display already contains the FUNCTION key labels
desired when the call is made to "wait_for_big_softkey" , in which case the
value of parameter "paint_screen" is false. Other times a few header lines
are already on the graphics display, but the FUNCTION'key menu is not. In
this case, "clear_screen" is false, "paint_screen" is true and the FUNCTION
key menu is displayed starting from the current cursor position instead of
from "wholey - 60". The actual keyboard input request is made by calling
the routine "keypress" and signaling that this is a FUNCTION key request by
adding 2010 to the parameter passed to "keypress". The parameter sent to
"keypress" is negative to tell "keypress" NOT to release the terminal
resource number, thus preventing any other programs from attempting I/O on
this terminal. This routine processes the fl key directly.

PROCEDURE jtime (VAR time alfa: time_str);

Ref by CMMD

This routine reads the system time/date clock, converts the current time/date
into the format ddd/hh:mm:ss and passes this string back to the caller in
parameter "time_alfa". This routine was originally called by several modules
throughout the TRAMCON software, but is now referenced by the single module

64

CMMD. The time/date string produced by this routine is displayed in the
upper left-hand corner of most displays. Since this time/date stamp is
common to most displays, the program CMMD displays this value just before it
schedules the appropriate display program.

PROCEDURE time date (graphx: INT);

Ref by HR, MA, SS

This routine reads the system time/date clock, converts it into an ASCII
string indicating the day-of-the-week, day-of-the-month, month, and year and
displays it on line 23 of the alphanumeric display or the text line indicated
by the parameter "graphx" on the graphics display. The two displays
currently showing this time/date string are the SS display (alphanumeric) and
the MA display (graphic). Program HR calls this routine to refresh any
existing SS or MA displays at midnight with the new day-of-the-week, day-of­
the-month, and possibly, new month and year.

PROCEDURE display_current_msg

Ref by CMMD, MA, PR, SS

This routine is called to display any message that might be queued up for the
terminal indicated by the global variable "crtord". Random messages to be
displayed on a given terminal are stored, along with some message accounting
values, in the HEAP.

PROCEDURE runJ>rog (f:INT; nam:six_chars; pl,p2,p3,p4,p5:INT);

This procedure performs the following four steps (FMGR functions) necessary
to programmatically run a type 6 program.

1. OPEN the type 6 disc file whose name is specified in parameter "nam".
2. RESTORE PROGRAM (RP), which allocates an ID Segment to this program

and places the executable portion of the program into the operating
system scratch disc area.

3. CLOSE the type 6 disc file.
4. SCHEDULE the program for execution.

PROCEDURE clone and run (nam:six_chars; pl,p2,p3,p4,p5: INT;
assign_toJ>artition: INT);

Ref by CMMD, UP

This procedure programmatically executes the program whose name is specified
in parameter "nam". The program is assumed to be a type 6 program. That is,
the program specified may not be currently loaded and ready to execute. It
is also assumed that the program is to be run as a CLONE of the actual
program. The name of the cloned program executed is formed from the first
two characters of the parameter "nam" concatenated with the alphanumeric

65

representation of the LU for the terminal from which the request for program
execution came. The terminal is specified by the value of the parameter
"crt ord". The HEAP record for the given terminal is checked to see if the
desired program is currently loaded and ready to run ("old_dsp" matches
"current_display"). If they are the same, the program is already loaded, and
this procedure merely has to execute it by calling the routine "schedule",
which is actually system procedure EXEG. If this is a new program for the
given terminal, the old program whose name is in "old_dsp" is removed from
both its ID segment and the system scratch track area by calling routine
"offyrog". The value of "crt_ord" is passed to "offyrog" so that it will
turn off the cloned program rather than a program with the raw name in
"old_dsp" .

To prepare a program for scheduling, the type 6 file must be opened, the
program must be restored by issuing the FMGR RP command using routine IDRPL,
and the type 6 file must be closed. At one time it was thought that perhaps
it might be desirable to assign some programs to certain partitions. That
function was not implemented for any TRAMGON programs, but the code remains
for possible future use. Under RTE6/VM, a program can be passed five one­
word values when the program is scheduled. These five values are accepted
from the caller as parameters pI through p5 and are simply passed on to the
program scheduler in the call to "schedule". The schedule call is a 24,
which is queued with NO wait (refer to HP Programer's Reference Manual p.
2-58).

PROCEDURE allocate EMA (stack_needed: INT; VAR id: byte;
init crt: BOOLEAN);

Ref by most TRAMCON programs

This procedure is referenced by any TRAMGON program wanting to access the
shared data area called the HEAP. Refer to Sections 11.1 and 11.2 for a
detailed discussion of the HEAP and how it is accessed. The call to this
routine should be one of the first executable statements in any program but
must be preceded by a statement that assigns the GLASS number associated
with the first word address (FWA) of the HEAP to the global ([TRVAR) variable
"parms[l]". Since the HEAP is a type 2 storage area, the HEAP addresses are
two-word addresses. Therefore, the FWA of the HEAP is not passed directly to
each program as it is scheduled. Instead, a one-word GLASS number was
allocated by program GMMD and the FWA of the HEAP was attached to this GLASS
number by issuing a GLASS WRITE once at system bootup. This GLASS number is
passed as the first run-string parameter (parms[l]) to each program as it
is scheduled. The run-string parameters are recovered and placed into global
array "parms" (in [TRVAR) by calling the routine "get parms". This call is
usually foll~wed immediately by a call to routine "allocate_EMA". Typically,
t~e first statements in any TRAMGON program scheduled by GMMD are as follows:

get_parms(parms); allocate_EMA(O, id, TRUE);

The global VAR "heap" (in [TRVAR) is assigned the FWA of the HEAP by issuing
a GLASS GET ("get_heap_ptr") on the GLASS number in "parms[l]" with "heap" as
the two-word input buffer. The global "heap" now points to the entire HEAP

66

described in Section 11.1, which means that all the information in the HEAP
.is part of the record "heap"".

The global variables "crtord" and "segord" are set to the values found in
"parms[4]" and "parms[5]" respectively. These values were passed to the
program by CMMD as run-string parameters. If the program is a display
program ("init_crt" is true) that will be sending information to the terminal
screen or printer, then "allocate_EMA" opens the global file "output" and
attaches it to the terminal LU associated with the global VAR "crtord". The
global VARs "crt_type", "colored", "print_it" and "segptr" are set to values
found in the HEAP record "current_crt", that were set by the program CMMD
before scheduling this program. These global values are set so that the
program can reference the much more accessible variables (SCALAR GLOBAL)
rather than two-word addressable fields within records.

Only two programs, MTRP and PLRP, require stack space to use for the handling
of the recursive routine "evaluate_node" (refer to $MPLIB Routine
Descriptions to follow). Stack space is allocated in increments of 50 words
and is requested by passing a nonzero value for the parameter "stack_needed".
If "stack_needed" is greater than zero, its value is a factor in determining
the number of words of stack space to be allocated to the caller.

PROCEDURE deallocate_EMA (id: byte);

Currently NOT referenced

NOTE

This routine was intended for programs that wanted to return stack
space that was no longer needed. As mentioned above, only the
two programs, MTRP and PLRP, currently request stack space. These
programs never terminate and, therefore, l~ever return their stack
space.

FUNCTION printer status (repeat_cnt: INT): INT;

Ref by CMMD, print_display

This procedure attempts to discover the status of the printer that mayor may
not be attached to the external device port of the terminal identified by the
value of global variable "crtord". The method for getting this information
varies slightly in detail between terminal types, but the general procedure
is the same. The Escape sequence "esc &p4"" is sent to the terminal asking
for the printer status. The terminal responds with the seven-byte sequence
"esc \p4xxx", where xxx is the three-byte device status. Figure 24 shows the
manual references for the device status request: for each terminal type
supported.

67

Terminal Model

1. HP-2647F
2. HP-2627A
3. HP-2397A

Manual

2647F Reference Manual, Part No. 02647-90037
2627A Reference Manual, Part No. 02627-90002
2397A Reference Manual, Part No. 02397-90002

Page

10-6
8-6
9-21

Figure 24. DEVICE STATUS information in terminal reference manuals.

The routine will repeat the status check as many times as required by the
caller if the returned indication is "busy". The general printer status is
returned to the caller as the value of the function.

PROCEDURE init_printer (compressed: BOOLEAN);

Ref by AL, CN, CR, LS, ME, PA, PC, PF, SE, WZ

If the printer is functional, then this routine is called to prepare the
printer for output. First, the message "Printing, Please WAIT" is displayed
on the CRT that is the current definition of text file "outunit". Since all
TRAMCON programs have only one text file defined, the same file must be used
for the printer. Therefore, the file "outunit" is redefined to point to the
printer with the "rewrite" statement. Once "outunit" is redefined, any
output statements to it will' go to the printer. The printer LU number is
computed based on the value of "crtord" instead of being stored, thus, it is
important for the printer LU numbers to be consecutive. They are currently
assigned to be LU numbers 42 through 45 and correspond to the terminal LU
numbers 25 through 28, respectively. That is, the printer, referred to as LU
42, must be connected to the terminal referred to as LU 25. To compute the
printer LU number, 42 is added to the value of "crtord", which ranges from 0
to 3. The printers are defined as subunits of their respective terminal
equipment entries since they communicate over the same physical I/O port as
the terminal device to which they are connected. The 2631G printers
connected to the 2647F terminals use subchanne1 5. The 2932A printers use
subchanne1 4.

PROCEDURE print_done

Ref by AL, CN, CR, LS, ME, PA, PC, PF, SE, WZ

This procedure is called when a program has finished its print job so that
the file "outunit" can be redefined to be the terminal display and keyboard.
Before "outunit" is reassigned, a Form Feed is sent to the printer. If the
file "outunit" was not redefined to refer to the display and keyboard, the
TRAMCON software could no longer communicate with this terminal device. As
explained in Section 9, the keyboard is set to the "wakeup" state with a call
to routine "keypress (0)".

PROCEDURE print_display

68

Ref by AL, HI, PH, PR, US, WZ

This routine is called when the TRAMCON opera.tor wishes to copy the contents
of the terminal display to the printer attached to the external device port
of that same terminal. This function is performed locally by the terminal
device after an Escape sequence is sent by the program to trigger this
action. This function was difficult to accomplish for the older 2647F
terminal because there was no indication sent: from the terminal to the
program when the job was done. The newer terminals send a single character
back to the program when the job is finished. The software issues a single
character read request to the terminal device, and is suspended until
completion of that request. The value of "graphics_mode" in the HEAP
determines whether the graphics or alphanumeric display is copied to the
printer. Some displays have a few lines of heading locked, which will
prevent the cursor from being set to the top of the display. If some lines
are locked, the lock is temporarily released with the escape sequence "esc
m", the cursor homed, the display printed, and the lock reinstated with the
Escape sequence "esc 1".

8.2.4.2 $MPLIB Routine Descriptions

This library is known as the Monitor-Poller Library. This library was
created because most of its routines are shared by the two remote unit
response handling programs MTRP and PLRP. Actually, there is very little
else to each of those two programs outside of this library. Also, since
these routines are not used by any other TRAMCON programs, they were grouped
into a separate library from the main TRAMCON library $TRLIB. This way, the
linking process does not have to search through these routines when loading
most TRAMCON programs. One other program, SW, does reference a few routines
in this library. The general functions of the routines in this library are
to process remote unit responses and refresh displays.

PROCEDURE pm_Initialize

Ref by MTRP, PLRP

Initialization steps that are common to the t:wo programs MTRP and PLRP are
done by this procedure. Both programs call this routine when they begin
execution. First, the calling program is locked into the memory partition in
which they are currently executing. Since both are completely memory
resident, locking them into memory ensures that they will never be swapped to
disc. The next step is to get the address of the HEAP by calling
"allocate_EMA(400,id,FALSE)". The 400 in tha.t procedure call requests a
stack space of 200 words. This stack space is used to handle the execution
of the recursive procedure "evaluate node".

69

FUNCTION reverse_bits (from_bits: data_char): CHAR;

Ref QY unpack_response and print_response

This routine is part of the remote unit response processing set of routines
that follow. This routine is needed to place the data bits in the response
from a DATALOKIO remote unit into a true sequential order. That particular
type of remote unit reports 6 bits of information per byte in the response
string. Some DATALOKIO modules, (FEC) cards in particular, report the 6 data
bits in reverse order and must be reversed by this routine so that all the
response bits are sequential. The raw response byte is passed as the only
parameter "from bits" and the reversed byte is returned as the value of the
function.

PROCEDURE transform ordinal (remote_typ:remote_types;alarmord:INT;
resptype: response_data_types;
VAR catagory,two_state_ord: INT);

Ref by unpack_response

This is an extremely important routine because it contains the code that is
unique for each remote unit type. Much of TRAMCON's versatility in handling
various remote unit types is shown here. To be able to handle a new remote
unit type, a relatively minor amount of code must be added to this routine.
Currently, TRAMCON supports the DATALOKIO Model IE and the DATALOKIO Model
ID. These two units are treated as different types of remote units because
their responses have a different structure. TRAMCON can be made to handle
other remote unit types, such as the Rockwell/Collins FACS remote or the AT&T
ACORN remote, by adding code to this routine and a very few lines of code to
the procedure "unpack_response" described below.

This routine transforms the data bits in the PHYSICAL remote unit response
into their corresponding position in the generic data base equipment record.
The bit position in the remote unit response is indicated by the value of
parameter "alarm ord". This "alarm_ord" is associated with a position in the
equipment record by returning the two values "category_ord" and "ord in cat".

PROCEDURE unpack_response ;

Ref by MTRP, PLRP, SW

The purpose of this routine is to convert the raw responses received from any
currently supported type of remote unit into a generic, unpacked format. The
type of remote unit is meaningless beyond this routine. That is, all
responses look the same to the response processing code after this routine is
called. The raw response is in the global variable "response" and the
unpacked response is placed into the global variable "unpacked_response" by
this routine. The only code in this routine that is dependent on the remote
unit type is the check for legal response length. If new remote units are
added to the list supported by TRAMCON, a check for its legal response
lengths must be added to this routine. For speed and convenience, the remote
unit packs its information. This routine unpacks this data so that the
response-processing code can get at the individual data bits more easily.

70

FUNCTION evaluate_node (tree: expression_tree;node: INT): BOOLEAN;

Ref by process_response

This routine is the only recursive routine use:d in the TRAMCON software. It
is called to process the combination alarms that are defined by a LOGICAL
expression tree in the equipment record.

PROCEDURE archive_it (noans: BOOLEAN);

Ref by update_displays

This routine is called to create an archive. record for a given LOGICAL remote
unit. To ensure consistency in the archive fi.le, if an archive record is
created for anyone of the PHYSICAL remote uni.ts that make up a LOGICAL
remote unit, this routine creates an archive record for all the PHYSICAL
remote units that make up the given LOGICAL remote unit. The LOGICAL remote
unit concept was added to the TRAMCON system late in its development, at
which point, the archive file was organized byr individual PHYSICAL remote
units. To minimize changes, this structure was maintained even with addition
of the multiple remote unit idea. Now, instead of an archived event for a
given remote unit occupying one record, this same event occupies as many
records as there are PHYSICAL remote units in the given LOGICAL remote unit.
Refer to Section 6.4 of this manual for a discussion of PYSICAL and LOGICAL
remote units. The NO ANSWER indication was expanded to indicate (by
subtracting 5000 from the year 6f the main remote unit's archive record) that
at least one, but not all, PHYSICAL remotes of a LOGICAL remote failed to
answer. This indication is shown on the Alarm Archive display as "na". If
none of the PHYSICAL remotes answered, 10000 is subtracted from the year of
the main remote unit's archive record and this is indicated on the AR display
as "NA".

Also important to note is the manual control of access to the archive file.
This was implemented by hand, instead of opening the file exclusively, to
avoid the costly overhead of constantly opening and closing the file. The
exclusive use is managed by using the "next_archive_record" pointer, which
excludes simultaneous use of only the section of the archive file that
belongs to the given remote unit.

PROCEDURE parm_def (p_type: INT);

Ref by CC, PA and process_parm

For each UNIQUE analog or digital parameter monitored by the TRAMCON
software, there is an IF-THEN-ELSE clause addE~d to this routine. Given the
type of the parameter in "p_type" , this routine sets global variables (in
[MPVAR) "decimal_places", two_sided_th", "decreasing", and "calibrate",
which uniquely define a particular type of parameter. This does not mean
that each time a new model of .communication equipment is monitored lines of
code must be added to this routine. Code needs to be added to this routine
only if there is a parameter (e.g., RSL, Signal Quality) generated by this

71

new equipment that does not match the settings of the four variables listed
above for any of the currently monitored parameters. For example, when the
FRC162 radio was added to the list of equipment that TRAMCON monitors, the
characteristics of the RSL parameter for this radio were matched against the
existing parameter types, namely types 1, 2, 3, and 60. The FRC162 RSL
parameter has no decimal places, is not two sided, is not decreasing, and
must be calibrated. This did not match the settings of any of the existing
parameter types and, therefore, required that code be added to this routine
to handle a new parameter type. These parameter types must be exactly
coordinated with the data base Configurator so that the parameters are
defined with the proper type in the data base. A list, like that in
Figure 25, of the various types and their associated settings should be kept
by the Configurator user so that reference can be made to it when introducing
new communication equipmen~ to be monitored by the TRAMCON system.

Notice that the new type, type 4, added to define the FRC162 RSL and BDM
parameters, differs from the DRAMA RSL parameter type, type 1, in only one
column, "decreasing". But one difference is all it takes to define a new
parameter. In case any general distinctions need to be drawn between all
analog and all digital parameters, any digital parameter type should be
assigned a number greater than 59.

The value of "decimal_places" determines how many digits are displayed t~ the
right of the decimal point for the given parameter. For ease of use (making
calculations) and minimal memory storage requirements, all the parameter data
are stored and used in one-word integer (INT) form. If a given parameter has
two decimal places, the integer value is stored in centi-units. For example,
DRAMA signal quality is parameter type 2 and, therefore, has two decimal
places and its units are volts. So, a signal quality value of 456 represents
a signal quality of 4.56 volts.

The "decreasing" value refers to the sense in which the parameter behaves in
going from good (operating properly) to bad (malfunctioning). That is, does
the raw parameter value increase or decrease when going from a good to a bad
reading. This needs to be known by the parameter processing code so that it
can make the correct relational tests (less than or greater than) to
determine threshold crossings and calibrated values.

TYPE decimal_places decreasing calibrate two sided th Examples

1 0 TRUE TRUE niH DRAMA RSL
2 2 TRUE FALSE niH DRAMA Sig Qual
3 2 TRUE TRUE 5000 Site Battery
4 0 FALSE TRUE niH FRC162 RSL, BDM

60 0 FALSE FALSE niH Digital
61 0 FALSE FALSE niH MD-918 #1 Err Rate
62 0 FALSE FALSE niH MD-918 #2 Err Rate

Figure 25. List of parameter TYPES and their settings.

72

The "calibrate" characteristic determines whether the parameter can be used
just as it is reported (uncalibrated) or must be converted to a different
magnitude and/or units. For example, the site battery is a voltage value,
and all analog parameters are reported by the remote units as voltages. But,
the absolute value of the battery voltage is beyond the range of the
DATALOKlO remote unit A/D module. Therefore, the site battery raw voltage
value must be calibrated. In this simple case, the voltage is multiplied by
3. In other cases, the conversion is not linear, and the raw voltage value
must be compared against a table of numbers called a calibration curve.

The last characteristic, "two sided", refers to the property of a parameter
such that it is good (functional) at a NOMINAL value and degrades in
performance both above and below that value. The only example of such a two­
sided parameter so far is the site battery, which operates around a NOMINAL
value of 50 volts. If a parameter is not t~'o sided, the value of
"two_sided_th" equals -1. Otherwise, the value of "two_sided_th" is equal to
the NOMINAL value in centivolts (e.g., NOMINAL value = 50 volts,
"two-,sided_th" = 5000).

PROCEDURE printyarm (val: INT);

Ref by CC, PA, print_val

This procedure displays or prints the value of an analog or digital parameter
contained in "val". The total field width for the value displayed or printed
is six character positions, including any d€~cimal point. The number of
digits (ranging from 0 to 3) is indicated by the global VAR "decimalylaces"
(in [MPVAR) which must be set to the desired value before calling this
routine. The number of decimal places for a given parameter is acquired by
"process_response" before calling "printyarm" by calling the routine
"parm_def", which is discussed above.

PROCEDURE process_response

Ref by MTRP, PUP

Just as "keypress" is the most important routine in the keyboard input
handling function, so this routine is the heart of the remote unit response
processing function. Each time a response is received from a PHYSICAL remote
unit, this routine is called to process the response.

Notice that this routine processes each PHYSICAL remote unit response. The
concept of LOGICAL or MULTIPLE remote units was introduced with as little
code change as possible. These response-processing routines were left as is
rather than trying to rewrite them to process more than a single remote's
response at a time. Refer to Section 6.4 for details on the processing of
LOGICAL remote unit responses.

First, the routine "unpack_response" described above is called to transform
the actual response as received from the remote unit (identified by the
values of global VARs "segord" and "remoteord" in [TRVAR) into the generic
response format defined by the TYPE "unpacked_response_record", which is

73

defined in Section 11.1. The generic response is placed into global VAR
"unpacked_response", which is declared in the INCLUDE module [MPVAR. The
various sections in the response, two-states, analog and digital parameters,
are matched against the previous response from the same, remote unit, which is
stored in the HEAP VAR "rem_statusytr".cat_status". The Configuration data
contained in the HEAP records "equip"n, nsegptr"n and nremptr"" are used as
templates to define the response being analyzed. For the given remote unit
(remptrA) on the given segment (segptrA), these Configuration data describe
which categories are defined and what type of equipment (equipA) is being
monitored by each category.

If any difference is found between the previous response and the current
response, it is flagged as a change-of-state, which will trigger the routine
"update_displays" to call "archive_it" to create an archive record once the
entire LOGICAL remote unit response has been analyzed.

Each analog and digital parameter value is processed by the local routine
"processyarm" for every response received. Rout;:ine "parm_def" is called to
set the global VARs "two_sided", "decreasing" and "calibrate". These global
values are used by "processyarm" to determine the sense (less than or
greater than) for the Logical comparisons that are made to determine the
proper histogram BIN for the new value. The command "calibrate" is used to
determine if the analog parameter value must be converted to a new value and
new units other than volts.

PROCEDURE clear_chars (num_chars: INT);

Ref by update_cursor and update_displays

In several places throughout the TRAMCON software, text is written to the
screen in graphics TEXT mode. Sometimes this text information overwrites
existing text. To reduce the volume of data sent to the screen, a particular
TEXT drawing mode, JAM4, was used that affects the entire character grid by
turning off all bits in the grid except those that form the character. The
result was the erasure of the old text and the displaying of the new. This
JAM mode works fine for the first two models of terminals used by TRAMCON,
but was rewritten for the HP-2397A. On the newer terminal, JAM4 mode now
works exactly the same as JAM2 mode, overwriting but not erasing the old
data. To remedy this situation for the MA display on a HP-2397A terminal,
this routine was added to erase the old data by writing ASCII blank
characters in JAM4 mode.

PROCEDURE update_cursor

Ref py MTRP, PLRP

This procedure is used by the response processing programs MTRP and PLRP to
refresh the polling cursor on all the existing SS and MA displays. All
terminals are examined for either of these displays by setting global
variable "crtord" to zero and looping while "crtord" is less than "max_crt".
Program PLRP, since it is polling the remote units, calls this routine when
it is preparing to poll another remote unit. If a cursor already exists on a

74

given display (heapA.current_crt[crtord].y <> 0), it is erased. Program PLRP
then displays the new cursor next to the remote unit it is preparing to poll.
Since it is only listening for responses, program MTRP does not know ahead of
time which remote unit is being polled, if any. Therefore, program MTRP
calls this routine just after it has received a response from any remote
unit. Program MTRP writes the cursor next to the remote unit that just
responded. In any case, the cursor for a given display cannot be updated if
the terminal's resource number is locked to another process. For more
information on the handling of the terminal I/O, refer to Section 9 of this
manual.

PROCEDURE update_us

Ref by MTRP, PLRP

This routine is called to refresh existing statistics displays that were
produced by the US command. Specifically, two sets of statistics, referred
to as page2 and page3, are refreshed by this routine. The page2 display
shows a breakdown of the kinds of remote unit responses registered by the
software. The page3 display shows a breakout of remote unit response
processing times. Refer to Section 12.2 for details on these data. As in
all update or refresh routines, this routine must successfully lock the
terminal resource number before it can refresh the display. This routine
also checks all terminals for the US display, page2 or page3.

PROCEDURE update_ss (up_date: BOOLEAN);

Ref by SS, update_displays in $MPLIB

This routine refreshes the SS display on the terminal specified by the global
variable "crtord". The routine is called to display the segment status
information for the remote unit specified by the global variable "remoteord"
and the segment specified by the global variable "segord". The display
cursor is assumed to be on the appropriate line. The parameter "up_date"
indicates whether this is a call to refresh an existing display (up_date =

true) or paint a new display (up_date = FALSE). The program SS paints a new
display and calls this routine after it has displayed the remote unit name
and placed the display cursor in the proper column. If "up_date" is false,
the display cursor must be positioned to column 30 by this routine before
data can be refreshed. The data used for this display is stored in the HEAP
variable "heapA. segment_status [segord] . remot:e_status [remoteord] A. ss_alarms" .

PROCEDURE update_cn ;

Ref by update_displays in $MPLIB

This routine is called to refresh an already existing CN (CouNted two-state)
display for the remote unit specified by the global variable "remoteord" on
the segment specified by the global variable "segord" on the terminal
specified by the global variable "crtord". Since this displa.y is potentially
more than one screenful (page), the number of the page currently being
displa.yed is kept in the HEAP variable "heapA.current_crt[crtord].cur_page".

75

This routine examines the static Configuration' data for the given remote
unit, which is kept in the HEAP, for any two-state value designated to be
counted, starting with the SITE category two-states. Once a counted two­
state is discovered, this routine decides whether this value is currently
displayed or not. If this routine has passed by enough counted values to get
to the current page, the value is refreshed on the screen. If not, the page
line counter "In" is incremented and, if necessary, the local page number,
"locyg", is incremented until the local page equals the displayed page.

PROCEDURE updateyc ;

Ref by update_displays in $MPLIB

This routine is called by routine "update_displays" to refresh any PC display
on any of the terminals on the given master. The PC display is a multi-page
display and the current page and line information for a given terminal are
kept in the HEAP record "current_crt[crtord]" in the fields "first_Iine[]",
"curyage", "nbr lines" and "line nbr".

All the trunks defined for the given segment that are displayed on the given
CRT are examined to see if they begin and/or end at the site that just
responded (siteptr). The first trunk displayed is indicated in
"first_Iine[cur_page-I]" and the last trunk is indicated by the value
"nbr lines". If the responding remote unit (siteptr) matches the trunk start
(sitel) or the trunk end (site2), the value is updated on the screen.

PROCEDURE update_al ;

Ref by update_displays in $MPLIB

This routine is called by routine "update_displays" to refresh any AL display
on any of the terminals on the given master. The AL display is a multi-page
display and the data are displayed in CATEGORY order. But, the contents of
each CATEGORY can change with each response. This makes it very difficult to
refresh an existing display. Therefore, to refresh this display, the entire
display is started over from the beginning.

PROCEDURE print_val (p_type, cat, rem: INT; vaI2,online:BOOLEAN);

Ref by update_pa in $MPLIB

This routine is called by routine "updateya" each time a parameter value
needs to be displayed on a given terminal. The value "p_type" is passed to
the routine "parm_def" to set the values "two_sided_th", "decreasing", and
"decimalylaces". Routine "print_parm" is called to display the parameter
value. Immediately following the value, the threshold crossing indicators
are displayed.

76

PROCEDURE updateya ;

Ref by update_displays in $MPLIB

This routine is called by routine "update_displays" to refresh any PA display
on any of the terminals on the given master. The PA display is a multi-page
display with each CATEGORY constituting a new page. The current display
information is stored in the HEAP record "current_crt[crtord]". The current
page (CATEGORY) is stored in field "miscl". If both ends of a given CATEGORY
are monitored on the given segment, the information for the opposite end is
stored in the fields "misc2" (remoteord2, identifying the opposite end remote
unit) and "misc3" (category2, identifying what: part of the opposite end
remote unit is connected to this end).

PROCEDURE print_response (all_CRTs: BOOLEAN);

Ref by MTRP, PLRP

NOTE: THIS ROUTINE CONTAINS CODE SPECIFIC TO THE TYPE OF remote
unit. ANY TIME A NEW remote unit TYPE IS SUPPORTED, THIS ROUTINE
MUST BE MODIFIED ALONG WITH THE PREVIOUSLY MENTIONED ROUTINES
"transform_ordinal" AND "unpack_response" IN THIS LIBRARY.
ANY DEVICE OTHER THAN A DATALOKIO MODEL ID OR A DATALOKIO
MODEL lE CONSTITUTES A NEW remote unit TYPE.

Unlike the procedures "transform_ordinal" and "unpack_response" mentioned
above, which contain code dependent on remote unit type, this routine is NOT
essential to the primary function of TRAMCON. This routine is mainly a
convenience and a troubleshooting device for software development and
enhancement. This routine displays a formatted raw response from a given
remote unit specified by the global variable "remptr" on a given segment
specified by the global variable "segptr". The graphics display was chosen
for these data since more data could fit on one screen. This greater density
in data is achieved at the cost of greater time to paint the display. It
would be a relatively minor change to put the data on the alphanumeric
display rather than the graphics display if that is desired in the future.

This routine may be requested to scan all terminals for the 01 display
(all_CRTs = true) or to display the response on a terminal specified by the
global variable "crtord" (all_CRTs = false). If the request is for a
specific terminal, the terminal device is already under the control of the
caller. If the request is for all terminals, each terminal device must be
secured for the exclusive use of this routine by LOCKING the resource number
associated with this terminal. Only then can this routine be assured that no
other process will disrupt the output of this routine. Refer to Section 9 of
this manual for a detailed discussion of the terminal I/O management.

To speed things up a bit, a REFRESH mode was added whereby the static
information on the screen is not refreshed each time. This routine
determines whether to REFRESH or REPAINT the entire display by the value in
the HEAP variable "heap".current_crt[crtord].current_display". If the

77

current display value is "DI", the screen should be REFRESHED, otherwise, the
entire screen should be REPAINTED from scratch. Because of the graphics TEXT
mode prob~em with the HP-2397A terminal, the entire screen is repainted each
time by setting "refresh" to false and clearing the graphics display.

The data are "grouped into types of data and displayed in the order they are
received in the response. Data types are such things as "two-state" and A/D.
The two-state information is displayed as a "I" or a "0". The A/D or digital
data are displayed as real numbers representing the raw voltage readings.
Hard-coded remote unit dependent information includes such things as (1) byte
positions where each of these data types starts within the response, (2) the
number of bytes that compose an A/D value and, (3) if encoded, what encoding
method is used. For example, the DATALOKIO remote unit reports each A/D
value in five bytes as BCD digits in the format shown in Figure 26.

In Figure 26 the actual voltage reading is encoded as three BCD digits
represented above by "U" for the units digit, "T" for the tens digit, and "R"
for the hundreds digit. A value greater than 999 is represented by setting
the HD bit to a mark (M). The sign of the voltage value is indicated by the
PO bit, which is a mark for positive and a space for negative. Any bit shown
as a "S" or "M" above is a fixed space or mark, respectively.

BYTE NAME bit 1 2 3 4 5 6 7-
1 Point char S M M M M M M
2 Scale char M M M M M M M
3 MSD char H H H H HD S S
4 TENS char T T T T PO S S
5 LSD char U U U U OV S S

Figure 26. DATALOKIO A/D data format.

PROCEDURE get_answer (caller: INT);

Ref by MTRP, PLRP, SW

The routine "get_answer" is called by any program wanting to accept a RAW
remote unit response. The calling program identifies which response it is
interested in by specifying its unique CLASS number as the value of "caller".
All remote unit response read statements are issued either by the program
POLL for polled segments or by the program MTRP for monitored segments. In
either case, the read is a CLASS READ attached to these same unique CLASS
numbers. Routine "get_answer" issues a CLASS GET on the CLASS number
"caller" to acquire any response attached to this CLASS number. Several
global VARs are set to indicate the overall status of the response just
received. These VARs are declared in the INCLUDE module [MPVAR. The VARs
indicate whether any problems were encountered in the transmission of this
response and include the following:

78

"response_timedout" No response data were received within a preset time
limit: 1 second for Polled Segments

1 minute for Monitored Segments.

"parityerr"

"res len ok"

At least one byte in the response had a parity error
as indicated by the BACI interface.

Response length (in bytes) is within the range 2 to
"max_chars_per_response".

"illegal_interrupt" This is reported by the response channel driver,·
DVA76 or DVA77 , when NO valid reason for entering
the driver could Qe found.

"cos"

"bad id"

"responded"

This is reported by the DATALOK10 remote unit in
bit 5 of the second byte in the response to indicate
if there is any change-of-state in this response.

This value is true i.f the remote unit ID received in
the first two bytes of the response does NOT match
any remote unit ID in the Configuration data base on
the given segment (specified by "segord").

I

This value is a combination of the four previously
determined values "res_len_ok", NOT "bad~id, NOT
"parityerr", and NOT "response_timedout".

The global VARs "segptr", "remptr" and "rem_status_ptr", all declared in the
INCLUDE module [TRVAR, are set as a convenience so that subsequent code does
not have to perform the lengthy de-referencing of these values that are
stored in the HEAP.

The routine "read clock" is called to set the global VARs. "elk" and "yr"
(declared in [MPVAR) to the current time/da1:e. This time/date value will be
used by the response processing routines as the time stamp for ahyevents
that are new in this response. This is the time stamp found in the archive
records in file (ARCH.

The HEAP VAR "di_segrem" is checked to see if the raw response just received
is to be displayed. If so, the routine "print_response" is called to display
the response just received on any display that wants to look at it.

PROCEDURE update_displays

Ref by MTRP, PLRP

Once a remote unit response is completely processed, all the terminals
currently defined on the system are scanned for possible displays that can be
refreshed. Figure 27 shows the di,splays that are refreshed by this routine.
Each display listed has a separate routine that handles the updating of the
particular display.

79

1. AL - Alarm/Status
2. CN - Counted two-states
3. MA - Segment MAP
4. PA - A/D and Digital Parameters
5. PC - Digroup Alarms
6. SS - Segment Status

Figure 27. Displays that are updated by ·update_displays·.

The rt\ireshing of display US and the updating of the polling cursor are not
done by this routine because those functions are not performed immediately
after the response is processed. For example, the US display includes the
timing of display refreshing, which is not complete until this routine
executes and should not include itself in the timing. The polling cursor is
refreshed before the response processing begins and this routine is executed
after the response is processed.

The resource number "crt_m" is used to properly manage the terminal I/O.
This routine attempts to lock the "crt_m" for each terminal for exclusive
use. If the EXCLUSIVE LOCK is not successful, this routine does not attempt
to refresh the terminal display.

Each terminal display, indicated by the HEAP VAR
"current_crt[crtord].current_display", is examined to see if it is a display
that can be refreshed.

8.2.5 Linking and Loading

All TRAMCON programs are loaded and stored on the computer as type 6 programs
as explained in Section 3.3. Most programs are small enough to fit in the 32
K address space. The program LINK is used to load these small programs.
Program LINK produces a type 6 program by default and removes the program
from active status (equivalent to the operating system "OF" command) after
linking. The loading process was sped-up considerably with the LINK program.
For the larger programs that must be segmented, the multilevel loader MLLDR
is used. Program MLLDR is slow, but steps have been taken to speed-up the
loading process also. Steps that have been discussed in this section, are
listed in the RTE-6/VM Loader Reference Manual, p. 8-12. The first three
steps discussed on page 8-12 have been taken.

Figure 28 shows the three LINK command files used to link most of the TRAMCON
programs. The majority of the TRAMCON programs make use of the shared memory
"sharI" and can be linked as the default type extended background (eb).
These programs are linked using file "#". A few programs do not use the
shared memory but must be linked as background (bg) because they reference
items in Table Area II, which is not included in the address space for "eb"
programs (see RTE-6/VM Loader Reference Manual, p. 2-14). These programs
should be linked using LINK command file "##". One program, TS, uses command

80

file "###" because it uses the shared memory and must be linked as "bg".)n
all cases, the shorter run-time error reporting routines in module "%prers"
are used to reduce the size of all the programs (see Pascal/1000 Reference
Manual, pp. 8-51). In all the above, the Library $TRLIB is assumed to be
included in the system SNAP file (Refer to Section 10.3 of this manual).

Figure 29 shows the procedure for linking all nonsegmented TRAMCON programs.
Before linking any program as in Figure 29, the program must be deactivated
using the operating system "OF" command.

If a program, or any clone of that program, is active (occupies an ID
segment), the linker will ABORT with an error indication similar to the
following:

Program is active AL::2:6
Program name not usable
Last module relocated: PAS. ERRORPRINTER
Fatal Error 178 - Link terminated

LINK Command file #
sh, sharl
re,%prers
en

LINK Command file ##
op,bg
re,%prers
en

LINK Command file ###
op,bg
sh,shar1
re,%prers
re,%t2
en

Figure 28. LINK command files - #, ##, ###.

81

:SV,4
:RU, LINK, %AL,#
:RU,LINK,%ARPTR,#
:RU,LINK,%BROAD,#,%DSNRV
:RU, LINK, %CC,#
:RU,LINK,%CHECK,#
:RU,LINK,%CMMD,#,+RO,+SZ:30
:RU, LINK, %CN,#
:RU, LINK, %CO,#
:RU ,LINK, %CR,#
:RU,LINK,%CURVU,#
:RU,LINK,%ED,#
:RU, LINK, %HI,#
:RU ,LINK, %HR, #
:RU,LINK,%KYBRD,#
:RU, LINK, %LO,#
:RU, LINK, %LOF ,##
:RU, LINK, %LON ,##
:RU, LINK, %LS,#
:RU,LINK,%MA,#
:RU ,LINK, %ME ,#
:RU,LINK,%MEDXl,#
:RU,LINK,%MEIDX,#
:RU ,LINK, %MS ,#
:RU ,LINK, %MSG ,#
:RU,LINK,%PA,#
:RU,LINK,%PC,#
:RU, LINK, %PF,#
:RU, LINK, %PH,#
:RU,LINK,%PM,#
:RU,LINK,%POLL,#
:RU,LINK,%PR,#
:RU,LINK,%RMAST,#
:RU,LINK,%SC,#
:RU,LINK,%SE,#,+SZ:16
:RU,LINK,%SETCL,##
:RU,LINK,%SETCR,##
:RU,LINK,%SETDT,##
:RU,LINK,%SETVE,##
:RU, LINK, %SI,#

. :RU ,LINK, %SS,#
:RU, LINK, %SW,#
:RU,LINK,%TIMPA,#
:RU,LINK,%TIMSE,#,%CRSET,+BG
:RU,LINK,%TROFF,#
:RU, LINK, %TS ,###
:RU,LINK,%UP,#
:RU, LINK, %US,#
:RU ,LINK, %WZ ,#
:RU, LINK, %X,#
:SV,O

Figure 29. Linking nonsegmented programs.

82

Program CMMD has the reorder command (+ro) in the LINK run-string because it
is rather large and runs out of links if the modules are not reordered.
Unless the programs listed in Figure 29 significantly increase in size, they
will always appear to successfully link because the linker will use as many
pages of memory as necessary. There have been a few times when a program
that appears to link successfully, terminates with a fatal error such as
"EM82" or "MP" when it is executed. By adding another memory page to the
size determined by the linker, these fatal executions have been avoided. A
best guess is that the linker will squeeze a program into the absolute
minimum space necessary to the nearest memory page, disregarding any overhead
required by the operating system. If the unused portion of the last page is
very small, some code may get clobbered by the operating system as the
program executes. A few of the programs have already encountered this
problem and were fixed by specifying a program size (+sz) in the run-string
when linking. As programs change, these explicitly-stated sizes may need
adjustment, or may no longer be required.

Figure 30 shows the FMGR procedure file for loading the six segmented
programs listed in Figure 19. Before each program can be loaded, it must be
removed from active status using the FMGR "OF" command, which ensures that
the program is remov~d from any ID segment it might occupy and is removed
from the system scratch area on disc LU 2. ' .'....,,"¥...~.,••••,;;.~~.,

The multilevel loader, MLLDR, is used to load each of these segmented
programs and is given loading directions in the file whose name appears in
the MLLDR execution statement (e.g., "RU,MLLDR,#SR" says, "load program SR
according to directions given in file #SR"). These loader directive files
were discussed previously in this section and a sample of file #MTRP··..for. ...
loading program MTRP is shown in Figure 31.

Figure 31 shows the loader directive file #MTRP used by program MLLDR to load
program MTRP. Notice the two comment lines that indicate how and when this
file was created with the segmenter program SGMTR. Notice also how large the
segmented type 6 program file is and how many segments (nodes) were created
by the segmenter. This information is very useful when re-segmenting and
reloading the particular program because of changes or enhancements. A prime
directive used throughout the TRAMCON software development was to keep the
number of segments to a minimum. This directive gives some assurance that
the amount of segment swapping is kept to a minimum. Segment swapping is
very important for the disc-resident programs and of minor concern for the
two memory-resident programs MTRP and PLRP, since memory swapping is three
orders of magnitude (1000 times) faster than disc swapping. But this
directive is more important in keeping the overall size of the program to a
minimum, which is very important for the memory-resident programs and of less
importance for disc-resident programs.

83

:SV,4
:**********************
:** Load Program CF *
:OF,CF
:RU,MLLDR,#CF
:PU,CF
:SP,CF
:PU,@CF
:**********************
:** Load Program DT *
:OF,DT
:RU,MLLDR,#DT
:PU,DT
:SP,DT
:PU,@DT
:**********************
:** Load Program INIT *
:RU,MLLDR,#INIT
:PU,INIT
:SP,INIT
:PU,@INIT
:**********************
:** Load Program MTRP *
:OF,MTRP
:RU,MLLDR,#MTRP
:PU,MTRP
:SP,MTRP
:PU,@MTRP
:**********************
:** Load Program PLRP *
:OF,PLRP
:RU,MLLDR,#PLRP
:PU,PLRP
:SP,PLRP
:PU,@PLRP
:**********************
:** Load Program SR *
:OF,SR
:RU,MLLDR,#SR
:PU,SR
:SP,SR
:PU,@SR
:TR

Figure 30. TRKLDR - Procedure file for loading segmented programs.

84

* 2:55 PM MON., 22 FEB., 1988* RU,SGMTR,@MTRP,#XX: :10,28,MTRP,M
SH,SHAR1
SZ,30
LI,@MTRP
LI,$PLDH2
OP,EM
OP,BP
* *TOTAL PROGRAM SIZE IN DECIMAL
M
NA,MTRP
NA,PAS.1
NA,PAS.2
NA, PAS. STOP

M.1
NA,UPDATE_CURSOR
NA,GET_ANSWER
NA,UPDATE_DISPLAYS
NA,SET_DATA_FRAME
NA,PAS.CLOSEFILE
NA,PAS.CDSCONFLICT

M.2
NA,PM_INIT
NA,PROCESS_RESPONSE
NA,UPDATE_US
NA,SET_DATA_FRAME
NA,PAS.CLOSEFILE
NA,PAS.CDSCONFLICT
END

34322 *SGMTR: 3 NODES CREATED

Figure 31. Sample loader directive file #KTRP.

As one can see from Figure 31, several modules, "SET~DATA_FRAME" through
"PAS.NONCDS", are repeated in the two nodes M.1 and M.2. These modules are
repeated because they are used in both paths; repetition of modules requires
more and more of the scarce memory space needed for a memory resident
program. In general, the more nodes there are, the more repetition of
modules there is and the greater the memory requirements for these
memory-resident programs (refer to RTE-6/VM Loader Reference Manual, p. 6-3,
NOTE at bottom of page). For example, the listing in Figure 31 shows the
size of the program MTRP as 34,322 machine words,' but the partition reserved
for the exclusive use of the program MTRP is set at 49,000 words. The
difference is primarily due to the repetition (multiple copies) of various
modules because they are used in several segments'on independent paths.

85

Careful hand modification of the loader directive modules #MTRP and #PLRP can
reduce the memory requirements for the programs MTRP and PLRP from 49 pages
to approximately 40 pages each. This frees 18 pages of badly needed memory
space for other uses such as EMA. Appendix G presents an example of how to
improve the resource requirements and load time of segmented programs by
manually changing the loader directive files.

NOTE

Notice in line 1 of Figure 31 that the segmenter was told
there were 28 pages available for the longest path and that, two
lines down, the loader is told to allow 30 pages (SZ,30) for the
longest path. This ensures that there will be at least two pages of
scratch memory available for the operating system to manage the stack
and, more importantly, the memory-resident segments of these programs.
This is done for both the MTRP and PLRP programs. When these
two programs were converted from disc- to memory-residency, the lack of
adequate scratch space resulted in the run-time error "HEAP - STACK
COLLISION". Refer to the RTE6/VM Loader Reference Manual, p. 6-3,
paragraph 2 and p. 8-2 under the Pascal heading for more detail. Most
of the other segmented programs are segmented with the path length set
to 29 pages and then loaded with the same 30-page size specification.
The exceptions are the programs DT and SR, which are segmented with a
path limit of 17 pages. This limitation allows room for loading the
DS routines that were not included in the segmentation process.

8.2.6 On-Line Driver Replacement

As mentioned in Section 6.3, one special-purpose driver was created by the
TRAMCON developers to support the TRAMCON remote units. To aid in debugging
this driver without having to regenerate the system each time a change is
made to the driver, HP has supplied an On-Line driver replacement package
consisting of two programs, DRREL and DRRPL. This section describes how to
use these programs to replace and test changes to the remote unit interface
driver DVA76. The same could be used for DVA77, but since these drivers are
essentially the same, the debugging can be done using DVA76 and the results
applied to DVA77.

The two programs DRREL and DRRPL perform the driver relocation and the actual
driver replacement, respectively. Before these two driver replacement
utilities can be used, they must be installed in your system by using the
program LINK as shown in Figure 32.

The two procedure files listed in Figure 32 were delivered with the TRAMCON
software development system as disc files (DRREL and (DRRPL, respectively.
The relocatable files %DRREL and %DRRPL are found on the system software tape
delivered by HP.

86

Procedure File (DRREL
:**
:** INSTALL ON-LINE DRIVER RELOCATION UTILITY - DRREL
:**
:OF,DRREL
:RU,LINK,%DRREL,DRREL::2
:**
:TR

Procedure File (DRRPL
:**
:** INSTALL ON-LINE DRIVER REPLACEt1ENT UTILITY - DRRPL
:**
:OF,DRRPL
:RU,LINK,%DRRPL,DRRPL::2,+SZ:21
:**
:TR

Figure 32. Installation of DID~EL and DRRPL.

Note that DRRPL must be sized to 21 pages (+SZ:2l) to accommodate drivers of
the size of DVA76. If an attempt is made to rE:oplace a driver that is too
large for DRRPL to handle, the message

/DRRPL: DRRP 013 TABLE OVERFLOW
/DRRPL: DRRPL ABORTED

will be displayed. Simply relink DRRPL with a larger size specification.
Now that DRRPL and DRREL are linked into the system, we are ready to use them
to replace any driver on the system.

In order to relocate a new copy of a driver, the location of the original
driver must be determined. The best way to de"termine the location of any
driver is to refer to the generation listing. When the software was turned
over by ITS, the generation listing file name 1N'aS "TRMCN. Search the listing
for a line similar to the following:

DVA76 (0) 4056 6757 remote unit driver Date: 870427

The above line indicates that driver DVA76 occupies memory locations 4056 to
6757 in the operating system's address space. Keep in mind that these two
addresses and all other addresses specified while using the driver
replacement programs are specified in OCTAL.

The following is a sample run of the driver replacement programs DRREL and
DRRPL. The operator responses are underlined and all responses should be in
upper case. In the following discussion and example, Octal numbers are
represented by placing a "B" after the digits.

87

When replacing an existing driver, the current memory addresses for the
existing driver must be determined. The address range for all drivers is
shown by the program DRREL after the first question is answered. In the
example, the driver partition is three pages long, starts at address 6000B
and ends at l3777B. The answers to the next two questions (LOW LOGICAL
ADDRESS? and HIGH ADDRESS?) must be in this range and may not be known
exactly until the DRRPL program is run. To get the exact addresses from
DRRPL, first run DRREL and specify any addresses that are within the
allowable range (in the example 6000B to l3777B).

Before running DRRPL, the number of the driver partition (or physical page
number of memory) containing the driver to be replaced must be determined.
One way to acquire the memory page number is to search the System Generation
listing as mentioned above. Another method is to examine the output of
utility program IBPRN. Program DRRPL will show the actual memory space
occupied by each driver in the chosen partition. In the example, the driver
being replaced, DVA76, starts in location l12l4B and ends one word before the
next driver starts at address l2l02B. Once these addresses are known, rerun
DRREL and supply the proper addresses.

Sample execution of program DRREL

:DRREL
I

B~SE PAGE LINKS (Y,N)? N

DRIVER PARTITION 3 PAGES
SYSTEM DRIVER AREA

LOW LOGICAL ADDRESS? 11214B

HIGH ADDRESS? 12102B

OUTPUT FILE? DVR

6000 13777
24000 25621

/DRREL: RE,%DVA76
DVA76

CA76
IA76

/DRREL: EX

11214 12057 remote unit driver Date: 880211
11344
11214

****** 1 DRIVER ******
LOGICAL ADDRESS 11214 12057

NO BASE PAGE
/DRREL: FILE DVR READY AT 2: 57 PM MON., 13 SEP., 1987
/DRREL: END

Figure 33. Sample execution of program DRREL.

88

:DRRPL

/DRRPL: DR, DVR
1 DRIVER

LOGICAL ADDRESS 11214 12057
NO BASE PAGE

MEMORY OR PERMANENT REPIACE (ME, PE)? ME

PHYSICAL PAGE OR DRIVER PART. (PG,DR)? PG

DP STARTING PHYSICAL PAGE? 46

DRIVER PARTITION 4 «PAGE
EQT 4 - SC 15 TYPE 76
EQT 5 = SC 16 TYPE 77
EQT 7 = SC 20 TYPE 66
EQT 8 = SC 20 TYPE 66
EQT 9 - SC 21 TYPE 66
EQT 10 - SC 21 TYPE 66

46»
T=
T=
T=
T=
T=
T=

o X=
o X=
o X=
o X=
o X=
o X=

13 IN= 11214 CC= 11340
13 IN= 12103 CC= 12227
12 IN= 11214 CC= 6155
o IN= 11214 CC= 6155

12 IN= 11214 CC= 6155
o IN= 11214 CC= 6155

WARNING: MAY BE OVERIAYING DRIVERS. TYPE' / A' TO ABORT

DVA76
IA76 11214
CA76 11344

EQT NUMBER? !!

DMA (Y ,N)? !i

AUTOMATIC OUTPUT BUFFERING (Y, N)? !i

SELECT CODE? 15B

TIME OUT INTERVAL? Q

EQT NUMBER (IE TO END)? ~

Figure 34. Sample execution of program, DRRPL.

89

INTERRUPT TABLE CHANGES:
S . C. INTERRUPT TABLE

15 EQT 4

INTERRUPT TABLE MODIFY:

SELECT CODE (IE TO END)? LE

TRAP CELL (MEMORY)
105356

SUMMARY OF SYSTEM CHANGES:

DRIVER PARTITION 4 <<PAGE 46»
LOGICAL ADDRESS 11214 12057

NO BASE PAGE

EQT CHANGES:
EQT 4 = SC 15 TYPE 76 T= o x= 13 IN= 11214 CC= 12057

INTERRUPT TABLE CHANGES:
S . C. INTERRUPT TABLE TRAP CELL (MEMORY)

15 EQT 4 105356

YARNING! YARNING! YARNING! YARNING!

THIS CAN CRASH YOUR SYSTEM! THE SYSTEM SHOULD BE
INACTIVE. EQTS TO BE REPLACED MUST NOT HAVE
REQUESTS PENDING.

MEMORY REPLACE READY (Y, N)? X

Figure 34. (cont.)

8.3 Miscellaneous FMGR Procedure Files and Program Command Files

This subsection discusses FMGR procedure files and other program command
files that are not mentioned previously in this section because they are not
used to accomplish any of the major software development functions.
Nevertheless, these procedure and command files have proven very useful and
should continue to do so for future software maintenance.

90

All these files are type 4 text files residing on the disc cartridge 10 and
are created and maintained by the text editor EDIT. The file listed in
Figure 35 is used as input to the program FC to save all the TRAMCON
executable files on magnetic tape. Program FC is directed to this file for
its instructions by specifying the file name in the run-string as in the
command IIRU,FC,TR,TRFCII . The TR parameter is commonly used to indicate that
the program, in this case FC, is instructed to transfer its command
processing control to the file whose name follows, in this case IITRFC".

DE, -2,-8
GR
CO,AL
CO,AUTOR
CO,CC
CO,CF
co ,CMMD
CO,CN
CO,CO
CO,CR
CO,DT
CO,ED
CO,HI
CO,HR
CO,INIT
CO,KYBRD
CO,LO
CO,LOF
CO,LON
CO,LS
CO,MA
CO,ME
CO,MS
CO,MSG
CO,MTRP
CO,PA
CO,PC
CO,PF
CO,PH
CO,PLRP
CO,PM
CO, POLL
CO,PR
CO,SC
CO,SE
CO,SETCL
CO,SETDT
CO,SETVE
CO,SETCR

Figure 35. FC command file - TRFC.

91

CO,SI
CO,SR
CO,SS
CO,SW
CO,TROFF
CO,TS
CO,UP
CO,US
CO,WZ
CO,X
CO,ARPTR
CO,RMASTE
CO,TIMSET
CO,TIMPAS
CO,BROADC
CO,CHECKT
EG
EX

Ftgure 35. (cont.)

By copying the executable modules to tape using FC, the working copy of any
individual program can be restored to disc (in case problems were encountered
in program development) without having to do the lengthy restoral of the
entire disc.

The FMGR procedure file RN, listed in Figure 36, is very useful for changing
the Configuration data base by hand. Originally created to help develop and
debug the TRAMCON "CO" command, this procedure file is still useful. Using
this file, one can change from data base to data base much faster than using
the co command.

:************************************
:** Rename NEW")" to TEMPORARY "*" *
:************************************
:RN,)DICT:28l0,*DICT
:RN,)NET:28l0,*NET
:RN,)LINKS:28l0,*LINKS
:RN,)MAST:28l0,*MAST
:RN,)LINK:28l0,*LINK
:RN,)REMOT:28l0,*REMOT
:RN,)SEG:28l0,*SEG
:RN,)TRUNK:28l0,*TRUNK
:RN,)~QT:28l0,*EQT

:RN,)CRT:28l0,*CRT

Figure 36. RN - Configuration data files rename procedure.

92

:RN,)SITE:2810,*SITE
:RN,)DINIT:2810,*DINIT
:************************************
:** Rename CURRENT "(" to NEW ")" *
:************************************
:RN,(DICT:2810,)DICT
:RN,(NET:2810,)NET
:RN,(LINKS:2810,)LINKS
:RN,(MAST:2810,)MAST
:RN,(LINK:2810,)LINK
:RN,(REMOT:2810,)REMOT
:RN,(SEG:2810,)SEG
:RN,(TRUNK:2810,)TRUNK
:RN,(EQT:2810,)EQT
:RN,(CRT:2810,)CRT
:RN,(SITE:2810,)SITE
:RN,(DINIT:2810,)DINIT
:************************************
:** Rename OLD 11"11 to CURRENT "(" *
:************************************
:RN,"DICT:2810,(DICT
:RN,"NET:2810,(NET
:RN,"LINKS:2810,(LINKS
:RN,"MAST:2810,(MAST
:RN,"LINK:2810,(LINK
:RN,"REMOT:2810,(REMOT
:RN,"SEG:2810,(SEG
:RN, "TRUNK: 2810, (TRUNK
:RN,"EQT:2810,(EQT
:RN,"CRT:2810,(CRT
:RN,"SITE:2810,(SITE
:RN,"DINIT:2810,(DINIT
:************************************
:** Rename TEMPORARY "*" to OLD 11"11 *
:************************************
:RN,*DICT:2810,"DICT
:RN,*NET:2810,"NET
:RN,*LINKS:2810,"LINKS
:RN,*MAST:2810,"MAST
:RN,*LINK:2810,"LINK
:RN,*REMOT:2810,"REMOT
:RN,*SEG:2810,"SEG
:RN,*TRUNK: 2810, "TRUNK
:RN,*EQT:2810,"EQT
:RN,*CRT:2810,"CRT
:RN,*SITE:2810,"SITE
:RN,*DINIT:2810,"DINIT

Figure 36. (cont.)

The procedure RN shown in Figure 36 renames all three sets of data base files
in a round robin fashion. The net effect is to restore the old data base as

93

the current data base. To incorporate a new data base by hand, the procedure
has to be modified to rename the files in the following way:

1. Purge TEMPORARY "*" if they exist
2. Rename OLD "",, to TEMPORARY "*"
3. Rename CURRENT "(" to OLD "",,
4. Rename NEW")" to CURRENT "("
5. Rename TEMPORARY "*" to NEW")"

Both manual renaming procedures discussed above require that the data base
files whose names begin with "*" are not already in existence. If they do
exist, they must be purged before these procedures are executed.

A new data base consisting of the 12 files whose names begin with ")" is
distributed to the field on tape cassette in File Copy (FC) format. The RE
procedure file shown in Figure 37 is required to be on disc LU 10 of every
TRAMCON field system and is used by field personnel to copy these new files
from tape to disc. The statement ":RU,FC,CO,-8"BDV" runs the program FC
and instructs it to COpy the entire contents of the tape (LU = 8) to the same
disc LU from which they were copied to tape, replacing any files of the same
name (D) and Verify the results (V).

The line in procedure RE above that reads "::)MISC" was included to allow
software developers or data base distributors a means by which they could
accomplish any emergency function or system modification to a field system.
The line instructs FMGR to transfer control to procedure)MISC, which is
required to be on cartridge 10 of every TRAMCON master system and is listed
in Figure 38.

:SV,4"IH
:TE, ***
:TE, *** Installing NEW Configuration Data ***
:TE, ***
:RU,FC,CO,-8"BDV
: :)MISC

Figure 37. RE - New configuration data base REplacement.

:TE,**
:TE,**** MISCELLANEOUS FILE FOR EXECUTING UTILITY *****
:TE,**** PROGRAMS AS NEEDED *****
:TE,**
:PU,DSINIT: :2
:RU,SETDT

Figure 38. Current contents of file)KISC.

94

The functions performed in file)MISC in Figure 38 are not so much to fix an
emergency situation but rather to allow the acceptance of a new Configuration
data base.

NOTE

The first statement, "PU,DSINIT: :2", removes a disc file that is
no longer used because of the change to the Configurator which
automatically generate this file for each new data base. This
change is part of Version 1.8. Starting with Version 1.8, any
software tapes that are sent to the field should have this statement
removed from file)MISC and the file DSINIT removed from LU 2.

By running program SETDT, the flag "configuration_flag" in the (DATE file is
set to indicate that there is a new data base available for use. Refer to
Section 14 of this manual for further discussion of data base distribution.

8.4 Source Code Structure and Writing Conventions

Each compiler or assembler requires certain directive statements to be
present in the source file so that it can determine what options to use in
compiling or assembling a particular module. The first convention to mention
is the disc file naming convention. All stand-alone source module file names
begin with the letter "&". A stand-alone module is one that will compile or
assemble by itself, rather than having to be INCLUDED in another module to be
compiled or assembled. Most of the source code modules are the stand-alone
type. The few INCLUDE modules involved in TRAMCON are discussed in
Section 11 of this manual.

8.4.1 Source Code Structure

Figure 39 shows a sample Pascal source file for a typical TRAMCON program.
The Pascal compiler directives (referred to in the manual as "OPTIONS") are
discussed in the Pascal/1000 Reference Manual, Appendix D. Any directives
appearing in the TRAMCON source files are there because the non-default value
of that OPTION is to be used. The first directive in the source file is the
$PASCAL directive, which is discussed on page D-10 of the Pascal manual.
Although this directive is optional, it is specified in all TRAMCON program
modules to produce the program identification string that appears on load
maps. The first line of each program module also contains the HEAP
directive, which tells the compiler that the program's HEAP is to be placed
in EMA and, therefore, requires two-word addressing. This EMA HEAP (HEAP 2)
is the vehicle by which programs running under RTE-6/VM can share data, and
therefore, most TRAMCON On-Line programs use the EMA HEAP. The last
directive on the first line is the HEAPPARMS directive explained on page D-6
of the Pascal manual. By setting HEAPPARMS OFF for most of the TRAMCON code,

95

program execution time for handling VAR parameters is essentially cut in half
because the compiler generates one-word addresses rather than two-word HEAP 2
addresses.

The second line of directives eliminates the need for additional stack space,
stack handling code, and range checking code. There is only one recursive
routine ("evaluate_node" in $MPLIB) in all the TRAMCON On-Line software, so
all program modules set RECURSIVE OFF at the beginning. RECURSIVE is turned
on and off around that routine in $MPLIB. Range checking was considered to
be a software development tool; therefore, the RANGE OFF directive was not
placed in any source module until that module was considered to be in
production form. Since eliminating the range checking code results in almost
10% savings in space and execution time, the decision was to use this
directive for the production software. The TRAMCON software system is a
closed system. This means that, once the modules have been tested and placed
into production, there can be NO expectation of program failure due to values
exceeding their designated bounds. This does not mean range violations will
never occur. Rather, if it does occur, a coding error has been discovered
that must be fixed. The contents of the Configuration data base cannot cause
a software failure. All dynamic data files are fixed record length and fixed
in overall length. If written properly, the software will never attempt to
access these data files out-of-bounds. Any errors occurring in this
theoretical system will be the result of hardware failure. The library
modules &TRLIB and &MPLIB require the SUBPROGRAM directive, which must be
placed anywhere before the PROGRAM statement.

The only other compiler directives that occur in any TRAMCON source modules
beyond these first two lines of directives are the INCLUDE, RECURSIVE,
HEAPPARMS, and DIRECT directives. By far, the most commonly used directive
of these four is the INCLUDE directive. The INCLUDE directive is used to
include the TYPE and CONST definitions from module [RECR3 into the
compilation of almost every program in the TRAMCON system. Also included in
almost every TRAMCON program is the global VAR declaration block [TRVAR. A
few programs include the VAR declaration block [MPVAR. Only the program DT
includes the module [DTVAR rather than [TRVAR. Refer to Section 11.3 of this
manual for a detailed discussion of these INCLUDE modules.

The most recent INCLUDE module is [EXTNT, which is a small VAR section
followed by a few procedure declarations. Since this module contains a VAR
section followed by some procedures, it must be included immediately
following any global VAR and CONST sections and immediately before any level
o procedure declarations within a program module. Figure 39 shows the proper
placement of the INCLUDE statement for [EXTNT. Refer to Section 6.4 for a
discussion of the extended or LOGICAL remote unit feature. The RECURSIVE
directive is used once in the entire TRAMCON system to bracket the routine
"evaluate node" in $MPLIB.

96

NOTE

There is a discussion of the SUBPROGRAM and LIBRARY directives on
page D-l4 of the Pascal Reference Manual. After reading the infor­
mation under the SUBPROGRAM heading on page D-l4, one would expect
to use both the LIBRARY and SUBPROGRAM directives to compile the
library modules &TRLIB and &MPLIB. If the LIBRARY directive is
specified, the compiler will display something similar to the
following on the screen:

1 0: $PASCAL 'TRAKCON Library, Ver. DEV', SUBPROG
S OFF$
o *** Warning: This feature is HP-lOOO Pascal

2 0: $RECURSIVE OFF, RANGE OFF, LIBRARY$
1 *** Warning: Option not recogni:zed: LIBRARY

Pascal
Pascal
Macro :
Macro :
Pascal

o errors and 2 warnings in file &TRLIB
Macro scheduled
Ran out of scratch file space for swapping data to disc
No errors total
Assembly source kept in file A TRLIB

Not only is the LIBRARY option not recognized, but the operation of
the Macro assembler is affected. Also, it appears that the entire
contents are not loaded if the LIBRARY directive is omitted as stated
on page D-l4. On the other hand, the SUBPROGRAM directive is required
for the library modules even though it results in a warning message.

97

NOTE

The DIRECT option is used to define the type of calling sequence used
by a select few routines from the relocatable library supplied by HP.
One of those routines is lAND, which is defined by the source line

FUNCTION iand (val, mask: INT): INT $DIRECT$; EXTERNAL;

Almost every routine called by the TRAMCON system uses the normal
indirect calling sequence. Only a select few use the direct
method. Discovering which calling sequence is used by each routine
in the relocatable library takes a little detective work. As an
example to illustrate how to make this determination, the reader is
referred to the Relocatable Libraries Reference Manual, pp. 3-42.
This page describes the routine lAND and illustrates the calling
sequence used by this routine with a few lines of assembly code:

JSB lAND
DEF i
DEF j
Return (Result in A)

The above four lines of assembly code illustrate the direct calling
sequence, while the following lines, shown for the routine IDIM on
the facing page 3-42, illustrate the indirect method:

JSB lDlM
DEF *+3
DEF i
DEF j
Return (Result in A)

The single difference between the two calling sequences shown above
is the extra return address DEF *+3 in the indirect sequence. This
method allows for optional parameters. That is, routines using this
calling sequence can be called with more or fewer parameters than
expected and still have the proper return address. Routines
like lAND, which always have the same number of parameters specified
when they are called, can use the direct method. The programer must
be a bit cautious when using routines from the relocatable library.
There is a discussion of the direct option in the Pascal/lOOO
Reference Manual, pp. 8-49 - 8-50. Here it explains that a time
savings can be realized for frequently-called routines by specifying
the direct option. Of course, we do not have a choice for routines
written elsewhere or for which we do not have the source code, but
even for the user written routines, the use of DIRECT was not
explored. If some tailoring for speed is desired in the future,
this is one possible consideration.

98

$PASCAL 'Remote Alarm-Status display' , HEAP 2 ,HEAPPARMS OFF$
$RECURSIVE OFF , RANGE OFF$
PROGRAM a1; «870806.1142»
$INCLUDE '[RECR3'$
$INCLUDE '[TRVAR'$

1,a1ord,a1_type,match,sn1_1en,sn2_1en,msg_disp1ayed,nrecs,
sav_archidx, sav_extidx, arch_idx, arch_end,recs_to_print ,
recs_printed,prevrem,base_rec,save_next: INT;

arch_records:ARRAY[l. .max_archive_record] OF parm_array;

$INCLUDE '[EXTNT'$
PROCEDURE allocate_EMA (stack_size:INT;VAR id: byte;incrt:BOOLEAN);EXTERNAL;

PROCEDURE get_parms $ALIAS 'Pas.NumericParms'$
(VAR parms:parm_array);EXTERNAL;

PROCEDURE jtime (VAR time a1f: time_str); EXTERNAL;

PROCEDURE arch_fkeys

BEGIN (arch_fkeys)
write(outunit,esc,'&f2a3k8DNext Rec3' ,esc,'&f2aSk6D PRINTS',

esc, '&f2a4k8DPrev Rec4' ,esc, '&f2a6k8DTimeDate6',
esc, '&f2a7k8DRecord #7' ,esc, '&f2a8k6D LIST8' ,esc, '*m3M')

END; (arch_fkeys) .

PROCEDURE search_archives (reset_idx: BOOLEAN);

VAR i,j,k,l,retry,save_nxt,last_rec: INT;

BEGIN (search archives) nrecs := 0; remoteord := parms[2) ;
rem_status_ptr := heapA.segment_status[segord).remote_status[remoteord);
WITH rem_status_ptr A DO

BEGIN save_nxt := next_archive_record;
IF save nxt < ° THEN

WHILE save nxt < ° DO
IF next archive record = -32002 THEN- -

BEGIN pause(12,0,2,0,-1); save nxt .- next_archive_record;
IF save nxt = -32002 THEN

IF retry = °THEN
BEGIN save_nxt := 0; remoteord max_remotes_per_segment;
nrecs := 0; disp1ay_msg(4)
END

ELSE retry := retry + 1
END

ELSE
IF next archive record -32001 THEN

Figure 39. Sample Pascal source file.

99

BEGIN save_nxt :- 0; display_msg(2); nrecs :- 0;
remoteord :- max_remotes_per_segment
END

ELSE
IF (next_archive_record < 0) AND (next_archive_record > -32000) THEN

save nxt :- abs(next archive record);
IF remoteord < max_remotes=per_segment THEN

BEGIN i :- 1; nrecs :- max_archive_record; j := save_nxt;
IF save_nxt > 0 THEN WITH archive_rec[O].arch_rcd DO

WHILE i < max archive record+l DO- -
BEGIN readdir(archive_file,j,archive_rec[O]);
IF arch-year = 0 THEN

BEGIN
IF j = base_rec THEN nrecs := 0
ELSE

BEGIN nrecs := j - base rec;
IF nrecs > 50 THEN display_msg(l); k := base_rec;
FOR 1 := 1 TO nrecs DO

BEGIN readdir(archive_file,k,archive_rec[O]);
arch-yrs[l] := arch-year; k :- k+l
END

END;
i :- max archive record+l
END

ELSE

END {WHILE i<max_archive_record+l}
END

END;

REPEAT heapA.current_crt[crtord].miscl := nill;
REPEAT get_category; display_category UNTIL soft_key <> soft3;

UNTIL soft_key <> soft4;

END; {search_archives}

BEGIN (all get_parms(parms); allocate_EMA(O, id, TRUE);
redo_hdg := TRUE; msg_displayed := 0; tab_set := FALSE;
WITH heapA.current_crt[crtord] DO BEGIN max_dsp_ln:=20; locked In:=2 END;
IF print_it THEN print_done
END. {all

Figure 39. (cont.)

100

8.4.2 Writing Conventions

The following discussion concerns the rules set up to govern the format of
the source code itself. The delimiters "{" and "}" are used for all comments
rather than "(*" and "*)". The time-stamp, which is maintained by the HP
supplied source code editor EDIT, is placed on the program statement line and
is enclosed in comment brackets.

The BEGIN and END identifiers that demark the main body of any procedure,
function, or program are labeled with the name of the procedure, function, or
program enclosed in comment brackets. In the example shown in Figure 39, the
program name is "al". The body of the program can be easily identified by
finding the "BEGIN {al}" and "END. {al}" stri.ngs. This begin/end labeling
scheme becomes very useful in matching begins and ends as the included code
grows large.

Along with marking the BEGIN/END pairs, indent:ation is used to help the
programer visualize blocking created by use of compound statements within the
program. Any statement that is at the outermost level of each procedure,
function, or program is placed at the left ma'rgin. This includes all the
procedure, function, and program headings and the main bodies. Notice that
this rule implies that indentation is NOT used to indicate program nesting
levels. Any statement that either is blocked within the previous statement
or is a continuation of the same statement is indented two spaces. The ELSE
clause of an IF statement is an exception to t:his rule because it is placed
at the same indentation as its associated IF. In Figure 39 this indentation
scheme is superbly demonstrated by the procedure "search_archives". Any
statement bracketed by a BEGIN/END pair is placed at the same indentation as
the BEGIN/END brackets so that the indentation does not rapidly get out of
hand. This method of indenting turned out to be just as readable as
indenting all the included statements two spaces more than the BEGIN/END.

If a statement, including BEGIN/ENDs and REPEAT-UNTILs, could be placed
entirely on one line, it was. This is illustrated by the third to last line
in Figure 39, which shows an entire compound statement on the same line. It
is an advantage to be able to view a maximum amount of code on a single
screen. To make this possible, often, several simple statements were grouped
on the same line.

At all times, no line exceeded 80 columns, which avoided difficult-to-read
line wraparound on the screen.

Unlike the BEGIN-END, the statements included within the REPEAT-UNTIL and the
CASE-END are indented two spaces from the REPEAT-UNTIL or CASE-END.

The Pascal/lOOO compiler does not distinguish between upper- and lowercase
letters within identifiers (refer to Pascal/lOOO Reference Manual, p. 2-5).
Therefore, the rule for the use of upper- and lowercase in the TRAMCON
software was based on cosmetic considerations and was made to make the source
code more readable. All Pascal reserved words used in the TRAMCON software
and listed in the Pascal/lOOO Reference Manual, p. 2-4, are written using all
capital letters. Also, all capital letters are used for the predefined

101

identifiers listed on page 2-7 of the Pascal Reference Manual. Examples of
reserved words in Figure 39 are BEGIN, END, REPEAT, and PROCEDURE. Examples
of predefined identifiers in Figure 39 are TRUE, FALSE, and BOOLEAN. Most of
the other identifiers are composed of lowercase letters with liberal use of
the underscore character. The one exception is the user-defined type INT,
which is spelled with all caps because it is so close to being a basic type.

Most of the user-defined TYPEs and CONSTANTs are grouped into one INCLUDE
module called [RECR3, which is detailed in Section 11.1 of this manual. A
programer attempting to modify or add to this code should consult this module
for identifiers. These identifiers can be used for commonly-used constants
and types, such as the one-word integer constant "-1", which has the name
"nill" or the one-word integer type INT.

The last software-writing style item mentioned here is the prolific use of
the WITH statement throughout the TRAMCON On-Line software. There is a
discussion about this in the Pasca1/1000 Reference Manual, p. 8-47, which
says that using the WITH statement can increase execution efficiency and
reduce source code repetition. The TRAMCON On-Line software deals primarily
with information stored in a hierarchical structure in the shared two-word
addressable area called EMA. With two-word addressing, savings on de­
referencing are even more important. Also, to specify an item down to the
most-nested level in the HEAP sometimes takes more than 80 characters.
Repeating these long identifiers makes the code very difficult to read.

The only drawback to using the WITH statement is the difficulty in
pinpointing the location or actual full identity of some items in the code
when troubleshooting or changing the code. With this in mind, an attempt was
made to give unique identifiers for everything, including fields within
records, so that an identifier that is specified partly in a WITH statement,
would not be confused with a simple identifier with the same spelling.

Another policy decision that had to be made concerned the indexing of arrays.
In PASCAL, there are no restrictions on values for array indices, but the
most common choices for the range of numeric indices are "O ..n-l" and "l .. n".
There are advantages and disadvantages to both ranges. There are machine
instructions to TEST AND BRANCH IF ZERO, which can be used to generate more
efficient code for LOOPS when indexing through arrays whose indices begin at
zero. The readability of the source code is improved if the "l .. n" indexing
is used because the "-I" does not have to be entered. We chose the "O .. n-l"
indexing range, and for uniformity we strongly urge that this convention be
followed.

102

9. TERMINAL I/O MANAGEMENT

A minimum of one and a maximum of four terminal display devices can be
connected to a TRAMCON master at one time. The type of terminal devices
supported by TRAMCON is currently limited to HP equipment. Because of the
design of the terminal handling code, it should not be too difficult to
change TRAMCON to support a wider range of terminals. Essentially, the
limiting factor is the particular interface chosen for the terminal devices.
The BACI interface occupies one back-plane slot yet supports only one
terminal device. Even more limiting is the fact that the driver, which
supports the BACI interface, uses the HP unique ENK-ACK handshaking protocol.
Most of the rest of the industry uses the XON/XOFF handshake.

This is mentioned not to encourage the development of code to support new
terminal devices, but to explain some of the ideas that lead to the design of
the terminal support code. Currently, three Dlodels of HP terminals are
supported by the TRAMCON software. They are, from oldest to newest, the
HP-2647F, the HP-2627A, and the HP-2397A. ThE! newer terminals were added
because the older HP-2647F was expensive and no longer supported by HP and
because the need for a stand-alone workstation connected to the TRAMCON
master never materialized. These reasons alone were sufficient to justify
the effort to add support for the new equipment. The color feature was an
excellent by-product.

The speed with which the TRAMCON master and the terminal devices communicate
is limited to a maximum of 9600 bps. This limitation is only because of the
BACI interface, since the newer terminal devices are capable of speeds up to
19,200 bps. Every terminal and the BACI interface are capable of using all
settings for Parity, STOP bits and DATA bits. The most common settings were
chosen for TRAMCON (NO Parity, 1 STOP bit and 8 DATA bits). These settings
are issued to every terminal device defined in the TRAMCON data base when the
system is re-booted. If a terminal exists but is not defined in the TRAMCON
data base, the TRAMCON software will not attempt to use that device.

The Configuration data base contains an array called "crt_rec" in the master
record that includes the initial values for each terminal defined on the
master. A key position in this array is the positionO. "crt_rec[O]" must
always have a terminal description, which is assumed by the TRAMCON software
to be the system console. As we will see later, there is special treatment
for the system console terminal vs the other terminals, which is referred to
as remote display terminals or RDTs.

There is an array called "current_crt" defined in the run-time HEAP, which
contains the status of all terminal devices defined on the given master.
This array is initialized at bootup time by the procedure "Initialize" in the
program CMMD. Some of the information such as the terminal location is
transferred from the data base to the HEAP. The system console, since it
must always be defined, is assumed to be hard-wired. All other terminals
defined on a master are treated as if they are operated over a modem
connection. If actual modems are not being used, a null modem device must be
placed in line between the BACI interface and the terminal device. Different
cables are used to support the hard-wired and the modem connections. Also,

103

each new terminal model has a different communication line connector. The
cables required for each terminal type are listed in Figure 40.

BACI to Terminal /
Terminal Model BACI to Modem Modem to Terminal Connector Type

12966-60008 /
HP-2647F 12966-60006 13232M 264x hood

12966-60014 /
HP-2627A 12966-60006 13222N 262x 50-pin

12966-60015 /
HP-2397A 12966-60006 40242M 25-pin RS232

Figure 40. TRAKCON master - terminal communication cables.

The numbers listed in Figure 40 are HP part numbers. All cables listed in
the "BACI to Terminal/BACI to Modem" column have the HP-1000 back-plane
interface hood for the computer end. The numbers in this column begin with
12966 because that is the part number for the BACI interface. The
second half of the number in the column defines the connector type of the
other end of the cable. All terminal types use the same cable, 12966-60006,
when connecting from the BACI interface to a modem. This cable has a
standard RS232 25-pin connector on the modem end. The connectors on the
terminal end of the three hard-wired, BACI-to-device cables are male versions
of the connectors listed in the last column of Figure 40. All 25-pin cable
ends are male, and all interface and terminal connectors are female.

Note that whereas the hard-wired connections require one cable, the modem
connections require two cables. For example, the hard-wire connection of an
HP-2397A terminal to an HP-1000 requires the one cable with part
number 12966-60015. The modem connection for the HP-2397A requires both the
12999-60006 and the 40242M cable. In the modem connection, it must be
assumed that the connection is from HP-1000 to modem, and elsewhere from
modem to terminal.

The TRAMCON terminal I/O function is diagramed in Figure 41.

When the TRAMCON On-Line software is booted up, the program CMMD clones a
copy of the program UP for each terminal device that is defined in the
Configuration data base master record field "crt_rec". After scheduling each
UP program, CMMD assumes that the terminal is NOT operational and calls
routine "down_crt" ($TRLIB). Routine "down_crt", in turn, passes the
information to the program UP via a CLASS WRITE/READ. The program UP
attempts to write to the terminal. If the terminal is actually operational,
UP detects this and schedules a clone of the program LO to prompt the
operator to sign-on. The sign-on prompt will never time out and the TRAMCON
On-Line software doesn't try to use the terminal unless someone is signed on.

104

att

TRAMCON Display Programs

Issue LOGICAL WRITE statements

l
J

"keypress"
Bootup ($TRLIB)
(CMMD)

Physical WRITE to Terminal.

"crt status check"($TRLIB)- -
rminal
nction READ from keyboard

CLASS READ
CLASS READ attached to

attached to "crt class"-
"down crt" "kybrd_class"-

($TRLIB)

UP I KYBRD

LO CLASS READ
attached to

CLASS WRITE/READ "cmmd class"-
ached to "cmmd class"-

Schedule
CMMD I Default Display, SS or MAl

Default I I

Te
Malfu

Display

Figure 41. TRAMCON terminal I/O processing.

When the operator successfully signs on (see Section 9.2), prog~am LO mimics
the entry of the DE command by passing the DE command to the program CMMD via
a CLASS WRITE/READ request attached to CLASS number "cmmd_c1ass". Program
CMMD receives the DE command by issuing aCL~SS GET on CLASS number
"cmmd class" and schedules the default display (SS or MA) for the given
terminal device. .

The default display program performs just like any other program that does
I/O to a terminal device. Almost all the output (display) statements

105

executed by the TRAMCON programs are LOGICAL output statements. That is, the
WRITE statements that are issued cause the operating system to place data
into an intermediate buffer, but NO data are actually sent to the terminal
device. Once all the information going to the terminal is buffered, the
display program calls routine "keypress" to issue a physical write (prompt)
statement, flushing the buffer to the terminal device.

Only when this physical write is done can the software determine whether the
terminal device is still operational. Routine "keypress" calls routine
"crt_status_check" to discover whether the terminal is still functioning. If
the terminal is NOT functioning, the recovery cycle begins again by calling
routine "down_crt" (refer to Section 9.4). If the terminal is still
functioning, one of two actions is taken.

In most cases, the display program's job is complete when they send all their
data to the terminal display. When this is done, the call to "keypress"
finishes by issuing a single character BINARY CLASS READ statement and
attaches this read to the CLASS number "kybrd_c1ass". The results of this
read will be examined by program KYBRD.

The only other action taken is to issue a multiple-character, normal CLASS
READ and attach the read to the CLASS number "crt class". The seldom-used
function is used by programs, such as DT, that interact with the operator.

The routine "crt_status_check" in $TRLIB issues a status request on a
specified terminal and checks for a "status3.device_down" indication or a
"eqt4.timedout" indication. Either of these flags is interpreted as a
malfunction of the terminal device and the program UP is informed of this
fact. Program CMMD issues a status request for a terminal device, after
getting input from an operator at the given terminal, to see if the keyboard
input request has timed out. If "eqt4.timedout" is true, CMMD assumes that
the operator no longer wishes to enter a command, the "Enter Command" prompt
is erased, and a new single character keyboard "wakeup" read request is
issued. Program UP also issues a status request to a terminal device to see
if the terminal is once again operational.

9.1 System Console vs Remote Display Terminal (RDT)

As mentioned earlier is this section, the software treats the system console
differently than the other terminals on a given master. First of all, the HP
operating system requires that a system console be present and connected to a
specified back-plane slot so that the system can be booted up (see Section 15
of this manual). Throughout the system software, there are messages intended
for a particular user at a particular terminal. These messages are usually
sent 'to the designated terminal and to the system console. Some of these
system console and other terminal messages are unwanted for TRAMCON operation
and those unwanted messages have been eliminated by making changes to the
appropriate message-generating system software modules. These changes
constitute changes to the operating system as it is shipped from HP and must
be remade each time the system is regenerated. These changes are discussed
in Section 10.3 of this manual.

106

In the TRAMCON system, the system console is defined as the terminal
specified in the Configuration data master record in array "crt_rec[O]". The
global variable "crtord", which is global to each TRAMCON program (see
Section 11.3 of this manual), controls which terminal device a given program
references. To reference the system console, a program must use the value 0
for "crtord", which is an index into the HEAP array "current_crt". Terminal
LU values are also computed using the value of "crtord".

The four LU numbers 25 through 28 have been used to refer to the
four possible terminals on a TRAMCON master. LU 25 refers to the system
console associated with "crtord" value O. The LU values have been grouped
together so that the LU number for any particular terminal can be computed,
given the "crtord", by adding 25 to the value of "crtord".

Once the TRAMCON system has started, the value of "crtord" is passed from
program to program as one of the run-time parameters using the CLASS I/O
feature. TRAMCON terminal I/O is a closed loop that never loses the value of
"crtord", provided no program terminates abnormally. If a program terminates
abnormally, there is a problem that must be fixed. The TRAMCON software was
designed to operate without abnormal program termination.

9.2 Logging ON/OFF Remote Display Terminal (RDT)

The TRAMCON system is capable of supporting up to three additional terminal
devices per mas ter unit. These additional tlarminal devices are referred to
as remote display terminals or RDTs. The back-plane r/o slots are defined as'
shown in Figure 42 for all TRAMCON master systems. The back-plane definition
does not vary from master to master so that the operating system on every
master is capable of supporting the same number of terminal devices.

"crt_ptr" Select Logical Equipment
Ordinal Code Interface Driver Unit(s) Number

0 13 Terminal (System Console) DVX05 1,25 2

1 14 Terminal (Segment Console) DVX05 26 3

2 17 Terminal (RDT) DVX05 27 6

23 Unused - - - -- -- --

24 Unused - - - -- - - --

3 25 Terminal DVX05 28 13

Figure 42. TRAKCON master computer terminal device back-plane assignments.

107

NOTE

Slots 23 and 24 are included in Figure 42 because these slots have
recently become available due to the replacement of the 7900E
magnetic tape drive with the streaming tape drive that is built into
the disc drive.

The second factor necessary to use the terminals is not uniform for every
master. That is, each terminal device must be defined in the Configuration
data base master record. Each master computer has its own unique
"master_record" that contains an array, "crtytr", which points to a CRT
record for each terminal defined for use on this master. If an entry is made
in the array "crtytr", the corresponding hardware interface (BACI card) must
be located in the proper slot. The correspondence between the I/O slots and
the elements of array "crtytr" is fixed and is shown in Figure 42. The
terminal defined in "crtytr[O]" is always interpreted by the software to be
the system console and always refers to the interface located in slot 13.

Any terminal device beyond the system console is optional and can be operated
with a hard-wire, NULL modern, or modern connection. If the terminal device is
defined in the data base and the hardware interface exists in the master
back-plane, the TRAMCON On-Line software will attempt to communicate with the
device starting at system bootup.

At bootup and at any future time when no one is logged on to a particular
terminal device, the program LO waits for a single key (any key) to be
pressed. When any key is pressed, program LO displays the prompt

Ye1come to TRAMCON at xxxxxxxxxx, yyyyyyyyy

Please sign on:

The field "xxxxxxxxxx, yyyyyyyyyy" is the site name and country name found in
the data base master record field "siteytr" which, in turn, points to a data
base SITE record with fields "site name" and "country".

At this point the operator is allowed to type any character string. The
first 18 characters entered will be used as the operator identification and
will be displayed in the upper right-hand corner of most displays.

After the operator signs on, the program LO prompts further for the password
as follows:

Enter Password

Currently, the password is fixed to be the two ASCII characters "tr". If the
operator answers "tr" <RETURN> the program LOwi11 determine which terminal
type is installed at this location by reading the ID from the terminal

108

itself. Knowing the terminal type, the graphics grid size is set and the
Segment Map coordinates will be calculated. Having finished this, the
program LO issues a Default Display Command (DE) to the command processing
program CMMD which results in the Default display for this terminal being
displayed at the terminal.

The terminal device is now a fully functional TRAMCON terminal and will
remain so until it breaks or the operator logs off by entering the ST
command.

9.3 Terminal Configuration

Although technically a dumb terminal, each of the HP terminal devices
supported by TRAMCON software offers many operator-selectable options that
allow the device to adapt to most variations in communication protocol.
These settings are maintained locally at the terminal in battery-backed RAM.
Since TRAMCON uses these HP terminals with HP computers, most of the factory
settings can be utilized. The few settings t:hat must be changed from the
factory setting are highlighted in the following subsections. The procedure
for viewing and updating the settings is also specified below. The 2397A
terminal is much more elaborate than the 2627A, but most pages of settings
can be used exactly as set by the factory and are therefore not listed in the
following subsections. Remember, these settings are local to the terminal
device and viewing or changing these values i.s a local operation and has no
direct effect on the TRAMCON master computer.

The various options and their current settings are organized into PAGES or
SCREENS of related items. Once the key-pressing procedures listed below are
executed, the desired information will be displayed along with the function
key label line at the bottom. The function keys are used to change the items
displayed. The TAB key will expedite movement from item to item. This data
changing is done in SCREEN mode. That is, none of the changes are
permanently recorded in the terminal RAM until the <SAVE CONFIG> key is
pressed.

9.3.1 HP-2397A

Figures 43 through 45 show the three configuration pages for the HP-2397A
terminal, which include changes to the factory settings for TRAMCON
operation. The settings necessary for TRAMCON operation are shown.

Figure 43 is the TERMINAL CONFIGURATION page for the 2397A terminal. This
page can be viewed and changed by the fo1lowi.ng:

1. Press <System> key
2. Press <config keys> key (f8)
3. Press <terminal config> (£5)

109

TERMINAL CONFIGURATION

RETURN Def cr RETURN=ENTER No Tab = Spaces No

Local Echo OFF Caps Lock OFF Start Column 1 ASCII 8 Bits YES

XmitFnctn(A) No SPOW(B) No InhEolWrp(C) No Line/Page (D) Line

InhHndShk(G) No Inh DC2(H) No Auto Term(J) No ClearTerm(K) No

InhSlfTst(L) No Esc Xfer(N) No InhDcTest(W) No

Field Separator us Alternate Set Line(B)

Block Terminator rs Transmit All Fields

Figure 43. Terminal configuration page for 2397A.

REMOTE DATACOMM Full Duplex Hardwired CONFIGURATION Port 1

BaudRate 9600 Parity/DataBits None/8 Check Parity No

Asterisk Off Stop Bits 1 EnkAck Yes

TR(CD) Hi SR(CH) Lo

RecvPace None Break Time 160 RR(CF)Recv No

XmitPace None STOP Function Xon/Xoff CS(CB)Xmit No DM(CC)Xmit No

Figure 44. Rem.ote datacom.m. configuration page for 2397A.

Figure 44 is the REMOTE DATACOMM CONFIGURATION page for the 2397A terminal.
This page can be viewed and changed by the following:

1. Press <System> key
2. Press <config keys> key (f8)
3. Press <datacomm config> (fS)

110

Click Off

GLOBAL CONFIGURATION

Terminal Id 2397A

Bell On Display off never Language ENGLISH

Term Mode HP

Columns 160

ALPHA WINDOW
Inverse Background No

Cursor Type Line

GRAPHICS WINDOW
Resolution 640x400 Graph Compat Off

Figure 45. Global configuration page for 2397A.

Figure 45 is the GLOBAL CONFIGURATION page for the 2397A terminal. This page
can be viewed and changed by the following:

1. Press <System> key
2. Press <config keys> key (f8)
3. Press <global config> (f5)

9.3.2 HP-2627A

Figure 46 shows the three configuration pages for the HP-2627A terminal and
the settings necessary for TRAMCON operation.

9.4 Handling DOWNED Terminals

It is assumed that at any time during TRAMCON operation, the terminal devices
other than the system console could break or cease to communicate with the
operator. It is also assumed that these additional terminal devices may not
be available to be installed when the master is installed or that an
additional terminal may be configured in at some future date for a given
operational master. The software has been designed to operate normally even
if any or all of the extra terminals are not operational. In order to
prevent critical TRAMCON programs from being indefinitely suspended trying to
communicate with a broken (possibly nonexistent) terminal device, the small
program UP was designed to constantly try to access a broken device until it
responds. Figure 47 is a block diagram showing the processes involved in
maintaining the terminal devices.

111

TERMINAL CONFIGURATION

FrameRate 60
Language USASCII

ReturnDef cr

LocalEcho OFF CapsLock OFF Start Col 01
XmitFnctn(A) NO SPOW(B) NO InhEolWrp(C) NO
InhHndShk(G) NO Inh DC2(H) NO Esc Xfer(N) NO

FldSeparator us BlkTerminator rs

DATACOMM CONFIGURATION

ASCII 8 Bits YES
Line/Page(D) LINE

Compat(P,Q) OFF

BaudRate 9600
Asterisk OFF

RecvPace None
XmitPace None

Parity None

Chk Parity NO SR(CH) LO
EnqAck YES

CS(CB)Xmit NO

EXTERNAL DEVICE CONFIGURATION

BaudRate 9600 Parity None GraphContent B&W PrinterNu11s 000

Printer HP ImageSize xl InvertB&W NO

SRRXmit NO
XmitPace Xon/Xoff SRRInvert NO CS(CB)Xmit NO

Figure 46. Configuration pages for the HP-2627A terminal.

Figure 47 shows that, when trouble communicating with a terminal is
encountered by the software, the routine "down_crt" located in $TRLIB is
called to try to reestablish contact with the given terminal. As a
precaution, routine "down_crt" connects the LU for the terminal to the bit
bucket (equipment 0) so that if any TRAMCON program other than UP attempts to
send data to the terminal, that output will complete successfully and the
program will not be suspended indefinitely waiting for the terminal to
respond.

The cloned (one copy per terminal) program UP's sole function is to
repeatedly attempt to communicate with the terminal until it is successful.
Once it is successful, program UP reconnects the terminal LUto the proper
equipment that it finds in "crt_eqt" and calls the routine "clone and run" to
schedule the logon program LO.

112

"down crt"-
($TRLIB)

connect crt LU t:o
bit bucket.

I
UP

LOCKS "crt rn" .-
WRITES 1 char to
until status is OK
using its own LU.

I
LO

Prompts operator to Log ON as follows:

Welcome to TRAMCON at FeldbE~rg, West Germany

Please Sign on:

Figure 47. Handling DOWNED terminal devices.

10. SYSTEM: GENERATION

Before any of the TRAMCON software could be developed, a version of the
operating system had to be defined, generated, and loaded onto an HP-lOOO
master computer. As stated in the Introduction of this manual, the operating
system chosen was RTE-6/VM. The TRAMCON software was developed and delivered
using version A.8s of RTE-6/VM, which was released in the first quarter of
1985. ITS continued to receive new releases of RTE-6/VM, but found problems
with several key modules such as the Pascal compiler, which led to the
decision to stay with the A.8s release. Fort:unately, the generation step was
already improved with A.8s. This step now takes approximately 12 to
15 minutes to generate a TRAMCON system rather than the previous 3 1/2 hours.
By now the TRAMCON system is based on the new 7912 6s-Mbyte disc drive, which
replaced the old 7906 20-Mbyte drive, so the discussion here will reflect the
generation of the RTE-6/VM operating system version A.8s based on a 7912
system disc drive. Also, as mentioned in the introduction to this manual,
the FMGR file system was used for the development and implementp.tion of the
TRAMCON system. Therefore, none of the CI code was generated into the
TRAMCON system.

113

The users of this manual are required to have some familiarity with the
RP-1000 system including familiarity with the operating system generation
process. This section describes how to generate a TRAMCON field system and
not a TRAMCON development system. Unecessary details are avoided, instead
concentrating on problem points and the steps unique to TRAMCON.

The first step is to ensure that the operating system modules are available
for use by the generator program RT6GN. This is a difficult step when
developing the first system. But, as mentioned above, it is assumed that a
development system that has the operating system modules in relocatable form
on the system disc drive, is already available. The next step is to develop
an answer file for the generator. The generator asks a series of questions
and the answer file is a disc file that supplies the answers to all those
questions. Disc file naming conventions for the generation process are
specified in the following rules:

1. Generation answer file begins with. "AN" and indicates the capacity
of the system disc in Mbytes, thtis "AN65" for TRAMCON field system.

2. Generator output file is !TRMCN.
3. Generator listing is "TRMCN.

The answer file used to generate the TRAMCON system Version 1.8 is included
as Appendix B of this manual.

Running the system generator is a simple process accomplished with the
following FMGR commands:

:PU, "TRMCN: :10
:PU, !TRMCN: :10
:RU,RT6GN,ANTR

10.1 Switching to the New System

Once the generator has completed, the new system, on disc file !TRMCN, must
be placed onto the system tracks of the system disc and booted up. This task
is accomplished by the utility program SWTCR, which is described in detail in
the RTE-6/VM System Manager's Reference Manual, Chapter 5. If the host
system is the same as the target system (in most cases it will be), the SWTCR
- operator interaction is shown in Figure 48.

In Figure 48, the operator responses are underlined (the responses can be in
either lower- or uppercase).

114

:SWTCH
SWTCH generation file installer. Rev.2440 <850114.1607>

****** WAR N I N G ******
ALL ACTIVITY MUST BE TERMINATED BEFORE SYSTEM TRANSFER PROCESS.

ENTER n!! n IN RESPONSE TO ANY QUESTION TO ABORT.

FILE NAME OF NEW RTE SYSTEM?
!TRMCN

RTE- 6 SYSTEM GENERATED 9:54 AM FRI., 12 JUNE, 1987

NEW SYSTEM I/O CONFIGURATION:

SELECT CODE 11 TBG
SELECT CODE 4 TYPE=43
SELECT CODE 11 TYPE=43
SELECT CODE 12 TYPE=33
SELECT CODE 13 TYPE= 5
SELECT CODE 14 TYPE= 5
SELECT CODE 15 TYPE=76
SELECT CODE 16 TYPE=77
SELECT CODE 17 TYPE= 5
SELECT CODE 20 TYPE=66
SELECT CODE 21 TYPE=66
SELECT CODE 22 TYPE=66
SELECT CODE 23 TYPE=66
SELECT CODE 24 TYPE= 5
SELECT CODE 25 TYPE= 5

NEW SYSTEM (LU2) SELECT CODE= 12 SUBCHANNEL= 1

OF TRACKS 1000 ADDRESS 0
UNIT # 0 VOLUME # 0
STARTING BLOCK ADDRESS 0
OF 128-WORD BLOCKS/TRACK 64

TARGET DISC LU FOR NEW SYSTEM? (XX)

.2
TARGET ADDRESS:UNIT:VOLUME FOR NEW SYSTEM? (X:O:O OR n nCR)

NOW IS THE TIME TO INSERT CORRECT CARTRIDGE IN
TARGET ADDRESS:UNIT:VOLUME. (n nCR TO CONTINUE)

SAVE FILES AT TARGET?
X

(Y OR N)

Figure 48. Sample SWTCH - operator interaction.

115

LU L-TRK
2 999

CR
2

LU L-TRK
10 2999

CR
10

LU L-TRK CR

THIS CL LOOKS REASONABLE. IF YOU AGREE AND YOU WANT TO
SAVE IT ANSWER YES, ELSE NO. SAVE CL? (Y OR N)
X
PURGE TYPE 6 FILES? (Y OR N)
!!

NO SUBCHANNEL INITIALIZATION WITH CS80

PRESENT CONFIGURATION DOESN'T PERMIT AUTO Bootup.

DISC IN HOST SYSTEM DRIVE WILL BE OVERIAID.
READY TO TRANSFER. OK TO PROCEED?
X

Figure 48. (cont.)

10.2 Loading System Utilities

Only the absolutely essential software is loaded into the system at
generation time. This reduces the generation processing time down to
approximately 12 minutes and keeps the operating system memory and disc
requirements at a minimum.

The Operating System modules, which include the I/O device drivers qnd the
File Management (FMGR) software, are the essential portion of the TRAMCON
software system. Most user-written software can be installed after the new
system is generated and made operational using the SWTCH program as discussed
in Section 10.1. The only user-written module included in the generation is
the TRAMCON remote unit device driver DVA76.

NOTE

In addition, the On-Line loader program LOADR must also be generated
in, so that the other utility programs can be loaded later. Without
the LOADR program, there would be no way to load additional software
after generation.

Once the system has been generated and made operational with program SWTCH,
the bulk of the software is loaded into the system. Figure 49 lists the
modules that are loaded On-Line after the switch to the new system has been
made. Appendix C lists the'FMGR procedure file *LOAD6, which can be used to
load all the modules listed in Figure 49.

116

System Manager Utilities
RT6GN SWTCH

System Utilities
LUPRN EDITR

DRREL DRRPL EDIT
SGMTR SXREF

Program Development Utilities
FTN7X INDXR LINDX LINK LST MACRO MLLDR PASCL

File System Utilities
MERGE OLDRE SCOM

Help Utilities
CMD GENIX HELP

Backup Utilities
FC TF

Diagnostic and Disc Formatting Utilities
FORMC FaRmT TVVER

#SEND
RSM

DUST DSINF
SYSAT VCPMN

Distributed System Programs
EDITR EXECM EXECW OPERM PROGL PTOPM REMAN RFAM

TRAMCON Segmented Programs
CF DT INIT MTRP PLRP SR

Figure 49. List of modules loaded on-line after generation.

The programs listed in Figure 49 must be reloaded even though the type 6
files were kept when the SWTCH program was run because these programs are
dependant upon boundaries in the operating system, which might have changed
with the new generation.

In order to load most of the software listed in Figure 49, the utility
programs LINDX, INDXR, LINK, and MLLDR must be loaded into the system first
and the LINK SNAP file SNAP.6 must be built. Therefore, notice that the
first steps in procedure file *LOAD6, listed in Appendix C, load programs
LINDX, LINK, and run program LINDX to establish the LINK SNAP file SNAP.6.

In order to use the procedure file *LOAD6, the modules listed in Figure 50
must be available on disc.

Most of the software modules listed in Figure 50 are delivered with the
current version of the RET-6/VM Operating System and should already be
present on the disc from the generation phase. The following modules are the
exceptions.

117

LINK and MLLDR Command Files
#LINK #LINDX #RT6GN #SWTCH #EDlK6 #MACRO #MLLD6
#SXREF #MERGE #OLDRE #SCOM #FC6 #TF #FORMC
#DS #CF #DT #INIT #MTRP #PLRP #SR

Relocatable Software Modules

#SGMTR
#FORMT
#AUTOR

%RT6GN
%MACRO
%MACR7
%SGMTR
%FC4

%SSTCH %EDITA %EDITB %LUPRN %DRREL %DRRPL
%MACRO %MACRI %MACR2 %MACR3 %MACR4 %MACR5
%CMD %GENIX %HELP %TVVER %MLLDR %MLLDA
%MERGE %ATRAN %SCOM %FCO %FCI %FC2
%FC5 %FC6 %TF %FORMC %FORMT %AUTOR

Libraries

%INDXR
%MACR6
%MLLDB
%FC3
%4AUTR

$FMP6
$FCLI

$LDRLN $PLIBN $R6GNL $DTCLB $DSCLB $EDIK6 $RBLIB
$FCL2 $FCM6 $TFLIB %TVLIB %M.LIB

Procedure Files
(DS

INDXR Files
@CF @DT @INIT @MTRP @PLRP @SR

Figure 50. Modules necessary to execute procedure file *LOAD6.

The procedure file (DS and all the INDXR files listed in Figure 50 are
created by TRAMCON software maintenance personnel.
see how the INDXR files are created. The procedure
each of the programs in the Distributed System (DS)
(DS can be found in Appendix C.

Refer to Section 8.2.3 to
file (DS is used to load
package. A listing of

All the LINK and MLLDR Command files, except those for the segmented TRAMCON
programs, are listed in Appendix C. Refer to Section 8.2.3 for instructions
on how to produce MLLDR files for the TRAMCON segmented programs.

The modules needed to load the Pascal and Fortran language compilers were
delivered on a separate tape and not included on the operating system tape.

118

NOTE

The power failure recovery program AUTOR was modified to fit the
specific needs of the TRAMCON system. To be consistent, the new
version of the program was written in Pascal. Attempts to load
the Pascal version of AUTOR at generation time resulted in the
generation error

GEN ERR 00

Therefore, the system developers decided that at generation time, they
would load the version of AUTOR which is delivered with the other
system software (module %4AUTR). After the switch is made to the
new system, AUTOR would be reloaded using the TRAMCON version
(module %AUTOR) and replacing the permanent program AUTOR.

10.3 Operating System Modifications

In general, it is NEVER a good idea to modify any of the operating system or
other vendor-supplied software for several reasons. First, it is difficult
to produce proper documentation with enough detail so that the change may be
incorporated into future upgrades. Second, changing vendor-supplied code
requires that the very expensive SOURCE code be purchased. Third, the
changes may not operate properly from upgrade to upgrade because the vendor
is free to make modifications completely independent of any user
modifications. Last, but most important, the vendor can withdraw any
technical support if any modifications are made by the user since the company
cannot guarantee the results of those changes.

With this in mind, the changes that were done were only those absolutely
necessary or resulted in a large gain for a small effort.

The TRAMCON On-Line software was designed to handle the operator interaction
and eliminate any direct interaction between the operator and the operating
system. During normal TRAMCON operation, very little, if any, direct
operating system commands are necessary. Also, TRAMCON software does not run
in the Session Monitor mode (Session Monitor is the HP operator-operating
system interface that supports multiple users and includes an accounting
system). The TRAMCON software is essentially the only user of the system and
all terminal devices are supported through the TRAMCON software.

But the TRAMCON software also makes use of the interprocessor communications
software package called DS (Distributed Systems) to perform data file
transfer and to sychronize the clocks between masters. This DS software, in
turn, makes use of the Session Monitor software to log on and log off at the
remote end of any DS communication. Logging ON and logging OFF of a Session
Monitor session causes messages to be displayed both at the session terminal
device and at the System Console. Since TRAMCON is using these terminal
devices to display TRAMCON information, these messages are undesirable.

119

To eliminate these unwanted accounting messages, the operating system modules
&LOGON, &LGOFF, and &LSUB2 were modified as shown in Figure 51.

As the reader can see from Figure 51, each line that is modified is marked
with the comment !TRAMCON and most of the modifications simply COMMENT out a
call to the routine MESSP that would display an unwanted message on the
terminal devices. The one modification to &LSUB2 changes a JMP TELL
instruction to a JMP NEXT instruction, thus eliminating the message "FMGxx
REMOVED" .

The TRAMCON operator is allowed to log ON and OFF Session Monitor from a
non-system console terminal using the TRAMCON SM command, which is password
protected. These changes to "logon" and "lgoff" eliminate the usual messages
from this use of Session Monitor also ..

The software version used for these modifications is RTE-6/VM REV 2301. The
line numbers specified in Figure 51 may NOT be the same for later revisions.

Changes to Module &LOGON
1446 C CALL MESSP(10001B,2H ,-2) !TRAMCON
1447 C CALL MESSP(1,ONMS1,-34) !TRAMCON
1457 C CALL MESSP(2,ONMS1,-24+ITMP1) !TRAMCON
1467 C CALL MESSP(10001B,ONMS3,-58) !TRAMCON

Changes to Module &LGOFF
35 DIMENSION OFPRG(8),PGRM(3),DSEC(2),DCPU(2) !TRAMCON (6) := (8)
70 DATA OFPRG/2HOF,2H ,,3*2H ,2H,8,2H,N,2HP / !TRAMCON

573 CALL MESSS(OFPRG,15) !TRAMCON 12 := 15
885 C CALL MESSP(10001B,DMES,DMLEN) !TRAMCON

1099 C CALL MESSP(10001B,2H ,-2) !TRAMCON
1100 C CALL MESSP(1,OFMS1,-34) !TRAMCON
1106 C CALL MESSP(2,OFMS1,-24+NAML) !TRAMCON
1213 C CALL MESSP(10001B,OFMS3,-54) !TRAMCON
1226 C CALL MESSP(10001B,OFMS4,-64) !TRAMCON
1234 C CALL MESSP(10001B,OFMS5,-54) !TRAMCON
1239 IF(IAND(MAIL,100000B).EQ.0) GOTO 450 !TRAMCON
1240 C CALL MESSP(10001B,2H ,-2) !TRAMCON
1245 C5500 CALL MESSP(10001B,14HEND OF SESSION,-14) !TRAMCON

Changes to Module &LSUB2
300 JMP NEXT !TRAMCON was JMP TELL

Figure 51. Modifications to &LOGON. &LGOFF. and &LSUB2.

120

11. DATA STRUCTURE

This section describes the Pascal CaNST and TYPE definitions that describe
the data (memory-resident and disc-resident) used by the TRAMCON software.
All user defined constant and type definitions are collected in one software
module named [RECR3. This central location ma.kes it easier for the software
maintainer to find definitions and trace the use of data within the software
modules.

The vast majority of the data, including all the information that describes
the current state of the communications system, is placed into a memory area
called EMA so that it can be shared by several programs. This data is
accessed through one global address called "heap".

Other identifiers that are used by several programs are grouped together into
a software module called [TRVAR which can be included by any program module.
This avoids having to explicitly declare these variables in each program
module. Also, if any of these variables are changed, the code in [TRVAR
needs to be changed once, and all the programs using the variables need only
be recompiled and re-linked.

11.1 Type and Constant Definitions [RECR3

The file [RECR3 contains CaNST and TYPE definitions.shared by more than one
TRAMCON On-Line program. The following are short descriptions of each
identifier defined in [RECR3. The first portion of [RECR3 is a CaNST section
contain constant definitions that, when used, make the code more reada.ble and
reduces the amount of redundant constants generated by the compiler
throughout the software. Following the CaNST section is a lengthy TYPE
section that contains several basic TYPE definitions followed by the TYPE
definitions that describe both the static (Configuration data base) data and
the dynamic (created and changed at run-time) data that are stored in the
HEAP. All the components of the HEAP are described first, followed at the
very end by the definition of the HEAP itself (identifier "heap"). The
organization of this module is also based on the general guidelines "define a
TYPE or CaNST immediately before its first reference" and "group similar
TYPES or CONSTANTS. such as PACKED ARRAY OF CHAR. together". Many CONSTANTS
are defined here so that they can be more easily changed. For example, to
change the power failure interrupt LU "pf1u" from 14 to 33, the only source
code change required is to the CONSTANT definition in this module. All the
software references to this CONSTANT still refer to the unchanged identifier
"pf1u". Of course, the modules that reference the power failure LU must be
recompiled and reloaded.

11.1.1 CaNST Section of [RECR3

one_minute = -6000;
no_abort_bit = ~32768; {bit 1S}
no wait = -32768; {bit 1S}
c1~ne bit = 2048; {bit 11}

121

The first four constants, shown above, are used in various calls to the
routine EXEC. The value "one_minute" is the optional parameter for a Control
(3) EXEC Request used to set the amount of time that RTE will wait for a
remote unit response before it sends a time-out interrupt to the segment I/O
drivers DVA76 or DVA77. The value is the negative number of tens-of~

milliseconds to wait.

NOTE

Negatave numbers are used often for counting purposes on the HP-lOOO
because the instructions set includes INCREMENT and TEST instrucions,
but doesn't include a DECREMENT instruction.

The other three constants, "no_abort_bit", "no_wait", and "clone_bit" are
used to modify the program schedule as described in the Programer's Reference
Manual, pp. 2-10, and 2-58.

audible lu
pflu = 13;

14; {audible alarm lu}
(Power Fail lu)

The identifiers "audible_lu" and "pflu" are defined to equal the Logical Unit
numbers that are associated with the audible alarm panel (Relay Output
Interface in I/O Slot 22 Octal) and the power failure interrupt vector
address (4), respectively.

stack_alloc_size = 50; EMA_max = 190000; (190-page EMA partition #ll)

The constant "stack_alloc_size" is used by the routine "allocate EMA" to
allocate stack space to any program requesting it. This constant specifies
the unit amount of stack space (currently 50 words) that will be allocated.
Any program requesting stack space must specify the number of 50-word
portions it wants. The only programs currently requesting stack space are
MTRP and PLRP. The next constant, "EMA_max", is used by the routine
"allocate_EMA" to define the size of the HEAP for each program that uses the
shareable HEAP. The current size is set to 190,000 words and should be
expanded to 225,000 words as recommended in Section 3.2 of this manual. This
value matches the 190-page shareable EMA memory partition called SHARI, which
is set up at system generation time and can be modified without regenerating,
using the reconfiguration bootup procedure (see Section 10). If the
shareable EMA partition is changed, this constant must be changed to a
corresponding value and all TRAMCON On-Line software recompiled and reloaded.

The constant "maxyf_rec" specifies the maximum number of power fail messages
that will be stored in the power failure disc file (PF. This constant is
used by the program PF as a LOOP terminator when displaying the power failure
messages.

nocctl shared 'NOCCTL,SHARED'; shared

122

'SHARED' ;

The string constants "nocct1_shared" and "shar,ed" are used by various
programs when they open files. Both strings specify the shared option, which
allows a file to be open to more than one program at the same time. The
"nocct1_shared" constant is used whenever a program opens the global
(declared in INCLUDE module [TRVAR) text file "outunit" for output to a
terminal display.

arch_file_name ' (ARCH:TR:lO';
statz_file_name = '(STATZ:TR:10';

date file name , (DATE: : 2 ' ; {Ref by HR,CO,SETCL,SETDT,SR,DT,
AUTOR,X,CMMD,BROADC,TIMPAS,TIMSET}

{Ref by MTRP ,PLRP ,AL ,INIT , HR }
{Ref by US , INIT , HR }

The file name definitions above allow the files to be relocated, renamed, or
given a different security code without changing the source code anywhere but
in the above constant definitions.

ni11 = -1; null = #0; site_category = ni1l;

The constant -1, given the name "nill" above, is one of the most widely used
constants in the TRAMCON On-Line software. A particular use of the -1
constant is given yet another name above. The identifier "site_category"
defined above refers to the index value for the site alarm/status information
in the "linkend" array. The identifier "null" is a less widely used name for
the unprintable ASCII character code with numerical value O.

nbr bins = 16; {number of histogram bins}

The constant "nbr bins" is a critical factor in determining the size of the
largest data file, (HIST, and the amount of EMA allocated for the current
hour's parameter readings. The value "nbr_bins" has only one reference that
affects the size of EMA data storage and the size of the disc files (HIST,
(PHIST and (CURVE. That reference is below in the definition of the TYPE
"hist_array" which, in turn, is used below in the definition of the EMA data
record "current_1ink_status_record" and the record definition "parm_record".
The record "parm_record" is the definition of records in the disc file
(CURVE. The TYPE "hist_array" is used as the definition of the records in
the disc file (HIST. The constant "nbr_bins" is also referenced by the
programs MTRP and PLRP through routine "process_response", HR, PH, and CC.
These programs use "nbr bins" as a loop terminator.

ss alfa 'SS'; map_alfa = 'MA'; diag_a1£a = 'dI';
al alfa 'AL'; pa_a1fa = 'PA'; pc_alfa = 'PC'; cn_alfa = 'CN';
archive_a1fa = 'AR'; scenario_a1fa = 'SC'; msg_a1fa = 'MSG ';

The two-letter constants above are used primarily by the routine
"update_displays" in $MPLIB to determine which display is currently painted
on a given terminal screen so that the proper display update routine can be
called to refresh the screen. These constants are also referenced by the
routines "sched_dspyrog" and "update_displays" in program CMMD.

123

The constant "max_charsJer_response" is referenced by the remote unit
response handling routines "pm_Initialize" and "get_answer" as the input
buffer length (in bytes) for accepting a response from a remote unit.
Routine "get_answer" also uses this constant as an upper bound on the length
of a remote unit response and sets the value of global VAR. "res)len ok" to
false if the response is longer than "max_charsJer_response".

max_charsJer_cmd = 80; {maximum length of TRAMCON command}

The constant "max_charsJer_cmd" is used in the definition of the operator
keyboard input buffer TYPE "cmd_str" defined below. Program KYBRD issues
keyboard read requests using a string variable of TYPE "cmd_str" as the input
buffer and the CaNST "max_charsJer_cmd" as the input buffer limit.

a2d_card_select = #112; a2d_nbr_values = #15; {DATALOKlO remote unit}

The AID Mux card on the DATALOKlO Model IE remote unit is capable of sensing
and reporting 16 analog values. The card can be programed to report from
1 to 16 values each time the remote unit is polled. The above two CONSTANTS,
"a2d_card_select" and "a2d_nbr_values", are sent to the remote unit by the
program POLL as bytes 4 and 5 of the POLL message to program the AID Mux card
to report all 16 values.

crt_ms~len

max_crt_msg
67;
5',

{crt_msg_record length in chars}
{max msgs buffered per crt}

The constant "crt_msg_len" is the size (in words) of the record
"crt_msg_record" defined below and is used by the program MSG as the buffer
length limit for the CLASS GET statement, which reads in a message to be
added to the message array for the given terminal. The constant
"max_crt_msg" is used in the TYPE definition "crt_msg_ordinal" below which,
in turn, is used to size the arrays "msgJriorities", "msg_lengths" and
"msgs" in the HEAP record "heap".current crt[crtord]".

line_of_sight='K';satellite = 'S';troposcatter = 'T'; fiber_optics='F';

The four constants above equate some very informative identifiers with the
first letters used in the link identifiers that are found in the
Configuration data record "linkend record" defined below.

latching l', momentary = 0; {remote unit relay types}

The identifiers "latching" and "momentary" are equated to the numeric values
1 and O. These identifiers are referenced in the program SW.

inactive = 0; monitor = 1; poller = 2; {segment status values}

The segment status values 0, 1, and 2 are given the names "inactive",

124

"monitor" and "poller", respectively. These identifiers are referenced in
the program PM which processes the operator request to alter the current
status of a given segment. The INACTIVE status setting was never
implemented.

{The following are
softl '1'; soft2
soft6 = '6'; soft7

names of keyboard FUNCTION keys (SOFTKEYS)}
, 2 '; soft3 ' 3'; soft4 = ' 4'; soft5 = ' 5';

= '7'; soft8 = '8';

On the top row of every keyboard are eight function keys labeled "fl" through
"f8". These function keys are also referred to as SOFT keys. They are soft
keys because they can be programed, in a sense, to convert a single physical
key press into a set of key presses. That is, each soft key has a string of
characters associated with it that can be defined by the user. Each time a
particular soft key is pressed, the terminal firmware transmits the
associated string of characters to the computer rather than the one-key code
that uniquely identifies the soft key itself. In the TRAMCON on-line
software, there has been a trend to convert as much of the operator key
strokes to single soft key presses as possible, thus reducing the burden on
the operator to accomplish the TRAMCON functions.

In the TRAMCON software, each of the soft keys is defined to send two
characters to the computer when pressed. The first character generated by
each soft key is the ASCII decimal digit corresponding to the soft key
number. The second character is the ASCII RETURN (12) character. For
instance, soft key "fl" causes the terminal to send the two ASCII characters
"1" and "<RETURN>" to the terminal interface driver. Because the input
request is a NORMAL READ request, the driver (DVX05) interprets the <RETURN>
key as input termination and does not place the <RETURN> character into the
input buffer. Therefore, the program issuing the read request sees only the
first character of the soft key definition. The characters generated by the
soft keys, namely "1" through "8", have been given the much more readable
names of "softl" through "soft8" in the above constant definitions.

{The following are CRT types supported by TRAMCON}
HP-2647F = 0; HP-2627A = 1; HP-2397A = 2; HP-2623 = 3; HP-2393A =4;

The four constant definitions above allow the programmer to refer to terminal
types using the model numbers such as "HP-2647F" rather than the
corresponding decimal number, such as 0, that is found in the Configuration
data base "crt_record" and is reset by the program LO each time a user
logs-on to that device. The numeric value of the terminal type constants is
currently stored in the Configuration data base record "crt_record" field
"terminal_type". Since this value is recalculated each time someone logs-on
at a terminal, this value could be moved to the HEAP record "current crt" and
removed from the Configurator data entry.

{The following are basic colors for HP-2627A and HP-2397A CRTs }
red='l'; green='2'; yellow = '3'; blue = '4'; magenta ='5'; cyan '6';

125

{Alphanumeric color pairs for SS display }
red on blue = '5'; blue_onJellow = '6'; blue on red = '7';

The constant definitions above give descriptive color names to the
nondescript ASCII decimal digits. These identifiers are used in output
instructions to the terminal displays to define the colors to be used for a
particular display. Color was a late addition to the TRAMCON On-Line system
and is not well developed. Basically, "green", "yellow", and "red" have been
used to color the text for the status conditions OK (green), minor (yellow),
and MAJOR (red), respectively. All the colors listed above are used to
display text information. The second row of color constants is used to
display text of the first color mentioned against a background of the second
color. For example, the "red_on_blue" constant is used to display the
heading lines for all displays in red letters over a blue background. The
"blue_onJellow" and "blue_on"red" constants are used by the SS program for
minor and major conditions respectively.

HP-263lG = 1; HP-2932A = 2; HP-2934A = 3;

The constant definitions above give meaningful names to the printer types
supported by the TRAMCON software and are referenced by program La each time
a new user logs-on to the TRAMCON system. The HP-263lG printer uses an
IEEE-488 interface and connects to the older HP-2647F terminal. Both unit
types are being replaced. The other two printer types are nearly identical
and use an RS232 serial interface to connect to an HP-2627A or an HP-2397A
terminal. The numeric value of the printer type constants is currently
stored in the Configuration data base record "crt record" field
"printer_type" .

MAJOR = 2; minor = 1; status = 0;

The names "MAJOR", "minor", and "status" are associated with the two-state
data type in the Configuration data base record "equipment_record" defined
below. The two-state type indicator "alarm_type" is found in the definition
of the record "two_state_record", which is, in turn, part of the
"equipment_record".

The next set of constant definitions are various critical dimensions of the
Configuration data base. By using CaNST definitions, the data base sizing
can be altered by changing only the desired CaNST and recompiling and
reloading. Since the identifier associated with the changed constant value
did not change, no further changes are necessary to the source code. The
following constant values were chosen based on the DRAMA radio equipment
requirements plus an expansion cushion of 10 to 15 percent.

126

max archive record = 200; (number of archive records per-remote-unit)

The constant "max_archive record" defines how many records in the disc file
(ARCH are assigned to each remote unit defined on the given master.
Currently, 200 records are reserved for each remote unit. Therefore, 200
separate events can be archived on disc for any given remote unit. To keep
more information for each remote unit, simply increase this constant, then
recompile and reload $MPLIB, MTRP, PLRP, and AL.

The constant "max_segments_per_net" is used in the definition of the array
"segment_info" in the Configuration data base record "network_record" below.
It is also used by the program DT as a loop-terminator when searching through
the "segment_info" array in the "network record".

The constant "max_mastersyer_net" is similar to "max_segmentsyer_master"
except it is used in the "master_info" array of the "network record".

The constant "max_links_per_net" is used below in the TYPE definition
"link_defytr", which, in turn, sizes the Configuration data base array
"links_record" thus affecting the record definition for the disc file (LINKS.
A change to this constant would require that the Configurator program CONFI
be recompiled and reloaded so that it can be used to create a new (LINKS file
with the new record size. Refer to Section 11.4 of this manual for a
discussion about changing record sizes in the disc files.

The constant "max_segmentsyer_master" is used below to calculate CaNST
"max_sitesyer_master", to define an upper bound to the TYPE
"master_segment_ordinal", and to dimension the array "segment" in the
Configuration data base record "master_record". The range TYPE
"master_segment_ordinal" affects the size of the "date_record", which is used
in the disc file (DATE and the dimension of the HEAP arrays "time it" and
"time val". C

Even though the present TRAMCON design supports only two segments, this value
was left at four so we would not change the size of the master record, which
would require us to redo both the On-Line and the Configuration software.
More importantly, this would require a change in the record sizes for the
disc files (MAST and (DATE. Changing the size of records in the fixed record
length disc files is a major job. The gain here would just be a few words of
space in the files (MAST and (DATE and in the HEAP, which stores the master
record during TRAMCON operation. Refer to Section 11.4 for a discussion
about changing record sizes in the disc files.

127

The constant "max_crtsyer_master" is used below to set an upper bound for
the TYPE "master_crt_ordinal", which, in turn, is used to dimension the array
"crtytr" in the Configuration data base record "master_record" and the array
"current crt" in the main HEAP record "heapytrs" below.

A change to this constant would require that the Configurator program CONFI
be recompiled and reloaded so that it can be used to create a new (MAST file
with the new record size. Refer to Section 11.4 for a discussion about
changing record sizes in the disc files.

The constant "max_remotesyer_segment" is one of the most important constants
in the TRAMCON software. This constant is used to set an upper bound for the
TYPE "segment_remote_ordinal", which, in turn, is used to dimension the array
"remote_info" in the Configuration data base record "segment_record" and to
dimension the array "remote_status" in the HEAP record
"segment_status_record". The current value of 21 was chosen because, by
using one line for each remote unit and allowing for three lines of heading
and time-stamp, the information for up to 21 remote units could be displayed
on a single 24-line display. A recent change was made to the format of the
SS display to actually accommodate a 2l-remote-unit segment.

This constant is a limit on the number of PHYSICAL remote units that can be
defined for any segment regardless of how many of those PHYSICAL units are
grouped together into multiple (LOGICAL) units. For example, if a
hypothetical segment has two LOGICAL remote units defined, each of which
consisted of 10 PHYSICAL remote units, only one more remote unit could be
defined on that segment.

A change to this constant would require that the Configurator program CONFI
be recompiled and reloaded so that it can be used to create a new (SEG file
with the new "segment_record" size. Refer to Section 11. 4 for a discussion
about changing record sizes in the disc files.

The constant "max_trunksyer_segment" is used as an upper index limit in the
ARRAY TYPE "pcm_histogram_array", which, in turn, is used as the TYPE of the
field "pcm_counts" in the HEAP record "segment_status_record" and in the
definition of the record "pcm histogram record". This record definition is
used for the disc file (PHIST~ This co~stant is used as an upper limit for
the index of the array "trunk_info" in the Configuration data base record
"segment_record". Constant "max_trunksyer_segment" is also used by programs
PC and PH as a LOOP terminator.

A change to this constant would require that the Configurator program CONFI
be recompiled and reloaded so that it can be used to create a new (SEG file
with the new "segment_record" size. Refer to Section 11.4 for a discussion
about changing record sizes in the disc files.

max_mastersyer_segment = 4;

128

The constant "max_mastersyer_segment" is used as an upper bound for the
index of the ARRAY TYPE "alt_mast_array", which, in turn, is the TYPE of the
field "alternate_masters" in tl).e Configuration data base record
"master record" described below. This constant limits the number of masters
that can have any particular segment defined in their data base.

A change to this constant would require that the Configurator program CONFI
be recompiled and reloaded so that it can be used to create a new (MAST file
with the new "master record" size. Refer to Section 11.4 for a discussion
about changing record sizes in the disc files.

The constant "max_linkendsyer_remote" is another widely used constant. This
constant decermines how many sets of communication equipment can be monitored
by one PHYSICAL remote unit. This constant is used to set an upper bound on
the array "linkend_info" in Configuration data base record "remote_record".
Constant "max_linkendsyer_remote" is used as an upper bound on the range
TYPE "category_ordinal", which, in turn, is used to dimension the array TYPE
"category_array", the arrays "alarms", "a2ds", and "digitals" in record TYPE
"unpacked_response_record" and the array "archive_alarms" in the record TYPE
"archive_alarm_status_record". Array "archive_alarms", in turn, affects the
size of the record "archive_record" used in disc file (ARCH. This constant
also affects the dimension of the arrays "cal_curves", "a2d_bottom",
"a2d_top", "a2d_amber", "a2d_red", "digital_bottom", "digital_top",
"digital_amber", and "digital_red" in record TYPE "parm_record", which is
part of the HEAP "segment_status" data. It affects the dimension of TYPE
"cn record", which is both part of the HEAP
(he;pA.segment_status[segord].remote_status[remoteord].counts) and the record
definition for the disc file (CN. The last affect of this constant is on the
HEAP array "cat_status", which is in record TYPE "remote_status_record".

A change to this constant would require that the Configurator program CONFI
be recompiled and reloaded so that it can be used to create a new (REMOTE
file with the new "remote_record" size. Refer to Section 11.4 for a
discussion about changing record sizes in the disc files.

The constant "max_sitesyer_trunk" limits the number of nodes, including end
points, for a communications DIGROUP (also known as a TRUNK). This constant
sets an upper limit on the index for the array "nodes_In_trunk" in the
Configuration data base record "trunk_record" defined below.

A change to this constant would require that the Configurator program CONFI
be recompiled and reloaded so that
with the new "trunk_record" size.
about changing record sizes in the

it can be used to create a new (TRUNK file
Refer to Section 11.4 for a discussion
disc files.

{72 normal + 12 analog threshold + 44
digital threshold + 16 combination}

129

The constant "max_2states.J>er_1ink" limits the number of two-state
alarm/status values on a set of communications equipment that can be
monitored by the TRAMCON On-Line system. THIS IS A DATA BASE LIMITATION AND
SAYS NOTHING ABOUT ANY PHYSICAL REMOTE UNIT LIMITS THAT CURRENTLY ARE MORE
RESTRICTED. The current setting, 144, was chosen based on the DRAMA
communications equipment requirements, plus a 10 to 15 percent cushion. This
constant sets the upper bound for the subrange TYPE "link_2state_ordina1"
which is defined below. Through "link_2state_ordina1", this constant
affects: (1) the size of the HEAP record "current_1ink_status_record", (2)
the run-time data base disc file records "archive_record" [file (ARCH] and
"cn_record" [file (CN] , and (3) the Configuration data base record
"equipment_record".

A change to this constant would require that the Configurator program CONFI
be recompiled and reloaded so that it can be used to create a new (EQT file
with the new "equipment_record" size. Refer to Section 11.4 for a discussion
about changing record sizes in the disc files.

analog_start - 72;
digital_start = 84;
combo start = 128;

{Starting position of analogs within 2-state array}
{Starting position of digitals within 2-state array}
{Starting position of combos within 2-state array}

From the comment shown above for "max_2states.J>er_1ink", notice that the
total number of two-states is partitioned into types of two-states. The
constants "analog_start", "digital_start", and "combo_start" mark the ordinal
for the first two-state value of their respective types. The current
settings allow for 72 normal two-state alarm and/or status points, 12 analog
threshold crossing values (6 amber and 6 red), 44 digital parameter threshold
crossings (22 amber and 22 red), and 16 combination alarms. These constants
are used by the response processing procedures "unpack_response" and
"process_response" to position the alarm data in the generic global response
buffer "unpacked_response" and to analyze the two-state information using the
same positioning scheme to locate corresponding information in the
Configuration data base equipment record. If more of a particular two-state
type (normal alarm/status, analog parameter, digital parameter, or combo) is
desired, the appropriate constants must be changed here. The gain for the
expanded type will be at the expense of some other two-state type. Also,
these constants apply to ALL equipment monitored by TRAMCON. That is, no
matter what communications equipment is being monitored at a given location
only six analog parameter values can be monitored with the above settings.
The first 72 two-state values are those actually reported by the remote unit.
The other two-state types (analog, digital, and combo) are derived from the
real data. The analog and digital threshold-crossing two-state indicators
are determined by comparing the analog and digital parameter values reported
with the thresholds set by the operator. The combo two-state values are
derived from several real two-state values according to logical expressions
that were specified in the equipment record by the Configurator.

130

NOTE

The values for "digital_start" and "combo_start" are dependent upon
the two constants "max_a2ds.J>er_link" and "max_digitals.J>er_link"
defined below. To further ensure consist:ency, the definitions for
"digital_start" and "combo_start" could be placed after
"max_a2ds.J>er_link" and "max_digitals.J>er_link" to read as follows:

digital_start = analog_start + max_a2ds.J>er_link * 2;
combo start = digital_start + max_digitals.J>er_link * 2;

max_a2ds.J>er_link = 6;
max_digitals.J>er_link = 22;

The two constants "max_a2ds.J>er_link" and "max_digitals.J>er_link" place an
upper bound on the number of analog and the number of digital (pulse count)
parameters that can be monitored by the TRAMCON system for each category
(site or linkend). THESE ARE DATA BASE LIMITATIONS AND SAY NOTHING ABOUT ANY
PHYSICAL REMOTE UNIT LIMITS THAT CURRENTLY ARE MORE RESTRICTIVE. These
values are used in the calculation of "max_histos.J>er_link" below and as an
upper bound on the range TYPEs "a2d_ordinal" and "digital_ordinal", which are
defined below. These two range types, in turn, influence the size of the
global record "unpacked_response_record", the Configuration data base record
"equipment_record" and the HEAP records "current link ·status record" and
"remote status record".

A change to either of these two constants would require that the Configurator
program CONFI be recompiled and reloaded so that it can be used to create a
new (EQT file with the new "equipment_record" size. Refer to Section 11. 4 of
this manual for a discussion about changing record sizes in the disc files.
As you can see, increasing these values by even a small amount will
significantly increase the storage requirements for the HEAP (EMA).
Increasing either of the above values by one requires approximately
1200 words of HEAP storage.

The constant "max_histos_per_link" is NOT used in any of the data TYPE
definitions below, but is referenced in the program HI, approximately line 86
and the program HR, approximately line 69. With such limited use, this
constant could be removed in some future low priority housecleaning of
[RECR3.

The constant "max_relays_per_link" is used to set an upper bound for both the
subrange TYPE "relay_ordinal" and the index for the array "relays" in the
Configuration data base record "equipment_record" below. A change to this
constant would require that the Configurator program CONFI be recompiled and
reloaded so that it can be used to create, a new (EQT file with the new

131

"equipment_record" size. Refer to Se"ction 11.4 for a discussion about
changing record sizes in the disc files.

NOTE

To further ensure consistency, the subrange TYPE "relay_ordinal"
should be substituted for "0 ..max_re1aysJer_1ink-1" in the definition
of array "relays" in the Equipment record below.

The constant "max_combosJer_1ink" is used to set an upper bound for the
index for the array "combos" in the Configuration data base record
"equipment_r.ecord" below. A change to this constant would require that the
Configurator program CONFI be recompiled and reloaded so that it can be used
to create a new (EQT file with the new "equipment_record" size. Refer to
Section 11.4 for a discussion about changing record sizes in the disc files.

~specific_names= 40;

The constant "max_specific_names" is used to set an upper bound for the index
for the array "specific name" in the Configuration data base record
"link-end record". Thi; value is the maximum number of two-state indicators
that can be uniquely defined for any given link end. A change to this
constant would require that the Configurator program CONFI be recompiled and
reloaded so that it can be used to create a new (LINK file with the new
"link-end record" size. Refer to Section 11.4 for a discussion about
changing record sizes in the disc files.

The constant "max_counts_per_1ink" specifies how many two-state values, of
the possible "max_2statesJer_1ink" , can be designated to be counted for any
given link end. It is used to set an upper bound for the index for the array
"counts_array", which is defined below. The array "counts_array", in turn,
affects the size of the record "cn record". "cn record" is used as the
record description for disc file (CN and in the HEAP as part of the record
"remote_status_record", each of which is described below.

dictionary_size = 14000;

The constant "dictionary_size" defines the size, in bytes, of the
Configuration data base dictionary, which is described below. The previous
value of 4000 used in Version 1.7.3 was found to be inadequate for an average
field system dictionary. The new value of 14000 should be more than
sufficient for any future'needs and should NOT have to be changed. The
constant "dictionary_size" is used to set an upper bound for both the pseudo
pointer TYPE "dictionary_ptr" and the index for the character array
"dictionary" both of which are defined below.

132

expression_size = 16;

The constant "expression_size" limits the number of nodes (Le., LOGICAL
operators or operands) that can. be used to compose a combination two-state
alarm. It is used to set an upper limit for t:he subrange TYPE
"expression_ordinal", which is used as the index for the TYPE
"expression_tree", which, in turn, is used to define the field "expression"
in the record "combo record". The record "combo record" is a field in the
Gonfiguration data base record "equipment_record". All of these TYPES are
defined below. A change to this constant would require that the Configurator
program CONFI be recompiled and reloaded so tl1at it can be used to create a
new (EQT file with the new "equipment_record" size. Refer to Section 11.4
for a discussion about changing record sizes in the disc files.

max words = 6;

The constant "max_words" specifies how many "dictionary_word"s can be used to
construct the English phrase TYPE "name_list" described below. It is used to
set an upper limit for the index into the array TYPE "name_list". Programs
that display such things as alarm descriptions or parameter names use this
constant as a LOOP terminator.

The constant "dictionary_word_size" places an upper limit (number of
characters) that can constitute a WORn in the Configuration data base
dictionary. This constant is used as the upper limit for the index into the
character array type "dictionary_word" defined below. This constant is used
by the routine "read_diet" (approximately lines 442, 446 and 447) in $TRLIB
as a loop terminator.

max_1inksyer_segment = 25;
max_remotesyer_master=max_remotes_per_segment*max_segmentsyer_master;
max_equipmentsyer_master = 20;

NOTE

The constants "max_1inksyer_segment", "max_remotesyer_master", and
"max_equipmentsyer_master" have NO current references. These
constants are used by the Configurator and were anticipated to be
used by the on-line software.

bell = #7;
ret = #13;

esc = #27; colon
delete = #127; 1f

, . , .. ,
#10;

slash = #47; space_bar = , ';
form_feed = #12; tab = #9;

The single character constants defined above serve to give convenient and
readable identifiers to commonly used ASCII characters. All of these
constant definitions, except "colon" and "space_bar", give a very readable
name to unprintable ASCII CONTROL characters (refer to the Pascal/1000
reference Manual, p. 5-30). Most of these constants are used in terminal

133

f'

output statements. Since much of the output is buffered (see Section 9), the
two most.commonly used constants from above are "ret" and "If" because they
must be manually specified at the end of logical screen lines. The terminal
driver supplies these two characters automatically only at the end of a
physical WRITE, such as WRITELN. The next most commonly used constant above
is "esc" because much of the output to the screen is screen control and setup
information, which is triggered by an escape character. These constants are
referenced by the display program scheduler CMMD, every display program, and
the display refresh routines in $MPLIB.

cmd_alfasl = 'UNMASSALARPAMEHEHICNPCPHSWCRCCCFPOACINENDTPM';
cmd_alfas2='OPSESMSIDEPRLSSCSRMSOLCOSTDlLOWHLUEQUPDNOFRUVEUSPFPWEDIL';

The last two entries in the CONST section of [RECR3 are the two string
constants "cmd_alfasl" and "cmd_alfas2". These strings are used by the
TRAMCON command parsing routine "parse_it" in program CMMD. The use of these
string constants and the command parsing processing is detailed in
Section 5.2. Basically, each TRAMCON command is uniquely identified by a
two-character command code that must be the first item in any command entry.
Each pair of characters, starting at the beginning of "cmd_alfasl" and
continuing to the end of "cmd_alfas2" is one of these two character command
identifiers. For command parsing convenience, the real command codes are
bracketed by the command codes "UN" which stands for undefined and "IL" which
stands for illegal. There is a one-to-one correspondence between the
character pairs in these strings and the elements in the class called "cmds",
which is defined below. For example, the first two characters in
"cmd_alfasl", "UN" corresponds to the first element in "cmds", "un". The two
strings can be considered as one long string and were broken into two because
the long string literal would not fit on an 80-character line for easy
reading.

11.1.2 TYPE Section of [RECR3

Though it is not the only one, common use is the prevailing reason for
placing a TYPE definition in the module [RECR3. Another good reason has to
do with the strict typing rules imposed by the Pascal language. All
procedures and functions must be predefined, and the type and number of the
formal parameters must exactly match the type and number of the actual
parameters in each call of the given procedure or function. By placing the
type definitions here, both the formal procedure declarations and the VAR
declarations can make use of them. Another good reason for placing type
definitions here is to give readable names to otherwise vague numeric range
types.

All of the TYPES describing the records in the Configuration data base Liles
and those TYPES describing the organization of the shared memory, called the
HEAP, are contained in this section of module [RECR3.

byte = 0 .. 255; nibble = 0 .. 15; INT = -32768 .. 32767;

The three range types above can be considered as additions to Pascal's
predefined BASIC types. By far the most popular of the three is "INT" , which

134

is the one-word (16-bit) version of the predefined the two-word (32-bit) type
INTEGER. Most integer values in the TRAMCON software are one-word "INT"
values because they take half the space and the arithmetic is twice as fast.
The value "byte" defines an 8-bit integer and is used in a few places,
especially in packed structures. The value "nibble" defines a 4-bit integer
but is rarely used in packed structures.

cmds = (un,ma,ss,al,ar,pa,me,he,hi,cn,pc,ph,sw,cr,cc,cf,po,ac,
ih,en,dt,pm,op,se,sm,si,de,pr,ls,sc,sr,ms,ol,co,st,
di,lo,wh,lu,eq,up,dn,off,ru,ve,us,pf,pw,ed,il);

The class "cmds" enumerated above is the list of official TRAMCON commands
and is referenced by the command parsing routine "parse_it" in the program
CMMD. Notice the one-to-one correspondence between the elements of "cmds"
and each two-letter pair in the string constants "cmd_alfasl" and
"cmd alfas2" above. As explained in Section 5.2, adding or deleting commands
requires that an element be added to or deleted from this class and the
corresponding two letters be added to or deleted from one of the string
constants, "cmd_alfasl" or "cmd alfas2". It is very important that the order
be maintained. First, the bracketing fictitious commands "un" and "il" must
never be deleted. Second, all true commands must be placed between these two
commands. Last, there is another program that references the class "cmds".
Program US gathers statistics on the use of the TRAMCON commands. Currently,
US monitors the use of the commands between the commands "un" and "us".
These statistics are stored in the one record. on the disc file (STATZ. If
any command is added or deleted between the commands "un" and "us", the
record size for file (STATZ would change. This new record must be written to
file (STATZ before the TRAMCON system will bootup properly. The problem
caused by changing the record size for a type 2 (fixed-length record) disc
file is explained in detail in Section 11.4.

two chars PACKED ARRAY[1 .. 2] OF CHAR;
three chars PACKED ARRAY[l. .3] OF CHAR;
four chars PACKED ARRAY[l. .4] OF CHAR;
five chars PACKED ARRAY[1 .. 5] OF CHAR;
six chars PACKED ARRAY[1 .. 6] OF CHAR;
seven chars PACKED ARRAY[1 .. 7] OF CHAR;
eight_chars PACKED ARRAY[1 .. 8] OF CHAR;
ten chars PACKED ARRAY[l. .10] OF CHAR;
time str PACKED ARRAY[1 .. 12] OF CHAR;
fourteen chars PACKED ARRAY[1 .. 14] OF CHAR;
sixteen chars PACKED ARRAY[l. .16] OF CHAR;
twenty_chars PACKED ARRAY[l. .20] OF CHAR;
twenty8_chars PACKED ARRAY[l. .28] OF CHAR;
forty_chars PACKED ARRAY[1 .. 40] OF CHAR;
sixty_chars PACKED ARRAY[1 .. 60] OF CHAR;
cmd str PACKED ARRAY[l ..max_chars-per_cmd] OF CHAR;
response_str PACKED ARRAY[l ..max_chars_per_response] OF CHAR;
soft_key_1abe1s_type = PACKED ARRAY[3 .. 8] OF twenty_chars;
time_string = STRING[28];

135

Most character strings used in the TRAMCON On-Line software are defined above
and are PACKED ARRAYS OF CHAR rather than the newer HP extended type STRING
because the type STRING has a header part associated with the actual string
body. This header is difficult to deal with when passing strings as
parameters, especially when using predefined routines from the relocatable
library that are tailored to FORTRAN 77.

four bits
seven bits

0 .. 15; five bits
0 .. 127; eight_bits

0 .. 31; six bits
0 .. 255; nine bits

O•• 63;
O•• 511;

The range types above are sub-machine-word size and are very useful for
defining fields in PACKED RECORD definitions below. The names are
self-explanatory and represent the minimum amount of bits needed to represent
every integer in the subrange. The subranges do not include negative numbers
because the primary intent of these types is to cause the allocation of a
fixed number of bits to a field and to allow the software to reference this
fixed number of bits.

1·,

crt_msg_ordinal
master_segment_ordinal
category_ordinal
relay_ordinal
link 2state ordinal
a2d ordinal
digital_ordinal
master crt ordinal- -
segment_remote_ordinal
expression_ordinal

1. .max_crt_msg{5};
0 ..max_segments-per_master{4} - 1;
site_category..max_liTIkends-per_remote{3}-1;
0 ..max_relays-per_link{20} - 1;
O..max_2states-per_link{144} 1;
0 ..max_a2ds-per_link{6} - 1;
0 ..max_digitals-per_link{22}
0 ..max_crts-per_master{5} - 1;
0 ..max_remotes_per_segment{2l} - 1;
0 .. expression_size{16} - 1;

The set of subrange types above is extremely important to the software that
references the Configuration data base data and the dynamic HEAP data
corresponding to the Configuration data. These values are extensively used
in the Configuration data base TYPE definitions and the dynamic HEAP TYPE
definitions below. All of them are used as index subranges for various
arrays in the data defined below and thus have the term "ordinal" as part of
their names. Most of the subranges start at 0 and are bounded on the upper
end by one less than some previously defined constant. This is one of the
programming conventions chosen by the TRAMCON software developers and the
reasons for this choice are enumerated in Section 8.4.

The subrange "crt_msg_ordinal" is used as the index range for the arrays
"msg_ords", "msg_segords", "msg_remoteords", "msg_priorities", "msg_lengths",
and "msgs" in the HEAP record "current crt" all defined below. The upper
bound of this subrange is based on the value of constant "max_crt_msg", which
is defined above.

The subrange "master_segment_ordinal" is used as the index range for the
arrays "latIons", "remotes_displayed", "alarms_acknowledged",

136

"remotes_to...,print", and "alarms_inhibited" in the HEAP record "current_crt",
and for the arrays "time_it", "time_val", "EMA_start", "EMA_end",
"EMA_required", and "resp_stats" in the main HEAP record "heap...,Ptrs". This
subrange is also used as an index range in the arrays "transmission" in the
HEAP record "statz_record" and in the arrays "segnames" and "nremotes" in the
global record "date_record" all defined below. The upper bound of this
subrange is based on the value of constant "max_segments-per_master", which
is defined above.

The subrange "category_ordinal" is used as the index range for the arrays
"alarms", "a2ds" , and "digitals" in the global data record
"unpacked_response_record", "archive_alarms" in the global data record
"archive_record" and "cat_status" in the HEAP record "remote_status_record".
This subrange is also used as an index range in the arrays "cal curves",
"a2d_bottom", "a2d_top", "a2d_amber", "a2d_red", "digital_botto~",
"digital_top", "digital_amber", and "digital__red" in the HEAP record
"remote_status_record.parm_data" and in the array "cn record" all defined
below. The upper bound of this subrange is based on the value of constant
"max_Iinkends""per_remote", defined above.

The subrange "link_2state_ordinal" is used as the index range for the arrays
"digitals" in the global data record "unpacked_response_record",
"equip_digital" in the Configuration data base record "equipment_record" and
"current_digitals" in the HEAP record "current_Iink_status_record" all
defined ,below. The upper bound of this subrange is based on the value of
constant "max_2states""per_Iink" , defined above.

The subrange "a2d_ordinal" is used as the index range for the arrays "a2ds"
in the record "unpacked_response_record", "equip_a2d" in the Configuration
data base record "equipment_record" and "current_a2ds" in the HEAP record
"current_Iink_status_record", all defined below.

The subrange "digital_ordinal" is used as the index range for the arrays
"digitals" in the record "unpacked_response_record", "equip_digital" in the
Configuration data base record "equipment_record", and "current_digitals" in
the HEAP record "current_Iink_status_record", all defined below.

The subrange "master_crt_ordinal" is used as the index range for the arrays
"cnt_cmds" in the record "statz_record", "crt_ptr" in the Configuration data
base record "master_record", and "current_crt" in the HEAP.

The subrange "segment_remote_ordinal" is used as the index range for the
arrays "transmission" in the record "statz_record", "~emote_info" in the
Configuration data base record "segment_record", "remote_status" in the HEAP
record "segment_status_record", and both HEAP arrays "lats" and "Ions" which
are fields in the record "current_crt. latIons" defined below.

The subrange "expression_ordinal" is used as the index range for the array
"expression" in the record "combo_record", which is part of the record
"equipment_record" defined below.

137

data_control_block = ARRAY[l .. l44] OF INT;

The TYPE "data control block" defines the standard size File Manager (FMGR)
data control block used to control FMGR disc file I/0. The FMGR data control
block is discussed in the RTE-6/VM Programer's Reference Manual, p. 3~15.

This TYPE definition is used by program DT, which must make extensive use of
the FMGR I/O functions to transfer data from master to master. Use of
standard Pascal I/O routines in program DT was not possible with the
distributed system (DS) software. The DS software allows FMGR routines to be
performed remotely (at the far node). The references in program DT are at
lines 77, 106, 110, 114, 118, 121, 125, 129, and 132. This TYPE is also
referenced by the routines in $TRLIB that are used to schedule type 6
programs. These references are at lines 127 (open_file), 131 (idrpl), 135
(close_file), 812 (run_prog) and 823 (clone_and_run).

parm_array
time_array
twenty_int
hist_array
atoi result

= ARRAY[l. .5] OF INT;
= ARRAY[l .. 6] OF INT~

= ARRAY[l. .20] OF nIT; {Ref by CMMD}
= ARRAY[l. .nbr_bins{l6}] OF INT;
= ARRAY[l .. 33] OF INT; (Ref by AL, CC, CF, CN)

The TYPES above are grouped together because they are all commonly used
arrays of single word integers. The most commonly used integer array above
is the "parm_array", which is used primarily as the global storage for the
five run string parameters passed to a program when it is scheduled. The
INCLUDE module has a VAR called "parms" which is of TYPE "parm_array". Most
TRAMCON programs call the routine "getJ>arms" ($TRLIB) with "parms" as the
only parameter.

The integer array TYPE "time_array" is used by the time-synchronization
programs SR, TIMPAS, and TIMSET to contain the six one-word integers that
represent the current time/date.

The integer array TYPE "hist_array" is used later in this module to define
the arrays "hist_a2d" and "hist_digital" in the HEAP record
"current_link_status_record" and to define the array "cal_curves" in the HEAP
record "parm_record". The TYPE "parm_record" is also used as the record
definition for the disc file (CURVE. The analog and digital parameter data
collected from the communications equipment is accumulated into discrete
BINS. The TYPE "hist_array" has one cell for each of these discrete BINS
with the upper limit of the array index controlled by the previously-defined
constant "nbr_bins". The actual parameter value read is compared with the
values in the array "cal_curves" and, when a match is made, the corresponding
value. in the array "hist a2d" or "hist_digital" is incremented. These counts
accumulate for one hour, then on the hour they are archived to the disc file
(HIST.

The integer array TYPE "atoi_result" is used by the programs AL, CC, CF, and
CN to hold the results of the ASCII string to the integer-parsing routine
PARSE (system name $PARS) , discussed in the RTE-6/VM Relocatable Library
Reference Manual, p. 5-12.

138

NOTE

PARSE - Finding the information on this routine is difficult since
there is NO mention of PARSE or its system library name $PARS in
the index or any lists of routines that can be found in the
Re1ocatab1e Library Manual. The only mention of it is in the table
of contents, and this can be easily overlooked because of the large
number of routines in the library. Also, this routine is completely
omitted from the newer editions of the Re1ocatab1e Library Manual.
The manual that corresponds to the A.8S version of software used to
develop the TRAMCON software has part no. 92084-90013 and a December
1981 printing date.

(two_state, a2d, pulse_count); {3}

NOTE

There is one reference to this type definition in the routine
"transform ordinal" in $MPLIB.

msg_status = (polls, msg_ok, par_err, bad_res, no_ans); {S}
statz_record = {6S0 wds, record for file (STATZ)

RECORD
cnt_cmds: ARRAY[un.. us{46}, master_crt_ordinal{5}] OF INT;{230 wds}
transmission:

ARRAY[master_segment_ordinal{4}] OF
ARRAY[segment_remote_ordinal{21},msg_status{5}] OF INT; {420 wds}

END;

The record TYPE "statz_record" describes some TRAMCON performance statistics
that can be gathered to help the system developers fine-tune the software to
make TRAMCON a more useful, more responsive product. The contents of the
(STATZ disc file is placed in the HEAP record "statz" by the program INIT at
system bootup. During any hour, the statistical data is accumulated into
this HEAP record. The information in the HEAP "statz" record is permanently
stored on disc in file (STATZ by the program. HR every hour on the hour to
ensure that, in case of trouble, the data will be no more than one hour old
when the system is restored.

The first set of data collected, "cnt cmds", is a count of the number of
times that each TRAMCON command is entered. These counts are individually
tallied for each command entered on each terminal keyboard. Currently,
counts are tallied for the commands between and including the commands "un"
and "us" only. Deleting or adding a command between these two commands will
change the size of the record for file (STATZ and require that the new file
size be written to the file before the TRAMCON software can run (see

139

Section 11.4). The intention of this data is not to spy on the operators,
but to determine which commands are useful and which are not.

The second set of data collected, "transmissions", is a count of remote unit
responses received from each remote unit on each monitored segment. The
count is broken down into one of five categories that are enumerated in the
CLASS TYPE "msg_status" above. Each response received is counted as one of
the following:

OK - NO errors detected in response transmission
PE - the response contained at least one parity error
BR - the response was marked as a bad response
NA - the response was marked as No Answer, POLLER ONLY

Also available, only for a master in POLLER mode, is the total number of
POLLs. This value is incremented each time a POLL message is sent to a
particular remote unit. The intention of these data is to monitor the
performance of the communications channel between the TRAMCON master computer
and the remote units. To this day, this channel, the radio supervisory, is
plagued with noise and transmission problems. These data could help solve
those problems.

pcm_histogr~array= (200 wds)
ARRAY[1 .. 2,O ..max_trunks-per_segment{lOO)-1] OF INT;

The array TYPE "pcm_histogram_array" is used in the definition
"pcm_histogram_record" and as the field "pcm_counts" in the HEAP record
"segment_status_record". This array holds the DIGROUP alarms for each end of
each TRUNK (up to "max_trunks-per_segment") defined on a given segment.

pcm_histogram_record = ARRAY[O .. 23] OF pcm_histogram_array; {4800 wds}

The array TYPE "pcm_histogram_record" is the record description for the disc
file (PHIST. One record contains the DIGROUP alarms for all the DIGROUP
alarm counts for one TRAMCON segment for 24 hours. The programs HR and PH
reference this TYPE for accessing the disc file (PHIST.

Program HR reads each record from file (PHIST and copies the values for the
current hour from the HEAP value "heap".segment_status[segord].pcm_counts"
into the proper place in the 24-hour record, then rewrites the entire record
to disc and sets the values in the HEAP to zero for the next hour.

Program PH reads the record for the selected segment and displays the values
for the past 23 hours. The current hour's data is displayed from the HEAP
"pcm_counts" array.

sc indexs record ARRAY[O .. 29] OF {630 wds, record for disc file (SC)
RECORD passwd:two_chars; (l wd)
f_description:forty_chars (20 wds)
END;

140

alfa_int_record = {2 wds}
RECORD
CASE data_type:BOOLEAN OF

TRUE: (intgr: INT);
FALSE: (alfa: two_chars)

END;

The record TYPE "alfa_int_record" is used, much like the equivalence feature
in FORTRAN, to refer to a value sometimes as a one-word integer (using
identifier "intgr") and other times as two ASCII characters packed into one
word (using identifier "alfa").

NOTE

Even though either definition for the body of the record, "intgr"
or "alfa", is one word, the size of an "alfa_int_record" is two
words. The overhead word is used to hold the value of the VARIANT
TAG "data_type". The TAG field is optional and could be eliminated
to avoid the one-word overhead.

eqt5_word = {I wd}
PACKED RECORD
controller_availability: 0 .. 3;
eqt_type_code: six_bits;
eqt_statusl: 0 .. 7;
data_set_NOT_ready: BOOLEAN;
eqt_status2: nibble;
END;

eqt4_word = {I wd}
PACKED RECORD
dma, auto_buffer, driver_doJ>f, driver_do_to, timedout: BOOLEAN;
subchannel: five_bits; select code: six_bits;
END;

status3_word = {I wd}
PACKED RECORD
device_down: BOOLEAN; {I bit}
fill: nine_bits; subch: six bits
END;

The three record TYPEs "eqt5_word", "eqt4_word", and "status3_word" defined
above are used to hold the one-word values returned by the system routine
EXEC when an I/O status request (function code = 13) is made (refer to RTE­
6/VM Programer's Reference Manual, p. 2-74). These status EXEC calls are
only done to check the condition of the terminal devices since the devices
are the only peripherals that can be removed and/or installed without
disrupting the TRAMCON function. That is, terminal equipment may be defined
now and not installed until a later date, or a terminal may break and be sent

141

for repair while the TRAMCON master remains fully operational (refer to
Section 9).

Each of the above values is one word long. The first parameter, "eqt5_word",
is mandatory and contains the information in word 5 of the Equipment Table
entry for the equipment number specified in the EXEC call. The other two
values are optional. The content of the Equipment Table entries is detailed
in the RTE-6/VM Programer's Reference Manual, pp. E-I through E-6.

The routine "crt status check" in $TRLIB issues a status request on a- -
specified terminal and checks for a "status3.device_down" indication or a
"eqt4.timedout" indication. Either of these flags is interpreted as a
malfunction of the terminal device and the program UP is informed of this
fact. Program CMMD issues a status request for a terminal device, after
getting input from an operator at the given terminal, to see if the keyboard
input request has timed out. If "eqt4.timedout" is true, CMMD assumes that
the operator no longer wishes to enter a command, the "Enter Command" prompt
is erased and a new single character keyboard "wakeup" read request is
issued. Program UP also issues a status request to a terminal device to see
if the terminal is once again operable.

date_record = {37 words}
RECORD
yr, jdy, offset, heap_class_no, configuration_flag ,unused: INT;{6 wds}
version_date: INTEGER; {2 wds}
version_nbr: REAL; {2 wds}
segnames: ARRAY[master_segment_ordina1{4}] OF si~chars; {12 wds}
nremotes: ARRAY[master_segment_ordinal{4}] OF INT; {4 wds}
dmy1,dmy2,dmy3: INT; {3 wds}
password: parm_array; {S wds}
time_seria1_number: INT; {1 wd}
message_serial_number: ARRAY [1. .10] OF INT; {1 wd}
logoff_c1ass_no: INT; {1 wd, STOFF sets to 0 when ST command entered}
END; {AUTOR checks if > 0 then TRAMCON is active}

The record TYPE "date_record" was so named because the time/date was the
first information to be stored in this record. Since that time, a potpourri
of information has made its way into this record. This record TYPE is a
description of the record for the disc file (DATE. Basically, TYPE contains
information about the TRAMCON master computer, which can be used by programs
that are not scheduled by the program CMMD or by remotely scheduled programs
in the rare instance when a TRAMCON master, including IPC, is operational but
the TRAMCON On-Line software is not.

The year "yr" and the Julian day "jdy" are updated from the hardware clock by
the program SETDT, which must be explicitly run by the operator whenever the
hardware clock is adjusted. On most power failures, the hardware clock
remains correct because it is backed up with a 6-volt lantern battery. If
the lantern battery becomes too weak to back-up the clock and the system

142

experiences a power failure, the hardware clock will fall behind for the
remainder of the power outage.

The I/O CLASS number "heap_class_no" is a very important value, which allows
TRAMCON programs that are NOT scheduled by the program CMMD to access the
shared data area called the HEAP. This CLASS number is allocated by the
program INIT at TRAMCON bootup. An output buffer containing the two-word
first word address (FWA) of the HEAP is attached to this CLASS number. Any
program NOT scheduled by CMMD but wanting to access the HEAP information can
read the "date_record" from file (DATE, place the "heap_class_no" into global
VAR "parms[l]" and call routine "allocate EMA" which uses the value in
"parms[l]" to perform a CLASS GET of the FWA for the HEAP.

The integer "configuration_flag" is another important item that indicates the
availability of the fallback and/or new Configuration data bases. If this
value is one, both a new and a valid fallback data base exist. Program SETDT
sets this value to one. If the value is two, only a fallback data base
exists; if the value is three, only a new data base exists. If the value is
negative, the data bases are being updated and cannot be accessed
temporarily.

The "version_date" and the "version_nbr" are set by the program SETVE and
represent the On-Line version time/date stamp (seconds since midnight
January 1, 1970) and version number (e.g., 1.82). These values are read and
displayed in the lower lefthand corner of thE~ TRAMCON logo at bootup by the
program INIT. They are also displayed on the command line when the operator
enters the VE command.

The arrays "segnames" and "nremotes" are set by the program INIT as the data
base is read in at bootup. The arrays represent the short segment names and
number of remote units for each segment defined in the data base. This
information is currently used by the program DT running on another master.
Program DT must determine what TRAMCON information the two communicating
masters have in common and whether the TRAMCON On~Line software is running on
the far master. To discover this, the DT program establishes contact with
the selected master and reads the "date_record" from the (DATE file on the
far master. The "segnames", "nremotes", and "logoff_class_no" are returned
to the calling master. If "logoff_class_no" from the far master is non-zero,
then the TRAMCON On-Line software is running on the far master. The DT
program running on the calling master can then compare the segment names in
the "segnames" data just received against its own segment names in the HEAP
to determine if there is any TRAMCON data in common.

The values "time_serial_number", "message_serial_number", and "offset" are
set and referenced by the programs involved in synchronizing the time/date
clocks between masters.

The "logoff_class_no" is allocated and placed here by the program CMMD at
system bootup. This integer is normally used as the CLASS number in the
programs LOF and X to return a terminal device from session monitor to the
TRAMCON On-Line software. When TRAMCON is terminated with the ST command at
the system console, "logoff_class_no" is set to zero by the program TROFF.

143

Two programs are interested in the situation when the TRAMCON On-Line
software is inactive but the master computer is functioning (this is a very
unusual situation). Program AUTOR, which recovers from power failures, must
know if the on-line software was NOT running so that it does not attempt to
reschedule some of the periodic programs, such as HR. Also, the DT program
at a distant master must know that the On-Line software at the local master
is NOT running so that it does not attempt to transfer TRAMCON related data.

msg_record = {16 wds}
RECORD
caller_class, seg_ord, remote_ord, msg_len: INT; {4 wds}
cmd_byte, cat_byte: CHAR; {2 wds}
msg_body: twenty_chars {lO wds}
END;

The record TYPE "msg_record" is used by any program that wants to send a
request to a particular remote unit on a particular segment. Currently these
programs include PLRP, MTRP, and 5W. These messages are composed by the
program sending the request and passed, via a CLASS WRITE/READ request issued
on the CLASS number "poll_class" (found in the HEAP) with LU set to zero (see
RTE-6/VM Programer's Reference Manual, p. 2-38), to the program POLL, which
acquires the messages with a CLASS GET request issued on the same
"poll_class". Program POLL acts as a central clearing agent for all outgoing
messages to the segments and their remote units. This ensures that all
messages issued for each segment channel are placed in sequential order and
that no two messages are issued for the same channel at the same time.

Each program (currently only PLRP, MTRP, and SW) has a unique CLASS number
(allocated by program CMMD and stored in the HEAP at bootup). Each program
looks for input (remote unit responses) via a CLASS GET on that CLASS number
only. That CLASS number is passed to program POLL as the value of
"caller class" and POLL issues a CLASS/READ (EXEC 17) on that "caller class"
so that the proper program gets the remote unit response. The segment and
the remote unit on that segment are specified to POLL in the values "seg_ord"
and "remote_ord", where "selLord" is in the range "master_segment_ordinal"
and "remote_ord" is in the range "segment_remote_ordinal", both of which are
described above in this section. The length of the message going to the
remote unit, in bytes, is specified in "msg_len". The request type is
specified in "cmd_byte". Current request types supported for the DATALOK10
are

cmd byte
N
C

Reguest Description
NORMAL Poll with FULL response
Relay CONTROL request with FULL response

Program 8TH sends a "c" request and programs MTRP and PLRP send "N" requests.

144

-- -----_._------------

entry-point_record - PACKED RECORD {4 wds}
ep_name: five_chars; ep_type: seven_bits;
ep_address: INT
END;

disc_block_buff - ARRAY[I .. 32] OF entry-point_record; {128 wds}
disc addr rec - {l wd}

PACKED RECORD track: nine_bits; sector: six_bits; odd: BOOLEAN END;

The three record descriptions above can be used by any program to locate any
system ENTRY POINT that is not stored in the memory-resident portion of the
operating system. Due to space restrictions, several seldom-used ENTRY
POINTS are stored in a table in the disc-resident portion of the operating
system. This ENTRY POINT table is described in the RTE-6/VM Technical
Specifications Manual, Appendix H. Given an entry point name, a program
searches through this table of 4-word entries looking for a match with
"ep_name". If a match is found, the corresponding memory address in
"ep_address" can be used to acquire the value of the entry point.

pf record = {12 wds, record for disc file (PF }
RECORD
onJear ,on~day ,on_hour ,on_minute ,on_sec ,on_msec,
offJear ,off~day ,off_hour ,off_minute ,off_sec ,off_msec: INT
END;

The record TYPE "pf_record" is the record definition for the disc file (PF
that contains all the power failure event messages. These messages are
composed and placed in file (PF by the program AUTOR each time power is
restored. The time of failure is acquired by issuing a read request on the
power fail LU and the time of recovery is read from the software clock after
it has been updated from the hardware clock. The time/dates are stored in
the six one-word integer form that is returned from the EXEC 11 request. The
duration of the power failure is calculated by subtracting the OFF time/date
from the ON time/date.

crt_msg_record = {37 wds}
RECORD
msg_ord: INT; {l wd, -1 if message being passed}
msg_crtord: INT; {l wd, -1 if broadcast}
msg_segord, msg_remoteord, msg_audible,

msg-priority, msg_Iength: INT; {5 wds}
msg_alf: sixty_chars {30 wds}
END;

Each terminal (CRT) defined on this master has a set of messages that are to
be displayed on the command line of the CRT. Any program that wants to add
or delete a message from the list for a particular CRT or for all CRTs must
compose a "crt_msg_record" and pass it to the CRT message-processing program
MSG via a CLASS WRITE/READ request with LU set to zero (see RTE-6/VM
Programer's Reference Manual, p. 2-38) and issued on the CLASS number
"msg_class", found in the HEAP.

145

If the request references an existing message (such as a delete request), the
value of "msg_ord" will be a valid index into the arrays pertaining to the
CRT messages in the HEAP record "current_crt"; otherwise, "msg_ord" is set to
-1. The CRT to which this message belongs is identified by the value of
"msg_crtord", which has the range "master_crt_ordinal" and is used as an
index into the HEAP array "current_crt". This item is set to -1 if the
message is intended for ALL (broadcast) CRTs. An example of a broadcasted
message is the "XXXXXX Segment is NOT Responding" message issued by the
program MTRP if NO response from any remote unit on the entire XXXXXX segment
has been received for one minute. Many messages, such as the previous
example, make reference to particular segments and/or remote units. These
segments and remote units are identified by the values "msg_segord" and
"msg_remoteord". If the audible alarm should accompany a message, it is
defined by the value of "msg_audib1e". The messages for each CRT are
prioritized by the value of "msgJ>riority" so that if more than one message
is queued for a given CRT, the highest priority message will be displayed.
The actual message length, in bytes, is passed in "msg_1ength". Finally, if
it is a new message, the message body is passed in the string "msg_a1f".

data_char_type = (ASCII_char, eight_b, int_ger, six_b, BCD);
data_char = {1 wd}

PACKED RECORD
CASE char_tag: data_char_type OF
ASCII_char: (ch: CHAR);
eight_b: (bits: PACKED ARRAY[O .. 7] OF BOOLEAN);
six_b: (sixbits_fi11: O.. 3; sixbits: six_bits);
int_ger: (intgr: INT);
BCD: (BCD_filler: four_bits; BCD value: four_bits)

END;

The record type "data_char" can be used by any program that needs to deal
with a one-word data item in different formats at different times. For
example, the remote unit response is defined as a PACKED string of CHARS and
is read in that format. When unpacking the two-state information, the
"sixbits" variation of the "data char" definition is used because the
two-state data are packed as six one-bit pieces of data in the lower six bits
of the byte. To unpack the ana10g-to-digita1 information, which is encoded
as binary coded decimals, the "BCD_value" variation is used.

alarms_array = PACKED ARRAY[category_ordina1{4},
1ink_2state_ordina1{144}] OF BOOLEAN; {48 wds}

a2ds_array = ARRAY[category_ordina1{4},a2d_ordina1{6}] OF INT;{24 wds}
digita1s_array = ARRAY[category_ordina1{4},digita1_ordina1{22}] OF INT;
unpacked_response_recotd = {160 wds}

RECORD
alarms: alarms_array; {48 wds}
a2ds: a2ds_array; {24 wds}
digita1s: digita1s_array {88 wds}
END;

The "unpacked_response_record" is the generic format for a remote unit
response. The remote unit response preprocessing routines

146

"transform ordinal" and "unpack response" in $MPLIB convert responses
received from each type of remote unit supported (currently there are two
models of the DATALOK10, 1D and 1E) and converts those uniquely formatted
responses into the generic format of an "unpacked_response_record". The
response processing routine "process_response" in $MPLIB then analyzes all
responses in this generic format regardless of what type of remote unit it
came from. The data in any response are divi.ded into three types:
(1) "alarms", the two-state values; (2) "a2ds", the analog voltages; and
(3) "digitals", the pulse counts. The generi.c response is equivalent to a
Configuration data base equipment record multiplied by the number of
categories per PHYSICAL remote unit. That is, this record describes an
entire PHYSICAL remote unit response while an EQUIPMENT record describes only
one category (one link end) of a response. With this data structuring scheme
each category of a PHYSICAL remote unit could monitor a different kind of
communications equipment.

The array TYPES "alarms_array", "a2ds_array", and "digitals_array" are
referenced in the definition of "unpacked_response_record" directly below
them and as the TYPES of the global VARs "init_2states", "init_a2ds", and
"init_digitals" in the global VAR INCLUDE module [MPVAR. These three VARs
are used by the routine "unpack_response" to clear out global VAR
"unpacked_response" before unpacking each response.

The sizing of the "unpacked_response_record" is controlled by the constants
"max_2statesJer_link", "max_linkendsJer_remote", "Jilax_a2ds_per_link" , and
"max_digitalsJer_link", defined above.

si_response_record = (172 wds, Simulator response record, file (RR)
RECORD
request_error: INT; (1 wd. nonzero if remote unit detected error in

request received from TMT.
1. msg length limit exceeded.
2. command. error.
3. category error.
4. number(s) out of range.
5. date-time error.
6. numbers NOT in ASCENDING order.
7. numbers duplicated.
8. count error.
9. action error.

10. unwired/unused error.
11. momentary control deactivation error.
12. configuration table error.)

diag_error: INT; (1 wd. nonzero if remote unit background
diagnostics discover an error.

1. main processor failure.
2. data acquisition failure.
3. memory board failure.

4-17. I/O card failure.
18-255. software fault.)

147

diags: twenty_chars; (10 wds, one char per module in remote unit.
"0" - no CPU fault identified.
"m" - main CPU fault.
"a" - auxiliary CPU fault.)

response_body: unpacked_response_record; {160 wds}
END; {si_response_record}

The record "si_response_record" is used by the response simulation program SI
to define the packaged remote unit responses, which it stores on file (RR.

archive alarm status record = (119 wds)
RECORD
archJear: INT;
arch~day: nine_bits;
arch_hour: seven bits;
arch_minute, arch_second: byte;
archive_alarms: {114 wds}

PACKED ARRAY[category_ordina1{4},link_2state_ordina1{144}] OF
PACKED RECORD {3 bits}
arch~ust_c1eared, arch_new_a1arm,arch_a1arm_on: BOOLEAN
END;

END;
archive_idx_record = ARRAY[1 .. 124] OF INT; {124 wds}
archive_record = {125 wds, record for disc file (ARCH)

RECORD
CASE ar_rec_type: BOOLEAN OF

FALSE: (arch_idx: archive_idx_record); {124 wds}
TRUE: (arch_rcd: archive_a1arm_status_record) {119 wds}

END;

The record TYPE "archive record" is used to describe records on disc files
(ARCH and (ARCHX, which store the chdnge-of-state events reported by each
remote unit being monitored by the given master. The very first record in
file (ARCH is an index into the rest of both files and, therefore, has a
different record definition than the rest of the records. The two
definitions for "archive_record" (one for the index and the other for an
actual archive data record) are equated using a Pascal RECORD VARIANT. The
"arch idx" identifier refers to the index record definition
"archive idx record" and is the definition of the first record in the file- -
only. The identifier "arch_rcd" refers to the "archive_a1arm_status_record",
which is the definition of all the records on the file except record number
one.

The index record, number one in file (ARCH, contains two one-word integer
pointers for each remote unit monitored by the master. These integers
indicate the next available archive record number in each file, (ARCH and
(ARCHX, for the given remote unit.

148

NOTE

The index record is currently sized at 124 words. A more
convenient size would be 128 words, SinCE! that is the disc block
size. This would place all records in file (ARCH on disc block
boundaries and make the I/O to file (ARCH as efficient as possible.
The number of remote units supported by the archive file index would
increase from 124 to 128, but both values are much larger than the
current maximum number of remote units that can be monitored by one
master which is 42 (2 segments of 21 remote units each). To use the
full 128 words for the index record, the VARIANT TAG "ar_rec_type"
should not be specified, to avoid incurring the one word of
overhead needed to store the value of that tag.

NOTE

The fields "arch~day", "arch_hour", "arch minute", and "arch_second"
are defined as TYPES that are smaller than one word (16-bits) in
case the need arises to pack the archive record. This is currently
NOT the case since the index record variant is the larger of the two
definitions. Of course, access to these items is quicker in this
unpacked state.

The network software purchased from HP to support the master-to-master
communications over the InterProcessor Communications Channel (IPC) is
referred to in the literature as distributed systems (DS). Each master on
the DS network has a unique node number associated with it. The range TYPE
"DS_node" specfies the range of these node numbers. This range TYPE is
referenced in the definition "alt_mast_array" defined below. These node
numbers are assigned to each master by the Configurator program when it
composes the DS initialization program answer file (DINIT as part of the
master specific data base. The node number for each master is derived from
the record number of the corresponding master record in the universal
Configuration data base file <MAST. That is, if the Donnersberg master
record is the first record in file <MAST, then the DS node number for the
Donnersberg master is 1. The disc file (DINIT is tailored for each
particular master and is used by the program DINIT to initialize the DS
software on the particular master at bootup time and to establish that master
as a node on the IPC network.

dictionaryytr = nill{-1) .. dictionary_size{14000} - 1;

A "dictionaryytr" is an index into the l4000-character string called the
"dictionary", which is created by the Configurator, stored on disc file

149

(DICT, and read into the HEAP VAR "heap".dictionary" at system bootup.
Variables of TYPE "dictionaryJ>tr" are the index, in the character array
"heap".dictionary", of the first character of a dictionary word defined
below.

dictionary PACKED ARRAY [0 .. dictionary_size-l] OF CHAR; {14000 chars)

The dictionary is a continuous string of ASCII characters created
automatically by the Configurator program as the operator creates other
elements of the Configuration data base that have components that are
themselves ASCII strings. The dictionary is currently 14000 characters long
and that size is anticipated to be as long as it needs to be for any TRAMCON
master. Figure 52 lists the items that are currently stored in the
dictionary. The dictionary is stored in the data base file (DICT as one
14000 byte record and, like the rest of the Configuration data, is read and
stored in the shared EMA area called the HEAP by the program INIT when the
TRAMCON system is initiated. Because of system addressing limitations,
records larger than 1024 words cannot be read directly into EMA. A local
buffer, the size of the dictionary, is declared in INIT and the dictionary
record is read into this buffer. From the local buffer, the data are
transferred to the HEAP record "heap".dictionary". Refer to Section 4.1 for
the details of TRAMCON initialization.

dictionary_word = PACKED ARRAY[l .. dictionary_word_size{30 chrs}]OF CHAR;

The dictionary string defined above is separated into substrings, called
WORDS, by the ASCII delete character. The "dictionary_word" defined above is
limited to a maximum length of 30 characters ("dictionary_word_size" defined
above). These words are accessed by the routine "read_diet" (refer to
Section 8.2.4.1) by using a variable of TYPE "dictionaryJ>tr" as the location
in the "dictionary" of the first cha:,,:,acter of the word and using the next
ASCII delete character found as the end of the word.

dictionary_recordJ>tr = "dictionary;

There is only one VAR in the TRAMCON software that is declared TYPE
"dictionary_recordJ>tr" and that is the field in the HEAP record "heaPJ>trs"
called "dictionary" defined below. A "dictionary_record_ptr" is a two-word
EMA (HEAP) address that points to the one and only Configuration data base
dictionary stored in EMA. Most programs use the routine "read_dict" in
$TRLIB to retrieve data from the dictionary. Routine "read dict" uses the
global VAR "heap".dictionary" as the first word address (FWA) of the
dictionary.

Site Code
Site Names
Country Names
Service Branch Names
Parameter Names

Alarm Names
Status Names
Parameter Units
Relay Status Names
Relay Names

Comm Equipment Names
remote unit Equipment Names
Trunk IDs
Short Segment Names
Long Segment Names

Figure 52. Items in data base that are DICTIONARY WORDs.

150

site_record = {9 wds}
RECORD
site_code: dictionary_ptr; {l wd, 3 letter code}
site_name: dictionary_ptr; {l wd, up to 18 letters}
master_flag: BOOLEAN; {l wd}
country: dictionary_ptr; {I wd}
latitude, longitude: REAL; {4 wds}
service branch: dictionary_ptr {I wd}
END;

site_record-ptr = Asite_record;

The record TYPE "site_record" describes the Configuration data base site
records that are read from disc file (SITE int:o the HEAP by program INIT at
bootup. References in other data base rec~rds to these site records are
converted from their data base integer value (representing a site record
number in file (SITE) to a two-word HEAP address of TYPE "site_record_ptr".
The fields in the "site_record", that are of TYPE "dictionary_ptr", are
integer values interpreted as indices in the character array "dictionary"".

name list ARRAY [O ..max_words{6} - 1] OF dictionary_ptr; {6 wds}

Several items in the Configuration data base records defined below are
phrases composed of dictionary words. The TYPE "name_list" defines a phrase
composed of up to "max_words" (currently set to 6) many "dictionary_word"s.
Examples of items in the data base that are di.ctionary phrases are

equipment~record

alarm name Phrase describing an alarm or status
param_name Phrase describing an analog or digital parameter
relay_name Phrase describing a relay switch
combo name Phrase describing a combination two-state alarm

linkend record
name Phrase describing a specific alarm

two_state_record = {7 wrds}
PACKED RECORD
alarm_name: name list; {6 wds}

{Last word of names is indicated by nill in the next dictionary_ptr
entry or end of array.}
alarm_type: nibble; {4 bits, 0 = status, 1 = minor, 2 = MAJOR alarm}
specific_name_f1ag: BOOLEAN; {if this alarm has a link specific name}
pcm_port: byte {8 bits}
END;

The record TYPE "two state record" is used as the TYPE of the field
"two states" in the 7r""equip;:ent record" defined below. That is, this record
defi;;:es the two-state portion ~f the Configuration data base equipment
record. One of the more unusual features of t:he two-state data has to do
with specific names.

151

parameter_record = {8 wds}
RECORD
param_name: name_list; {6 wds}
param_type: byte; {which function handles the type of parameter

involved,as non-calibrated,calibrated,count data}
param_units: dictionary-ptr
END;

The record TYPE "parameter_record" is used as the TYPE of the fields
"equip_a2d" and "equip_digital" in the "equipment_record" defined below and
is referenced in the program PA. That is, this record defines the analog and
digital parameter portions of the Configuration data base equipment record.
The field "param_type" is used by the response-processing routine
"process_response" ($MPLIB), which calls routine "parm_def" ($MPLIB) to
establish a set of characteristics for any given parameter. The parameter
types are established by the Configurator and each refers to a unique
combination of the characteristics. The currently supported parameter types
are listed in Figure 53.

relay_record = {10 wds}
RECORD
relay_name: name_list; {6 wds}
relay_type: byte; {I wd, latching or nonlatching}
relay_status: INT; {I wd, ordinal into "two_states" locating

corresponding status bit}
open_name, {ASCII word for open state e.g., on-line}
closed name: dictionary_ptr {I wd}
END;

The record type "relay_record" describes the remote relay section of the
Configuration Data Base EQUIPMENT record. Each possible relay for an
EQUIPMENT CATEGORY has an English name, "relay_name", and a type (described
in Figure 53) assigned to it by the Configurator. An attempt is made to
allocate a nonlatching status indicator for each relay defined
("relay_status"). This status bit should indicate the results of the
particular relay switch function. For example, the relay to switch receiver
A ON or OFF Line should be associated with the status indicator "Receiver A
Operating". The last two fields, "open_name" and "closed_name", are English
names that identify the OPEN and CLOSED states of the relay.

TYPE decimal_places decreasing calibrate two sided th Examples

1 0 TRUE TRUE niH DRAMA RSL
2 2 TRUE FALSE niH DRAMA Sig Qual
3 2 TRUE TRUE 5000 Site Battery
4 0 FALSE TRUE niH FRC162 RSL, BDM

60 0 FALSE FALSE niH Digital
61 0 FALSE FALSE niH MD-918 #1 Err Rate
62 0 FALSE FALSE niH MD-918 #2 Err Rate

Figure 53. Transmission parameters currently supported.

152

exp_tree_node = {3 wds}
RECORD
op: INT; top is an operator with values l=.AND., 2=.OR., and 3=.NOT.}
left_link, right_link: INT {2 wds}
END;

Each node in a LOGICAL expression tree defined below consists of a LOGICAL
operator "op" (with possible values of AND, OR, or NOT) and one or two
operands, "left_link" and/or "right_link". If the operand is positive, its
value is an index into the array "two_states" in the Configuration data base
equipment record "equipment_record" (see below). If the operand is negative,
the absolute value of the operand is an index into the same
"expression_tree". That is, it points to a subexpression. If the operator
"op" is the unary operator .NOT., then there is only one operand and it is in
the right link.

expression_tree =ARRAY [expression_ordina1{16}]OF exp_tree_node;{48 wds}

An "expression_tree" is an array of binary nodl~S each of TYPE "exp_tree_node"
defined above. These "expression_trees" are used to define combination
alarms explained below. These trees are evaluated by the recursive routine
"evaluate node" in library $MPLIB. The only field in the TRAMCON data
defined of TYPE "expression_tree" is the field "expression" in the record
"combo_record" below. The record "combo_record", in turn, is part of the
Configu~ation data base record "equipment_record".

combo_record = {55 wds}
RECORD
combo name: name list; {6 wds}
combo_type: BOOLEAN; {MAJOR - TRUE or minor
expression: expression_tree {48 wds}
END;

FALSE}

The record type "combo_record" describes the combinatorial two-state section
of the Configuration Data Base EQUIPMENT record. Each possible combinatorial
for an EQUIPMENT CATEGORY has an English name, "combo_name", and a type,
"combo_type", assigned to it by the Configurator. A combinatorial is a
fabricated, rather than real two-state alarm composed of two or more
individual two-states related logically. The combinatorial is defined by the
field "expression".

equipment_record = {2313 wds}
RECORD
equipment_name: dictionary-ptr;
two states:

ARRAY [link_2state_ordina1{144}] OF two state record; {1008 wds}
equip_a2d: ARRAY [a2d_ordina1{6}] OF parameter_record; {48 wds}
equip_digital: ARRAY [digital_ordinal] OF parameter_record; {176 wds}
relays: ARRAY [O ..max_re1ays-per_1ink{20}-1] OF relay_recbrd;{200 wds}
combos: ARRAY [O ..max_combos-per_1ink{16}-1] OF combo record {880 wds}
END;

equipment_record-ptr = Aequipment_record;

153

The record TYPE "equipment_record" describes the Configuration data base
equipment records that are read from disc file (EQT into the HEAP by program
INIT at bootup. References in other data base records to these equipment
records are converted from their data base integer value (represen~ing an
equipment record number in file (EQT) to a two-word HEAP address of TYPE
"equipment_recordytr". The fields in the "equipment_record", that are of
TYPE "dictionaryytr", are integer values interpreted as indices in the
character array "dictionary"" elsewhere in the HEAP.

The term "equipment", here refers to the communications and/or site hardware
that is being monitored. Figure 54 lists all the equipment currently
monitored by the TRAMCON on-line software. For each of the unique kinds of
equipment listed in Figure 54 there is a corresponding equipment record in
the Configuration data base file (EQT.

1. Site e.g., Battery voltage, Tower Light, Door
2. FRC-17l DRAMA
3. FRC-80 and Siemens 120-6000
4. FRC-177 Troposcatter
5. FRC-162/l65
6. FRC-l13
7. Codenoll Fiber
8. Northern Telecom/Collins
9. Fiber/DNI

10. FAC-3 Fiber

Figure 54. Transmission equipments currently monitored.

The types of data that can be monitored are separated into "two_states",
"equip_a2d", "equip_digital", and "combos", where "combos" refers to alarms
derived from combinations of two-state alarms reported by the monitored
equipment. That is, the combination alarms are NOT reported by the equipment
directly. Instead, the TRAMCON On-Line software creates these alarm
occurrences based on logical combinations of real alarms and status values.
The equipment functions that can be remotely activated are defined in the
array "relays".

specific_name_record = {7 wds}
RECORD
name: name_list; {6 wds}
alarm number: nill .. max_2states_per_link{144} - 1 {l wd}
END;

The "specific names" feature allows general equipment definitions to be
tailored for each installation. For example, there is one equipment record
that describes the FRC-17l Drama radio. This record lists 16 digroup alarms.
These alarms are identified in the "two state record" with a name like- -
"PCMl" , but further identification is needed that is specific to one site as

154

"AVO to CLO trunk". Any given installation may actually use from none, to
all 16 of these alarms. The software determines whether a particular digroup
alarm applies at any given location by examining the "specific_name" field in
the linkend record. If the first word of the "name" field is not "nill", the
alarm is defined at this location and has a urlique (or specific) name.

linkend_record = {565 wds}
RECORD
links-ptr: link_def_ptr; {I}
specific_name: ARRAY[O .. l,O .. max_specific_names{40}-I] OF

specific_name_record {560 wds}
relay_exists: PACKED ARRAY[O .. 1,0 .. max__relays_per_link-l] OF BOOLEAN
END;

linkend_record-ptr = Alinkend_record;

The record type "linkend_record" describes the Configuration Data Base link
end record found in file (LINK. Each set of communications equipment
monitored by the given master has a corresponding "linkend_record" defined in
the data base. This record contains all the information unique to this end
of a given link. If any of the alarm or status indicators have names that
are specific to this linkend, they are specified in "specific_name". The
number of alarm/status indicators that can be specific at any given linkend
is limited by the subrange TYPE "max_specific_names" which is currently set
at 40. The linkend specific feature was extended to apply to the
remote-controll relays as well, with the addition of the "relay_exists"
array. Here, however, the feature is limited to a one-bit BOOLEAN flag per
relay that indicates whether a given relay is defined at this linkend or not.
Any relay must use the same generic name wherever it is defined. On the
other hand, all the relays for any linkend can be specifically defined at any
linkend since this array is limited by the subrange TYPE
"max_relays-per_link". By adding a second dimension (0 .. 1) to the specific
data arrays, the specific information for both ends of a given link can be
stored in the same linkend record. The information common to both ends of
the link, such as the link ID and the communications equipment type, are
found by tracing the "links-ptr" into the LINKS record.

remote_types = (drama_pulsecom, frc165_pulsecom, IRU);
remote_record = {IS wds}

RECORD
remote-polling_id: byte;
site: site_record_ptr; {2 wds}
site_equipment: equipment_record_ptr; {2 wds}
linkend info: ARRAY [0 .. max linkends per remote{3} - 1] OF

- linkend_rec~rd_ptr; {8 wds, end of data = NIL}
remote_equip_type: remote_types; {I wd}
remote_equip_name: dictionary_ptr {I wd}
END;

remote_record-ptr = Aremote_record;

155

The record type "remote_record" describes the Configuration Data Base remote
unit record found in file (REMOT. Each remote unit monitored by the given
master has a corresponding "remote_record" defined in the data base.

Each remote unit has a unique identification code, "remoteJ>olling_id", which
ensures that one and only one remote unit responds to each request for data
from the master. This "remoteJ>olling_id" is set by the Configurator and
must correspond exactly with the hardware straps set by the installation
team. The physical location of the remote unit is indicated by the field
"site". The facility equipment (e.g., door, generator, tower light)
monitored by the remote unit is defined by the field "site_equipment". The
sets communications equipment monitored by the remote unit are specified in
"linkend_info". The remote unit hardware is defined by the two fields
"remote_equip_type" and "remote_equip_name". Currently, there are two types
of remote units in use, the DATALOKlO Model lD and the DATALOKlO Model IE.

trunk_link_array = ARRAY[O .. max_sites_per_trunk{18}-1] OF {36 wds}
RECORD {2}
trunk_links: link_def_ptr;
trunk_port: byte;
END;

trunk_record = {44 wds}
RECORD
trunk_id: dictionary_ptr; {1 wd}
links_in_trunk: trunk_link_array; {36}
last_node: INT; {1}
trunk ends: ARRAY[O .. 1] OF {4}

RECORD
end_site: site_record_ptr; {2}
port: byte
END;

END;
trunk_recordJ>tr = Atrunk_record;

The record type "trunk_record" describes the Configuration Data Base trunk
record found in file (TRUNK. Each communications trunk (i.e. DIGROUP or 24­
channel group) monitored by the given master has a corresponding
"trunk_record" defined in the Data Base. Each trunk has a unique identifier,
"trunk_id", assigned to it by the military. Each trunk passes through a
series of links which are specified in "links_in_trunk". The names of the
locations of each end of a given trunk link can be found by tracing the
pointer "trunk_links" into the LINKS record. The field "trunkJ>ort"
indicates the multiplexor port on which the given trunk exits the "from" site
and enters the "to" site. The links information for the first and the last
entry are repeated in the, array "trunk_ends" by the program INIT at runtime
for convenience. The value "last node" is also set at runtime to indicate
how many of the possible "links in trunk" entries are actually defined for
each trunk. '

156

set of remotes = SET OF segment_remote_ordinal; (2 wds}

remotes_array =

ARRAY [master_segment_ordinal(4}] OF set._of_remotes; (8 wds}

segment_record = {244 wds}
RECORD
short_segment_name, long_segment_name: dictionary_ptr; (2 wds}
remote info:

ARRAY [segment_remote_ordinal{2l}] OF remote_record_ptr; (42 wds}
trunk info:

ARRAY[O .. max_trunks_per_segment(lOO}-l]OF trunk_record_ptr (200 wds}
END;

segment_record-ptr = Asegment_record;

The record type "segment_record" describes the Configuration Data Base
segment record found in file (SEG. Each TRAMCON segment monitored by the
given master has a corresponding "segment_record" defined in the data base.
Each segment has a short name, "short_segment_name", which is used
extensively in the software to uniquely identify a given segment. Most
TRAMCON commands allow the operator to specify the segment by entering the
short segment name. For the software to make a match, the operator must
spell the name exactly as it appears in the data base. This exact spelling
of the short segment name and the rest of the information in these segment
records can be displayed by entering the command "SE". The long name,
"long_segment_name", is used for display only. The set "currently_polled" is
initialized to all remote units on the given segment by the program INIT at
bootup and is updated at run-time by program GMMD in response to either
command "PO" or "PM" (see Section 5.4).

The array "remote_info" contains pointers to remote records for each remote
unit defined on the given segment. Each remote record contains the
configuration information for one remote unit. Each remote unit has a unique
address, "remote-polling_id", used by the software to request data from that
remote. The physical location information for the remote unit is pointed to
by the site record pointer "site". The transmission equipment monitored by
each remote is divided into "categories" with the first category being the
site equipment and all other categories referred to as "link-end" categories.
The equipment record describing the equipment monitored at the site is
pointed to by the pointer "site_equipment".

comm_info_record = (1 wd}
PACKED RECORD baud:byte; auto_answer, modem:BOOLEAN END;

crt_record = {6 wds}
RECORD
comm_info: comm_info record; (1 wd}
terminal_type: byte; {I wd}
printer_type: O.. 7; {I wd, 0 = no printer}
location: site_record_ptr; (2 wds}
location_qualifier: CHAR {I wd}
END;

crt_record-ptr = Acrt_record;

157

The record type "crt_record" describes the Configuration Data Base terminal
(CRT) re~ord found in file (CRT. Each terminal device installed on a given
master has a corresponding "crt_record" defined in the data base. The
physical communications parameters, such as baud rate, modem, or hardwire
connection, for each CRT are set by the Configurator in "colllIll:-info".

The terminal type (2647F, 2627A or 2397A) is set in "terminal_type". This
value is now overridden by the logon program La when an operator signs on at
any given terminal device. The terminal type is determined by reading the
terminal ID from the actual device. The value for "printer_type" is also
determined On-Line by reading the external device status from the terminal at
sign on time. The terminal is physically located at the site indicated by
"location". To distinguish between several terminals that might be at the
same location, the "location_qualifier" was included.

alt_mast_array=ARRAY[O .. max_masters_per_segment(4}-1]OF DS_node;(4 wds}
master_record = {47 wds}

RECORD
site-ptr: site_record_ptr; (2 wds)
master_name_qualifier: CHAR; (1 wd)
segment: ARRAY [0 .. max_segments_per_master{4} - 1] OF (32 wds)

RECORD (8 wds)
seg_ptr: segment_record_ptr; (2 wds)
segment_Iu: INT; (1 wd)
poll_monitor: 0 .. 2;(1 wd, O=inactive, l=monitor, 2=po11er}
alternate_masters: a1t_mast_array (4 wds)
END;

crt-ptr: ARRAY [master_crt_ordina1 (5)] OF crt_record_ptr; (10 wds)
confi_version: INTEGER (2 wds)
END;

master_record-ptr = Amaster_record;

The record type "master record" describes the Configuration Data Base master
record found in file (MAST. Each TRAMCON master computer has one
"master_record" at the top of the Configuration data base hierarchy that is
pointed to by the two-word EMA pointer "master", which is a field in the
basic HEAP record "heap" described below. This means that "master" is the
only item in the TRAMCON software that is of TYPE "master_record-ptr".

The fields in the "master_record" include a two-word EMA address, "site_ptr",
which points to the site record that corresponds to the site at which the
computer is physically located, along with a name qualifier,
"master_name_qualifier", to distinguish between multiple masters located at
the same site. The array "segment" contains the descriptions of all the
TRAMCON segments defined for this master. This array is indexed by the
Global VAR "segord", which is declared in the INCLUDE module [TRVAR (see
Section 11.3). The pointer "seg_ptr" is a two-word EMA address that points
to a "segment_record" which, in turn, describes a particular segment defined
on this master. These "segment_record"s are described above.

158

NOTE

Certain LU numbers have been defined to point to the segment or
polling channels on the TRAMCON master computer. The LU numbers
are the same numbers in decimal as their corresponding select code
(I/O slot) numbers are in octal. For example, LU 15 (decimal) is
associated with I/O slot 15 (octal). There must be careful
coordination between the data base Configurator and the TRAMCON
installation driver to ensure that the responses for a given segment
are reported on the correct I/O channel. If the drawing doesn't match
the Configuration data base, the result would be NO answers at the
polling master since the remote unit addresses are unique in theater.
On a master that is in monitor mode for the mismatched segment, the
result would be responses generated by polling messages from the
other master, but responses from the wrong set of remote units.

The "segment_Iu" is a one-word logical unit number assigned to a particular
segment. This LU value can be viewed by entering the SE command.

The "poll_monitor" flag indicates the current status (poller or monitor) for
each segment on this master. This status value is changed by the program PM
in response to the PM command. The "alternate_masters" array indicates which
other TRAMCON master computers are assigned to monitor the given segment and
thus have the same segment defined in their Configuration data base. By
design, this array must have at least one non-NIL entry for each segment.
TRAMCON master computers are uniquely specified by using their IPC network
node number. These node numbers are explained under "network_record" above.

The ARRAY "crt_ptr" contains one two-word EMA address for each terminal
display device defined on this master. These addresses point to
Configuration data base CRT records, which are described above under
"crt_record". This array is indexed using the global VAR "crtord", which is
declared in the INCLUDE module [TRVAR and described in Sections 9 and 11.3.

The last item in the "master record" is the Version date/time stamp for the
Configuration data base called "confi_version". Program INIT displays this
value on the system console as part of the TRAMCON logo when the TRAMCON
software is being booted up. Program CMMD displays this value on the command
line in response to the VE command. This Time/Date is stored as the total
number of seconds since midnight, 1 January 1970. This two-word integer
value is unpacked by the routine "DayTime", which is defined in library
$TRLIB and described in Section 8.2.4.1 of this manual.

links record = ARRAY [0 .. max_links_per_net-l{250)] OF (1750 wds)
RECORD (7 wds)
sitel, site2: site_record~ptr; (4 wds)
cOIDID_equipment: equipment_record_ptr; (2 wds)
link id: five chars (I wd)
END;

links_record-ptr Alinks_record;

159

The record type "links_record" is the Configuration Data Base record that
defines the communications network monitored by the given master and is found
in file (LINKS. Each TRAMCON master has one "links record" defined in the
data base. Each entry in this array describes a communications link at least
partially monitored by this master. The locations of the two ends of the
link are specified by "sitel" and "site2". The communications equipment is
identified by "coIDm_equipment". Since the communications equipment must be
the same for both ends of any link, this field has been moved from the
"linkend_record", where it is redundant information, to this record. The
same holds true for the "link id".

net_segments = {2 wds}
RECORD
short_segment_name: dictionary_ptr; {I wd}
last_link-ptr: nill .. max_links_per_net{250} - 1 {I wd, -1 undefined}
END;

net_masters = {3 wds}
RECORD site-ptr:site_record_ptr; {2 wds}
master_name_qualifier:CHAR {I wd}
END;

network record = {140 wds}
RECORD
segment_info:

ARRAY [0 .. max_segments_per_net{25}-1] OF net_segments; {50 wds}
{End of data is the first short_segment_name that is nil.}

master_info: ARRAY [1 .. max_masters_per_net{30}]OF net_masters;{90 wds}
{End of data is the first site_record_ptr that is nil. The index
into this array is also the DS node number of that master. Note
that this array is not zero indexed because DS does not like a node
number of zero. }

END;
network_record-ptr = Anetwork_record;

The record type "network_record" describes the Configuration Data Base
network record found in file (NET. Each master has one "network record"
defined in the data base. This network record is used to describe two
networks. The network of TRAMCON Segments composed of remote units is
described in "segment_info". The network linking all TRAMCON masters is
described in "master_info". The software system known as DS handles the
communication on the master-to-master network. The DS node numbers are
inferred from the position of a master in the array "master info".

current link status record = {764 wds}
RECORD
current_2states: {432 wds}}

PACKED ARRAY[link_2state_ordinal{288}] OF
PACKED RECORD {2 wds}

{machine word 1 (16-bits) }
just_cleared, new_alarm: BOOLEAN; j day: nine_bits; hour: five_bits;

{machine word 2 (16-bits) }
alarm_set: BOOLEAN; tr_begi~end: O.. 7; minute, second: six bits
tr ord: INT {I}

160

END; {current_2states}
current_a2ds: ARRAY[a2d_ordina1{6}] OF INT; {6 wds}
current_digita1s: ARRAY[digita1_ordina1{22}] OF INT; {22 wds}
hist_a2d: ARRAY[a2d_ordina1{6}] OF hist_array; {96 wds}
hist_digital: ARRAY[digita1_ordina1{22}] OF hist_array; {352 wds}
END; {current link status record}

current_a1arm-ptr = Acurrent_1ink_status_record;

The current response for each CATEGORY of each remote unit defined on this
master is stored in the HEAP variable "remote_status[remoteord].cat_status".
This variable is of type "current_1ink_status_record" and contains the
information specified above.

For each two-state value in a response, the time/date at which the alarm
appeared or went away is stored in "jday" , "hour", "minute", and "second".
The value "just_cleared" indicates that the alarm was on in the last
response, but is not on in the current response. The value "new_alarm"
indicates that the alarm is on in the current response, but was not on in the
previous response. The value "alarm_set" indicates that the alarm is ON in
the current response. The values "tr_begin_end" and "tr_ord" are used to
keep track of TRUNK (DIGROUP) alarms. If "tr_ord" has a value greater than
ni11 then the given two-state is a TRUNK alarm that either begins or ends
(value of "tr_begin_end") at the given 1inkend.

parm record = {832 wds, record for disc file (CURVE)
RECORD {category_ordina1=-l .. 2, a2d_ordina1=O .. 5 }
cal_curves: ARRAY[category_ordinal{4}] OF

ARRAY[a2d_ordinal{6}] OF hist_array; {384 wds}
a2d_bottom , a2d_top , a2d_amber , a2d_red:

ARRAY[category_ordina1{4},a2d_ordina1{6}] OF INT; {96 wds}
digital_bottom , digital_top , digital_.amber , digital_red:

ARRAY[category_ordinal{4},digital_ordinal{22}] OF INT {352 wds}
END;

Each "parm_record" has all the parameter calibration curves and threshold
(analog and digital) for all categories for one remote. Along with curves
and thresholds, the top and bottom range values for each parameter are stored
in this record. Program INIT reads these values in from disc file (CURVE and
places them in EMA record "remote_status[remoteord]".

files read = (archiv , ca1curve);
counted_array = PACKED ARRAY[link_2state_ordinal{144}]OF BOOLEAN;{9 wds}
counts_array - ARRAY[O ..max_counts-per_li.nk{20} -1] OF {80 wds}

PACKED RECORD {4 wds}
val, yr: INT; jdy: nine_bits; hr: seven_bits; minut, secs: byte
END; .

cn_record - ARRAY[category_ordina1{4}] OF {356 wds, record for file (CN)
RECORD {89 wds}
cn va1s:counts array;{80 wds}
cn=counted:co~ted_array {9 wds}
END;

161

The record type "cn_record" describes the records found in disc file (CN.
These records contain the information for all the two-state values that are
being counted. The TRAMCON operator can designate certain two-state alarms
as alarms that the software should tally each time a response is received
with the particular alarm set. The array "cn_vals" indicates which
two-states have been so designated for each CATEGORY of each remote unit.
Array "cn_counted" contains the actual counting information for each counted
two-state. The actual count is stored in "val". The time/date at when the
counting started is stored in "yr, jdy, hr, minut, secs".

remote_status_record = {1210 wds}
RECORD
extent_of, next_extent: INT; {2 wds}
no_answer, parity_err, bad_response, simulating: BOOLEAN; {4 wds}
ss_alarms: ARRAY[-l .. 0, 1 .. 2] OF link_2state_ordinal{144}; {4 wds}
next_archive_record , parm_status: INT; {2 wds}
parm data: parm record; {832 wds, initialized by INIT from file (CURVE)
counts: en record; {356 wds, initialized by INIT from file (CN)
file_reader_cnt: ARRAY[files_read{2}] OF INT; {2 wds}
cat_status: ARRAY[category_ordinal{4}] of current_alarm_ptr {8 wds}
END;

remote_status-ptr = Aremote_status_record;

The only reference to the two-word HEAP pointer "remote_status_ptr" is for
the field "remote_status" in the record "segment_status_record" below. There
is one two-word pointer for each possible remote unit. Currently,
"max_segments-per_master" is set at 4 and "max_remotes_per_segment" is set at
21. Therefore, there are 84 two-word "remote_status_ptr" pointers allocated
in the HEAP. These 84 pointers indicate the "remote status records"
described above, each of which consumes 1210 words of HEAP. To conserve
scarce HEAP space, pointers were used rather than allocating space for a
"remote_status_record" for each possible remote unit which would require
1210 x 84, or 101,640 words. With the pointers, space for a
"remote_status_record" is allocated only for the remote units that are
defined on the given master. Unused pointers are set to NIL. This use of
EMA pointers adds one level of indirection when addressing the remote unit
data and adds the 160 words of pointer data as overhead. The extra address
processing is NOT noticeable, and the 160 words extra is more than offset by
the 1210 word savings if even one remote unit of the possible 84 is not
defined.

segment_status_record = {268 wds}
RECORD
nbr_remotes , previous_remotes: INT; {2 wds}
remote status:

ARRAY[segment_remote_ordinal{21}] OF remote_status_ptr; {42 wds}
pcm_counts: pcm_histogram_array; {200 wds}
main_resp, tout ,wait_ext , arch_it, aI_update ,b_r ,not_ans , NA,p_e,resp,
extended,time_res , time_pro, time_dis , time_tra, time_disp :BOOLEAN;{16 wd}
disc_start,disp_start,poll_timer: INTEGER; {6 wds}
currently-polled: set of remotes {2 wds}
END;

162

The dynamic information for each Segment monitored by a given master is
stored in the HEAP variable "heap".segment_status", which is of type
"segment_status_record". The number of remote units defined for each segment
is stored in "nbr_remotes" by INIT. Program INIT also computes the number of
remote units defined before each segment and places this value in
"previous_remotes". This "previous_remotes" value is used through the
On-Line software to calculate record positions in the disc files for given
remote units.

The dynamic status of each remote unit for each segment is pointed to by the
array "remote_status". The indicators "main_resp" , "tout", "wait_ext",
"b_r" , "not_ans" , "NA" , "p_e" , "resp", and "extended" are used by the
response processing routines to coordinate the processing of multiple remote
units. The indicators "time_res", "time-pro" , "time_dis", "time_tra" ,
"time_disp" , "disc_start", "disp_start", and "poll_timer" are used by the
response processing routines to collect statistics concerning the time
involved in various stages of the response processing operation.

heap-ptrs = (4335 wds)
RECORD

The record "heap-ptrs" contains the top-level pointers to all the TRAMCON
configuration data stored in EMA and all the run-time data such as current
status information for each link end of each remote unit of each segment
currently being monitored. This record is set up by the program INIT and
communicated to other programs through the class number "heap_class" by
passing it to a program as run-string parameter "parms[l]" each time the
program is scheduled (refer to Section 4.3). INIT does a class write of
"heap"''' with the save bit on. Any program wanting access to the EMA data
must make a two-word ClASS GET on the class number "heap_class". For most
programs, this ClASS GET is done by the routine "allocate_EMA". The first
word address of the HEAP is placed into the global VAR "heap", which is of
TYPE "heap-ptrs" and declared in the VAR INCLUDE module [TRVAR. All the
following definitions are fields within the REGORD TYPE "heap_ptrs".

software_date: INTEGER; (2 wds)
software_version: REAL; (2 wds) Referenced by CMMD

The time/date-stamp and version number for the TRAMCON On-Line software are
read from disc file (DATE and stored here by program INIT. Program INIT
displays these values on the system console as part of the TRAMCON logo when
the TRAMCON software is being booted up. Program CMMD displays these values
on the command line in response to the VE command. The time/date is stored
as the total number of seconds since midnight 1 January 1970. This two-word
integer value is unpacked by the routine "DayTime", which is defined in
library $TRLIB and described in Section 8.2.4.1 of this manual. The software
version number is stored as a floating point number with one decimal point
and displayed as is. Version numbering schemes that incorporate more than
one decimal point in the version numbers, such as 1.8.1, will not be properly
stored or displayed by the present TRAMCON software. The example 1.8.1 can
only be stored as the REAL number 1.81 and displayed the same way.

163

master: master_recordytr; (2 ,wds) Referenced by All TRAMCON programs

All of the static Configuration data in EMA (except the dictionary, network,
and links records) are accessed through this two-word EMA address. This
address is technically the pointer to the master record, which contains the
information that distinguishes one TRAMCON master computer from any other.
Each TRAMCON master has one master record and that record is described above
under "master record".

network: network_recordytr; (2 wds)

The two word EMA address "network"" points to the TRAMCON master computer
network record, which is used by the interprocessor software to determine the
master computer network connectivity.

links: links_recordytr; (2 wds, Ref by INIT, MA)

Closely related to the network record is the "links" record. Each entry in
this array contains site record pointers for all communication links defined
on the entire TRAMCON network. This information is used by the program INIT
in subroutine SCALE to set up the information in "heap".latlons" (see below).

dictionary: dictionary_recordytr; (2 wds)
Referenced by AL,CC,CMMD,CN,CR,ED,HI,INIT,KYBRD,LO,LS,MA,ME,MS,

PA,PC,PF,PH,SE,SS,SW,TH,US via routine "read diet" in
library $TRLIB (see Section 8.2.4.1).

The Configuration data base dictionary, pointed to by "dictionary", is
constructed by the Configurator program automatically, as the other types of
data are entered (see Configurator Manual). The dictionary is one long array
of characters and is referenced by the array index of the first character of
the particular dictionary WORD ("dictionary_word" defined above). Any datum
having the type "dictionaryytr" points into the dictionary in this manner.
Each word is terminated by the ASCII character delete (octal 177) and all
TRAMCON software modules use the routine "read_dict" in library $TRLIB (see
Section 8.2.4.1.) to retrieve a word from the dictionary. This, of course,
implies that the ASCII delete character is not a valid character in a
dictionary word. The only direct references to the dictionary pointer are
made by the subroutine "read_diet" and by the program INIT (see Section 4.1).

segment_status: ARRAY[master_segment_ordina1(4}] OF
segment_status_record;(1072 wds} Referenced by CMMD,INIT,MTRP,PLRP

In addition to the static segment information stored in the segment records
discussed above, run-time data is kept and pointed to by
"heap".segment_status[segord]". Each element of this array is a
"segment_status_record", which contains the following information for each
active segment. The number of logical remote units defined for this segment
is kept In "nbr_remotes". "Previous remotes" is an accumulation of
"nbr_remotes" for all segments preceding this one in the data definition. In
other words, if segment DEB2A is defined in position 0 in the array
"heap".master".segment", then its "nbr remotes" still equals 7, and its

164

"previous_remotes" equals O. If segment FKT-Nl is defined second, then its
"previous_remotes" equals 7. If segment DEBI is defined third, then its
"previous_remotes" equals 20 (7 DEB2A remotes + 13 FKT-Nl remotes). It is
important to understand these two values because they are used to address the
proper run-time memory information as well as to compute the correct disc
record number for a given remote unit in such files as (ARCH or (HIST.

For each link end defined, a snapshot of the status of that link end is kept
in EMA and pointed to by "current_alarmytrs". Each time a response is
received from an active remote, either program PLRP or program MTRP processes
the response and compares it with the information kept in
"current_alarmytrs". If any change is found, the new response replaces the
old data in "current_alarmytrs". Since "current_alarmytrs" records are
allocated only for link ends that are defined to conserve EMA storage area,
the records are not placed in the "heap"" record itself. Instead, pointers
are kept for all possible link ends, defined and undefined, in "heap"" with
the pointers corresponding to undefined (unused) linkends set to -1 (nil).
This way, a simple scheme can be used to reference the records and still
realize the most efficient storage method.

stack_alloc: PACKED ARRAY [O .. stack_alloc_size{SO}-l] OF byte;{2Swds)
next_id: byte; {I wd, id number used for program ident in stack_alloc}
Referenced by All TRAMCON programs through routine "Allocate EMA" in
library $TRLIB (see Section 8.2.4.1)

The EMA allocation routine "Allocate_EMA", described in Section 8.2.4.1, uses
the variables "heap".stack_alloc" and "next_id" to dynamically allocate stack
space in EMA for each program. Programs require stack space for copies of
recursive routines or storage of HEAP2 paramet:ers. The best statement we can
make about stack usage is that it is very poorly understood by us; therefore,
overt use of the stack has been kept to a minimum. The two programs PLRP and
MTRP use a recursive routine called "expression_tree" and for that reason
they request a few hundred words of stack space.

max_crt, max_segment: INT; {2 wds}

The two values "max_crt, max_segment" are set by program INIT and are used
throughout the On-Line software to terminate loops that search through all
defined CRTs and all Segments. They serve make these searches more efficient
by allowing the loops to terminate without searching all possible entries.

plrp_class,
mtrp_class,
poll_class,
si_class,
logon_class,
msg_class,

{Ref by KYBRD or any program wishing to
issue a READ request for a given terminal}

{Ref by CMMD, KYBRD or any program wishing
to programmatically enter a TRAMCON command such as
scheduling the Default Display}

{Ref by PLRP, PM, POlL}
{Ref by MTRP, PM, POlL}
{Ref by POLL, PUP, MTRP, SW}
{Ref by SI, routine "simple_cmd" in CMMD}
{Ref by LON}
{Ref by MSG or any program wishing to display a msg}

165

19off_class,
di_~egrem: INT;

{Ref by LOF}
{Ref by CMMD (simple_cmd), PLRP, MTRP thru
routine "print response" in $MPLIB}

Communication between programs and most TRAMCON I/O is performed using the HP
software feature called "class" 10. All the CLASS numbers are allocated and
stored in EMA by the program CMMD. For example, if a program wishes to
communicate with the program CMMD, it attaches its message to the class
number "cmmd class" and CMMD will eventually read and process the message.

by INIT}
o if no
but not

current_crt: ARRAY[master_crt_ordinal{5}] OF {2340 wds}
RECORD {468 wds}
crt_down, color_crt, graphic_crt, graphics_mode,

insert_cmd_Iine, print_dsp: BOOLEAN; {6 wds}
whole_x, whole-y, half_x, half-y: INT; {4 wds, Graphics boundaries}
latIons: ARRAY[master_segment_ordinal{4}] OF {168 wds}

RECORD
lats,lons: ARRAY[segment_remote_ordinal{21}] OF INT {42 wds}
END;

up_class , crt_rn:
crt_class: INT;
crt_recnbr: INT;
crt_eqt: two_chars;
current_msgord: INT;

INT; {2 wds}
{class number to read crt }
{record number on file (CRT:TR)
{crt RTE equipment number (ASCII) set
{negative if msg currently displayed,
current msg, positive if msg exists,
displayed. }

msg_ords , msg_segords , msg_remoteords , msg_priorities,
msg_Iengths: ARRAY[crt_msg_ordinal{5}] OF INT; {25 wds}

msgs: ARRAY[crt_msg_ordinal{5}] OF sixty_chars; {150 wds}
current_display, default_display, crtlu_alfa: two_chars; {3 wds}
current_segord, fkey_entry: INT; {2 wds}
operator_name: sixteen_chars; {8 wds}
remotes_displayed, alarms_acknowledged,

remotes_to_print , alarms_inhibited: remotes_array; {32 wds}
old_cursor: RECORD x,y: INT END; {2 wds}
last_cursor: twenty_chars; {IO wds}
first_line, lines: ARRAY[I .. 15] OF INT; {30 wds}
sav_dsp, old_dsp: two_chars; {2 wds}
kybrd_class, line_nbr, nbr_Iines, pgs_remaining, cur_page,

prev-pages, miscl, misc2, misc3, misc4, misc5, misc6,
max_dsp_In, max_key, locked_In, sav_fkey_entry, max_page,
say_len, saY_echo, saY_binary: INT {20 wds}

END;
Referenced by all display programs and CMMD

Information describing the current state of each terminal defined on the
given master is kept in HEAP array "heap".current_crt". The array is indexed
by the global VAR "crtord", which has the range defined by the TYPE
"master_crt_ordinal" above and with ordinal 0 reserved for the system
console. The flag "crt_down" is true if the software is unable to
communicate with the given terminal. The variable "color_crt" is true if the
terminal is capable of displaying colors and is set by LO when logging ON

166

Section (8.2). The flag "graphic_crt" is also set by LO if the terminal is
capable of performing graphics functions such as vector drawing. The
variable "insert_cmd~line" is used by various programs to coordinate the
display of the command entry line on a screen that mayor may not be
displaying data on line 22. For instance, if a screen currently shows 25
lines of alarm/status data, "insert_cmd_Iine" should be true so that if the
operator wishes to enter a command, or a message needs to be shown on line
22, the software will insert a line but not overwrite the data in line 22.

"Print_dsp" is set to true to inform a display program to route its output to
the printer and not to the screen. The global integers "whole_x", "wholey",
"half_x", and "halfy" are the graphics dimensions for the given terminal and
are used by any program (e.g., MA) wishing. to produce graphics information on
the screen. "whole_x" and" wholey" are set: to the maximum values for the
horizontal and vertical graphics screen dimensions respectively. All four
values are set by the program LO once the terminal type has been determined.
The latitude and longitude are adjusted to screen graphics coordinates and
placed into array "latIons" by the program INIT at bootup so that the program
MA can read the data from this array to produce the segment map.

time it: ARRAY[master_segment_ordinal{4}, 1 .. 5] OF BOOLEAN; {20 wds}
time_val: ARRAY[master_segment_ordinal{4}, 1 .. 5] OF INTEGER; {40 wds}

Referenced by US, MTRP, PLRP

The HEAP arrays "time_it" and "time_val" are used to analyze the response
processing and disc access functions of the TRAMCON software. The program US
is used to both designate which processes are to be timed and to display the
timing values.

Program US informs the PLRP and MTRP programs about which processes to time
for which segments by setting the elements in "time_it" to true. Program US
is also used to reset the timing values. There are currently five processes
set up to be timed. All five are related to the processing of a response
from a remote unit. The first is the overall response processing time, which
starts just after a poll message is sent and ends in routine
"update_displays" after all display screens have been updated for the given
response. The other four are subsets of the first. The second value
represents the CPU time processing the response. The time begins when
routine "process_response" (see Section 8.2. lL2) is entered and ends when
"process_response" is exited. The third value represents the time spent
accessing the disc and is primarily set by routine "archive_it" (see
Section 8.2.4.2). The fourth value is the time elapsed while the response is
being transmitted and should roughly be the length of the response in bits
divided by 300 bps. The last value is the time required to update all
displays and begins and ends in routine "update_displays" (see
Section 8.2.4.2).

EMA_start , EMA_end ,
EMA_required: ARRAY[master_segment_ordinal{4}] OF INTEGER;{24 wds}

Referenced by INIT, SE

167

All three of these values are set by the program INIT at bootup. For each
segment defined in the given master's data base, "EMA_start" is set to the
two-word EMA address at which the dynamic data for that segment starts and
"EMA.-End" is set'to the last address. "EMA_required" represents the number
of machine words needed for these dynamic data and is simply the difference
between "EMA start" and "EMA End". For diagnostic purposes, program SE will
display this information. These data were intended to support the
activation/deactivation of segments. These values can be used to decide
whether more than two segments could be monitored by a TRAMCON master.

statz: statz_record; {650 wds, TRAMCON performance statistics}

Referenced by CMMD,CF,HR,INIT,US

Statistical information on the performance of the transmission system and
operator usage of the TRAMCON system is kept in record "statz" and recorded
permanently on disc file (STATZ once each hour, on the hour, by the program
HR. This information can be viewed and/or initialized by the operator using
the command "US". The record currently contains a count of each command
"cnt_cmds[cmd,crtord]" that has been entered at each CRT. These values are
tallied by the program CMMD as each command is received from a keyboard. The
array "transmission[segord] [remoteord,msg_status] " contains statistics on the
overall transmission status of each response received from each remote unit.
The status of each response falls into one of the categories that are
enumerated in the type specification "msg_status" defined above. Any future
additions to the statistics gathering function should be added to this record
and the disc file (STATZ, and the proper changes made to the programs US and
CF with recompilation required for programs INIT and HR.

archive_idx: archive_record; {125 wds}

Referenced by AL, PLRP, MTRP

The record "archive_idx" is a memory copy of the first record in the disc
file (ARCH. This copy is kept in memory so that the index record does not
have to be rewritten to disc each time a new archive record is created, thus
reducing disc access time required to process a response. To ensure that the
disc copy is fairly current, the program HR updates the first record in file
(ARCH from this copy on the hour.

diag, access_restricted: BOOLEAN; {2 wds}

Referenced by CMMD (simple_cmd) and by any program that has
code to be triggered by the "d" option in a TRAMCON command

The "diag" flag is a toggle flag. That is, each time the "d" option appears
in any TRAMCON command the value of "diag" is set to NOT "diag". This flag
is not used if the master password is not entered (i.e., "restricted_access"
is true). Any program can have hidden code that executes only if the "diag"
flag is true (refer to Section 12.1).

heapA.access_restricted - Referenced by CMMD

168

The "access restricted" flag is set and cleared by program CMMD in response
to the "pw,-=-l" command entry. This flag is described in detail in
Section 12.3.

resp_stats: ARRAY [master_segment_ordinal{4}] OF {12 wds}
PACKED RECORD {3 wds}
remote_num: INT; {1 wd}
cos,fi1: BOOLEAN; jday: nine_bits; hr: five_bits; {1 wd}
fi12: O.. 15;{4 bits} min, sec: six bits {1 wd}
END

Referenced by PLRP, MTRP

The HEAP array "resp_stats" contains information on the last response
received for each segment defined in the data base. This information is
placed here by the programs PLRP and MTRP via routine "process_response" and
is ignored by any TRAMCON programs.

To access any of the HEAP data described above, a TRAMCON On-Line program
must declare one two-word EMA pointer and set that variable to the
first-word-address (FWA) of the HEAP. The first variable in the INCLUDE
global VAR module [TRVAR is called "heap" and is just such a pointer or FWA.
The TYPE of the variable "heap" is "heapytr", which is defined to be a
pointer to a record variable of the TYPE "heapytrs" just described.

heapytr = ~heapytrs;

There is only one VAR in the TRAMCON source code that is declared as TYPE
"heapytr". The VAR "heap" is declared in the global VAR INCLUDE module
[TRVAR. Each TRAMCON On-Line program that accesses the shared data described
above uses the global VAR "heap" as the FWA of the Pascal HEAP or shared data
area called EMA. Since a "heapytr" points to "heapytrs" , the value of
"heap" is the two-word address of the first field "network" in the RECORD
"heapytrs" described above. There is also only one "heapytrs" record
allocated in the HEAP (EMA) area. This FWA is established by the program
INIT when the TRAMCON On-Line software is booted up. Program INIT places the
newly acquired HEAP FWA into a CLASS output buffer that can be read
indefinitely and will remain for the life of the TRAMCON software. Any
TRAMCON programs wishing to access the HEAP data can get the CLASS number
associated with the buffer containing the FWA of the HEAP by either calling
the routine "getyarms" immediately after activation or reading the value
from the disc file (DATE. The CLASS number associated with the buffer
containing the two-word FWA is passed by program CMMD to any program it
schedules. Any program scheduled by CMMD first calls "get_parms", which sets
the value of the global VAR "parms[l]" to the desired CLASS number and then
calls the routine "a11ocate_EMA", which in turn reads the FWA of the HEAP
using the CLASS number it found in "parms[l]". For further detail, refer to
the "allocate EMA" description in Section 8.2.4.1. A few programs, such as
the DT support program ARPTR, wish to access the HEAP data but are not
scheduled by program CMMD and, therefore, are not passed the CLASS number
that allows them to acquire the FWA of the HEAP. For these programs, a

169

duplicate of the CLASS number that leads to the FWA of the HEAP is placed in
the field "heap_class_no" in the one record in the disc file (DATE. The
contents of the record stored in file (DATE are discussed previously in this
section under "date record".

11.2 Shared Data (EMA)

Most of the data used by the TRAMCON programs reside in a partition of main
memory called SHARI. This is a type of memory known as Extended Memory Area
(EMA) , which can be shared by any number of active programs at any given
time. Program that wants to access these data must include the code block
[TRVAR (10.3), which has a declaration of a variable called "heap", or the
program must explicitly declare the GLOBAL variable "heap". Either of the
above must be done immediately following the inclusion of the definitions
block [RECR3 (10.1) with no preceding CONST or VAR declarations.

The first action in the program body should be a call to routine "get_parms",
which gets the class number "heap_class" as the value of "parm[l]". Next,
the routine "allocate_EMA" (7.2.4.1) is called to set up the pointer "heap",
which points to all this shared information.

The connection between the correct partition of memory and the executable
code that references these data is made at load (or link) time by directing
the linker with the statement "sh,sharl" (7.2.5). As the following
description shows, the identifier "heap" is the master pointer to all the
shared data and once the above procedures are performed, any of the shared
data listed below can be accessed through this pointer.

The program INIT physically allocates all the EMA at bootup and initializes
the static portion of this shared memory with information from the
configuration data files on disc. The EMA addresses for each segment's
dynamic data are recorded by INIT in the EMA values EMA_start, EMA_end, and
EMA_required. These addresses were to be used by the TRAMCON software to
implement the activation or deactivation of segments.

Figure 55 is a list of the EMA identifiers and their corresponding data
types. Any program wishing to reference these data, having followed the
above procedures, must use the identifiers listed in Figure 55. Also, most
TRAMCON programs make extensive use of the Pascal WITH statement. Therefore,
care must be taken in looking through the code to determine the complete
identifier involved in any given reference. Coordination with the list in
Figure 55 is recommended. The EMA identifiers in Figure 55 are shown as they
would appear in the software after applying the following rules:

(1) All identifiers with a type ending in "ytr" are actual PASCAL
pointers and must be followed by A to reference the actual data. The only
exception is the type "dictionaryytr", which is simply an index into the
character array "dictionaryA". For example, to reference a segment record
the identifier would be:

A A] Aheap .master .segment[segord .seg_ptr

170

~
heap_ptr
INTEGER
REAL
master_record_ptr
site_record_ptr
dictionary_ptr
dictionary_ptr
BOOLEAN
dictionary_ptr
REAL
REAL
dictionary_ptr
CHAR

Identifier
heap

software date
software version
master

site_ptr
site code
site name
master_flag
country
latitude
longitude
service branch

mas ter_name_quali fier
segment [segord]

seg_ptr segment_record_ptr
short_segment_name dicti.onary_ptr
long_segment_name dicti.onary_ptr
currently_polled set of remotes
remote_info [remoteord] remot:e_record_ptr

remote_polling_id byte
site site record ptr

(see "heap".master".site ptr abo::;e) -
site_equipment equipment_record_ptr

equipment_name dicti.onary_ptr
two_states [2stord] two_state_record

alarm_name [wordord] dicti.onary_ptr
alarm_type nibble
special_name_flag BOOLEAN
pcm_port byte

Figure 55. List of HEAP (EKA) identifiers.

171

Identifier
equip_a2d[a2dord]

param_name[wordord]
param_type
param_units

equip_digital [digord]
(see equip_a2d above)

relays [relayord]
relay_name [wordord]
relay_type
relay_status
open_name
closed name

combos [comboord]
combo_name [wordord]
combo_type
expression[node]

op
left link
right_link

link_info [linkord]
specific_name [x,y]

name [wordord]
alarm number

relay_exists [x,relayord]
remote_equip_type
remote_equip_name

trunk_info [trunkord]
trunk id
links_in_trunk[node]

trunk links
trunk_port

segment_lu
poll_monitor
alternate_masters [masterord]

crt_ptr[crtord]
comm info

baud
auto answer
modem

terminal_type
printer_type
location

(see "heapA.masterA.site_ptr"
location_qualifier

confi version
network

segment_info [segord]
short_segment_name
last_link_ptr

~
parameter_record
dictionary_ptr
byte
dictionary_ptr
parameter record

relay_record
dictionary_ptr
byte
INT
dictionary_ptr
dictionary_ptr
combo record
dictionary_ptr
BOOLEAN
expression_tree
INT
INT
INT

link_record_ptr
specific_name_record
dictionary_ptr
-1 .. max_2states_per_link-l
PACKED ARRAY[O .. 1,relayord]OF BOOLEAN
remote_types
dictionary_ptr
trunk_record_ptr
dictionary_ptr
trunk_link_array
link_def_ptr
byte
INT
O.. 2
DS node
crt_record_ptr
comm info record
byte
BOOLEAN
BOOLEAN
byte
O.. 7
site_record_ptr

above)
CHAR
INTEGER
network_record_ptr
net_segments
dictionary_ptr
-1 .. max_links_per_net-l

Figure 55. (cont.)

172

counts_array
INT
INT
nine bits
seven bits
byte
byte
counted_array {PACKED BOOLEAN}
ARRAY[files_read] OF INT
current_alarm_ptr
PACKED RECORD
BOOLEAN
BOOLEAN
nine bits
five bits
BOOLEAN
0 .. 7
six bits
six bits
INT

(cont.)

~
net masters
site__record_p tr

above)
CHAR
links_record_ptr
dicti.onary_record_ptr
segment_status_record
INT
INT
remote_status_ptr
INT
INT
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
link 2state ordinal
INT
INT
parm_record (832 wds, file (CURVE)
hist__array
INT
INT
INT
INT
INT
INT
INT
INT
RECORD

Figure 55.

secs
cn_counted[link_2state_ordinal]

file reader cnt- -
cat_status [category]

current_2states[link_2stateord]
just_cleared
new alarm
jday
hour
alarm set
fill
minute
second

current_a2ds[a2dord]

Identifier
master_info [masterord]

site ptr
(s;e "heapA.masterA.site ptr"

master_name_qualifier -
links
dictionary
segment_status [segord]

nbr remotes
previous remotes
remote_status [remoteord]

extent of
next extent
no answer
parity_err
bad_response
simulating
ss_alarms[-l .. 0, 1 .. 2]
next archive record
parm_status
parm_data

cal_curves [category, a2dord]
a2d_bottom[category, a2dord]
a2d_top
a2d amber
a2d red
digital_bottom[category,digord]
digital_top [category, digord]
digital_amber [category, digord]
digital_red[category, digord]

counts [category]
cn_vals[O .. max_counts_per_link]

val
yr
jdy
hr
minut

173

Identifier
current_digitals[digord]
hist_a2d[a2dord]
hist_digital[digord]

pcm_counts[l .. 2, trunkord]
main_resp
tout
wait ext
arch it
al_update
b r
not ans
NA
p_e
resp
extended
time res
time_pro
time dis
time tra
time_disp
disc start
disp_start
poll_timer
currently_polled

stack_alloc[x]
next id
max crt
max_segment
real_kybrd_class
cmmd class
plrp_class
mtrp_class
poll class
si class
logon_class
msg_class
19off_class
di_segrem
current_crt [crtord]

crt down
color crt
graphic_crt
graphics_mode
insert cmd line
print_dsp
whole x
wholey
half x
halfy

Figure 55.

~
INT
hist_array
hist_array
INT
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
INTEGER
INTEGER
INTEGER
set of remotes
byte
byte
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
current crt record
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
INT
INT
INT
INT

(cont.)

174

Identifier
latlons[master_segment_ordinal]
lats[remoteord]
lons[remoteord]

up_class
crt rn
crt class
crt recnbr
crt_eqt
current_msgord
msg_ords[crt_msg_ordinal]
msg_segords[crt_msg_ordinal]
msg_remoteords[crt_msg_ordinal]
msg_priorities[crt_msg_ordinal]
msg_lengths[crt_msg_ordinal]
msgs[crt_msg_ordinal]
current_display
default_display
crtlu alfa
current_segord
fkey_entry
operator_name
remotes_displayed
alarms_acknowledged
remotes_to_print
alarms inhibited
old cursor

x
y

last cursor
first line
lines
sav_dsp
old_dsp
kybrd_class
line nbr
nbr lines
pgs_remaining
cur_page
prev_pages
miscl
misc2
misc3
misc4
misc5
misc6
max_dsp_ln
max_key
locked In
sav_fkey_entry
max_page

Figure 55.

~
RECORD
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
sixty_chars
two chars
two chars
two chars
INT
INT
sixteen chars
remotes_array
remotes_array
remotes_array
remotes_array
RECORD
INT
INT
twenty_chars
ARRAY[l .. 15] OF INT
ARRAY[l .. 15] OF INT
two chars
two chars
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT

(cont.)

175

Identifier
sav len
sav echo
sav_binary

time_it[segord, 1 .. 5]
time_val [segord, 1 .. 5]
EMA_start[segord]
EMA_end[segord]
EMA_required[segord]
statz

cnt_cmds[un .. us, crtord]
transmission[segord] [remoteord,

archive idx
diag
access restricted
resp_stats[segord]

remote num
cos
fil
jday
hr
fil2
min
sec

heap_ptrs_size
master rec size
network rec size
links rec size
segment_rec_size
remote rec size
1inkend rec size
equip,-rec_size
crt rec size
trunk rec size
site rec size
cat status size- -
rem stat size- -
nbr_segments
nbr remotes
nbr linkends
nbr_equipments
nbr crts
nbr trunks
nbr sites
nbr cat status
nbr rem status

~
INT
INT
INT
BOOLEAN
INTEGER
INTEGER
INTEGER
INTEGER
statz record
INT

msg_status] INT
archive record
BOOLEAN
BOOLEAN
PACKED RECORD
INT
BOOLEAN
BOOLEAN
nine bits
five bits
O.. 15
six bits
six bits
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT

Figure 55. (cont.)

176

(2) The following short names for array subscripts are used. Their long
definitions can be found in the description of [RECR3 in Section 11.1:

masterord ~ O..max_mastersyer_segment - 1
segord ~ master_segment_ordinal
remoteord = segment_remote_ordinal
linkord ~ O..max_linkends_per_remote - 1
2stord = link_2state_ordinal
category ~ category_ordinal
a2dord ~ a2d_ordinal
digord ~ digital_ordinal
crtord ~ master_crt_ordinal
wordord ~ O..max_words - 1
comboord ~ O..max_combosyer_link - 1
relayord ~ O..max_relaysyer_link - 1
trunkord ~ O..max_trunksyer_trunk - 1
node = O..max_sitesyer_trunk - 1

(3) Any type definitions used by the TRAMCON software that are NOT basic
PASCAL types can be found in the description of [RECR3 in Section 11.1.

11.3 Global Data Definitions - [TRVAR. [MPVAR. and [DTVAR

The term "GLOBAL" as used in this section refers to the program-wide scope of
the variables declared in these three INCLUDE modules and should not be
confused with the even greater scope of shared data variables that are stored
in the HEAP and are shared between programs. The global data declarations
shown in the figures in this section are Pascal VAR declarations and are
incorporated into any program module using the INCLUDE feature. That is,
these VAR declarations are merged into the program SOURCE before compilation.
These INCLUDE code blocks are referenced in a. particular program module by
placing an INCLUDE compiler directive, such as "$INCLUDE ' [TRVAR'$", in the
source code at the exact point where the VAR declaration is intended to go.

When the compiler encounters the INCLUDE directive, it replaces the directive
statement with the actual VAR declaration that it finds on disc, using what
is enclosed in single quote marks as the file name. The naming convention
for INCLUDE source module files requires that the first character of the name
be "[". For example, upon encountering the directive $INCLUDE , [TRVAR'$, the
compiler opens the disc file named [TRVAR then places the contents into the
source module being compiled and resumes compilation with the first line that
was just inserted.

The advantage that the INCLUDE feature offers is that similar source code
does not have to be repeated by hand for each module that uses those lines of
code. Also, if any part of that code block i.s changed, all modules that
include it are affected by simply recompiling. In this case, the code block
is a VAR section. Any module that includes t:his block gets this exact set of
variables made available for use throughout the module. These modules must
be defined as global to the entire program module, that is, at lexic level 0,

177

and are always included as the first VAR definition. They must also be
preceded by the INCLUDE module [RECR3, which contains the TYPE and CONST
definitions used by many of the variables in these INCLUDE modules. A
typical program module contains the following two directives immediately
after the program statement: $INCLUDE '[RECR3'$

$INCLUDE '[TRVAR'$

NOTE

This set of variables is used by virtually all TRAMCON programs and
by most of the routines in the two TRAMCON libraries $MPLIB and
$TRLIB. Since the libraries are compiled separately from the
program modules, it is extremely important that these definitions be
included in all modules in exactly the same order and place so that
the compiler gives the same relative address for corresponding
variables. The order of the variables within each INCLUDE block is
also very important. For example, the block [TRVAR is included in the
library module $TRLIB and in the program module CMMD. There are
references to the variable "crtord" in both the program CMMD and by
several routines in $TRLIB that are in turn referenced by program
CMMD. The program logic expects these references to be to the same
physical memory location when the program CMMD is executing, but at
the time of compilation, the compiler was not aware of both CMMD and
the routines in $TRLIB since they were compiled separately. By
placing the [TRVAR VAR definition in the same place in each module and
by using the INCLUDE feature to ensure the exact same definition, the
programer forces the compiler to generate the same addresses for the
same identifiers.

Figure 56 shows the main global variable INCLUDE module [TRVAR that is used
by almost all TRAMCON software modules. If any part of this module is
changed, all the TRAMCON software must be recompiled and reloaded.

VAR heap: heap-ptr; parms: parm_array; id: byte;
word, sname: dictionary_word; soft_key, color: CHAR;
i, j, k, crtord, segord, remoteord, category, 1inkord, sname_1en,
loca1_end,rnr~status,crt_type,trunkord,last_1n,first_1n,ln:INT;

time_a1fa: time_str; print_it, refresh, colored: BOOLEAN;
oppo_site, siteptr: site_record-ptr; equip: equipment_record-ptr;
crtptr: crt_record_ptr; rem_status-ptr: remote_status-ptr;
remptr: remote_record_ptr; segptr: segment_record_ptr;
cat_status_ptr: current_a1arm-ptr; 1inksptr: 1ink_def_ptr;
1inkendptr: 1inkend_record_ptr; trunkptr: trunk_record-ptr;
crt buff: cmd_str; crt_IO_1en: INT;
$LINESIZE 1920$ outunit: TEXT; $LINESIZE 128$

Figure 56. Global data declaration module [TRVAR.

178

"soft_key"
is used by
keyboard.
value and

-- ----- - . - -- - -- .---- --------- ----.- -------- -_ ..- - - .._--------- ----

The following is a brief discussion of each variable declared in the INCLUDE
module [TRVAR.

"heap" - The type, "heap_ptr" , is defined in the INCLUDE module [RECR3
and is discussed in Section 11.1 of this manual. This two-word integer
is the first-word address of the type 2 HEAP that contains all the
static configuration data and dynamic run-time data that is shared by
most TRAMCON programs. As each program begins to run, this address is
acquired by calling the routine "allocate_EMA". Refer to
Section 8.2.4.1 for a complete description of the routine "allocate EMA"
and how this address is set. Refer to Section 11.2 for a discussion
about the data stored in the HEAP.

"parms" - The type, "parm_array" , is defined in the INCLUDE module
[RECR3 and is discussed in Section 11.1 of this manual. This array
consists of five one-word integers and is used by all TRAMCON programs
to store the five run-string parameters that are passed to each program
as it is scheduled. The first value, "parms[l] " , always contains the
class number that allows the newly-scheduled program to acquire the
first word address of the HEAP, the variable "heap" described above.

"id" - The type, "byte", is defined in the INCLUDE module [RECR3 and is
discussed in Section 11.1 of this manual. This single-byte value is
used to identify any stack space the given program might have assigned
to it. At this point, only the two programs MTRP and PLRP ask for stack
space, and since these programs run continuously, this space is never
returned. Refer to the Pascal/lOOO Reference Manual, p. 8-17.

"word, sname" - The type, "dictionary_word", is defined in the INCLUDE
module [RECR3 and is discussed in Section 11.1. These two 30-character
strings are used by TRAMCON programs to build entries from the
Configuration data base dictionary. These dictionary words are built by
the routine "read_dict", which is discussed in Section 8.2.4.1 of this
manual. The variable "word" is used by most programs. "sname" is also
used by the few programs that need two values from the dictionary at
once.

- The type, CHAR, is a basic Pascal type. This byte of data
all programs that accept function keypresses from the
The routine "keypress" places single key presses in this

is discussed in Section 8.2.4.1.

"color" - The type, CHAR, is a basic Pascal type. This byte of data is
used as the ASCII representation of an integer value representing the
color selection for escape sequences that are output to the terminal to
alter the color being displayed. The possible values of "color" are
defined as constants in the INCLUDE module [RECR3 and are discussed in
Section 11.1 of this manual.

179

"i,j,k" - The type, "INT" , is defined in the INCLUDE module [RECR3 and
is discussed in Section 11.1. These three one-word integer values are
used by most programs as utility variables such as loop or array
indices. Seldom are more than three of these variables needed. If more
are needed, they must be declared after all the variables in the INCLUDE
modules listed here.

"crtord, segord, remoteord, category, linkord" - The type, "INT" , is
defined in the INCLUDE module [RECR3 and is discussed in Section 11.1 of
this manual. These one-word integer values are some of the most crucial
values in the TRAMCON software. They are all used as indices into
arrays of data stored in the HEAP, discussed in Section 11.2, and their
respective ranges are determined by constant definitions that are
specified in the INCLUDE module [RECR3.

Any program that does terminal I/O determines which terminal it
will communicate with by the value of "crtord" th9-t is passed from
program to program as the fourth run-string parameter "parms[4]".
The value of "crtord" ranges from 0 to 4 ("max_crts-per_master"
- 1) and is used as an index into the two HEAP arrays
"heap".master".crt-ptr[crtord]"" and "heap".current_crt[crtord]".

The value of "segord" is passed to display programs by program CMMD
as the fifth run-string parameter, "parms[5] " , to indicate for
which segment the data is to be displayed. The data collection
programs attach the value of segord to the remote unit CLASS I/O.
The value of "segord" ranges from 0 to 1 and is an index into the
HEAP arrays "heap".master".segment[segord]" and
"heap".segment_status[segord]".

The variable "remoteord" goes hand in hand with "segord" and
references data one level deeper to the remote unit level. The
value of "remoteord" ranges from 0 to 20 ("max_remotes_per_segment"
- 1) and is an index into the HEAP arrays
"heap".master".segment[segord].seg-ptr".remote_info[remoteord]" and
"heap".segment_status[segord].remote_status[remoteord]"".

The value of "category" is usually computed by the particular
program as it executes. The variable "category" goes hand in hand
with "segord" and "remoteord" and references data one level deeper
to a particular portion of a remote unit. The value of "category"
ranges from -1 to 3 ("max_linkends-per_remote" - 1) and is an index
into the HEAP arrays "heap".master".segment[segord].seg-ptr".

remote info[remoteord]".linkend info[category]"" and
"heap".s;gment_status[segord].rem~te_status[remoteord]".

cat_s·tatus [category]" . The value "linkord" has the same
meaning as "category" and may not be widely used.

180

"sname_len" - The type, "INT" , is defined in the INCLUDE module [RECR3
and is discussed in Section 11.1 of this manual. This one-word integer
value indicates the length of a given site name, in characters, and is
used by programs that display the site names. This value is returned as
the value of the function "read dict" when it is called.

"local_end" - This one-word integer value is used by programs that
access the link-end-specific information in the arrays "specific_name"
and "relay_exists" in the LINKEND record. This integer assumes the two
values 0 or 1 and is used as the first dimension index into the two­
dimensional arrays just mentioned. The routines "get_category", located
in the INCLUDE module [EXTNT, and "set_cat_vars", located in library
$TRLIB, set this value along with other variables that are used to
access data for a given linkend category.

"rnrLstatus" - The type, "INT" , is defined in the INCLUDE module [RECR3
and is discussed in Section 11.1. This one-word integer value indicates
the result of a call to one of the system resource number routines.
Resource numbers are used to control use of the terminal devices. The
value of "rnrq_status" is returned as the value of the function when the
routine RNRQ is called. Refer to the RTE-6/VM Programer's Reference
Manual, pp. 5-16, for possible values for "rnrq_status" and their
meanings.

"crt_type" - The type, "INT" , is defined in the INCLUDE module [RECR3
and is discussed in Section 11.1. This one-word integer value ranges
from 0 to 4 and represents the type of terminal device with which a
program is communicating. These terminal types have been given
alphanumeric identifiers in the CONST section of the INCLUDE module
[RECR3. Each terminal type has certain features that are different or
nonexistent on other types. Examples of the features are graphics grid
dimensions, color, and alphanumeric memory size. Display programs
retrieve the terminal type from the Configuration data in the HEAP and
place it into "crt_type" because "crt_type" is easier to access. That
is, the value "crt_type" is in the program space and is, therefore, a
one-word, one-step de-reference while the value
"heap".master".crt_info[crtord]".terminal_type" is a three-step de­
reference with each step evaluating a two-word HEAP address.

"trunkord" - The type, "INT" , is defined in the INCLUDE module [RECR3
and is discussed in Section 11.1. This one-word integer value ranges
from 0 to 99 ("max trunks per segment" - 1) and is used as an index into
the HEAP array "he~p".master"~segment[segord]".trunk_info[trunkord]"".
This value is used by the programs PC and PH to display the PCM or
digroup alarms, by the programs MTRP and PLRP to process the remote unit
responses that contain the PCM alarms and by the program HR to store
each hour's PCM alarms in the disc file (PHIST.

181

"last_In, first_In, In" - The type, "INT" , is defined in the INCLUDE
module [RECR3 and is discussed in Section 11.1. These one-word integer
values are used by various display programs to keep track of how much
and where data are displayed on the terminal display. They are also
used as a dereferencing convenience like that described above for
"crt_type" .

"time_alfa" - The type, "time_str", is defined in the INCLUDE module
[RECR3 and is discussed in Section 11.1. This l2-character string value
is used primarily by program CMMD to hold the ASCII representation of
the date/time in the format displayed in the upper left-hand corner of
all TRAMCON displays.

"print_it, refresh, coloredn - The type, "BOOLEAN", is a Pascal basic
type. These BOOLEAN values are used to control actions of the display
programs. The display program sets "print_it" according to the value of
the HEAP variable "heap".current_crt[crtord] .remotes_to_print", which
was set by program CMMD just before it scheduled the display program.
If "print_it"is true, the output is routed to the printer instead of to
the terminal display. The value of "refresh" determines whether the
display program displays the static information or just the dynamic data
for a given display. The value "colored" is another convenience
variable set to the same value as the HEAP variable
"heap".current_crt[crtord] . color_crt" and determines whether the display
program will or will not issue escape sequences to activate the color
feature of the display device. Any displ~y program can count on these
values being correct because they are set by the routine "allocate_EMA",
which is called by each program as one of the first execution steps.

noppo_site, siteptrn - The type, "site_record_ptr", is defined in the
INCLUDE module [RECR3 and is discussed in Section 11.1. These two-word
integer values are more dereferencing convenience values that are set by
routine "allocate_EMA" and are HEAP addresses that point to site
records. The primary site record of interest to a display program, such
as the location of a given remote unit, is pointed to by the value
"siteptr". The site record of the site at the other end of a particular
link is stored in "oppo_site". Refer to Section 8.2.4.1 for a
discussion of routine "allocate EMA".

nequipn - The type, "equipment_record_ptr", is
module [RECR3 and is discussed in Section 11.1.
value is a HEAP address of a Configuration data
and is another dereferencing convenience.

defined in the INCLUDE
This two-word integer

base equipment record

ncrtptrn - The type, "crt_record_ptr", is defined in the INCLUDE module
[RECR3 and is discussed in Section 11.1. This two-word integer value is
a HEAP address of a Configuration data base CRT record and is another
dereferencing convenience.

182

nrem_statusytrn - The type, "remote_status_ptr", is defined in the
INCLUDE module [RECR3 and is discussed in Section 11.1. This two-word
integer value is a HEAP address of a dynamic remote status record and is
another dereferencing convenience.

nremptrn - The type, "remote_record_ptr", is defined in the INCLUDE
module [RECR3 and is discussed in Section 11.1. This two-word integer
value is a HEAP address of a Configuration data base remote record and
is another dereferencing convenience.

nsegptrn - The type, "segment_record_ptr", is defined in the INCLUDE
module [RECR3 and is discussed in Section 11.1. This two-word integer
value is a HEAP address of a Configuration data base segment record and
is another dereferencing convenience.

ncat_status_ptrn - The type, "current_a1arm_ptr", is defined in the
INCLUDE module [RECR3 and is discussed in Section 11.1. This two-word
integer value is a HEAP address of a dynamic category status record and
is another dereferencing convenience.

n1inksptrn - This one-word integer value is used as an index into the
LINKS array. Every LINKEND record has one of these pointers to
associate the particular LINKEND with the information contained in the
LINKS array that is common to both ends of the given link. This
variable is set by the routine "get_category" in [EXTNT and by routine
"set cat vars" in library $TRLIB.

nlinkendptrn - The type, "linkend_record_ptr", is defined in the INCLUDE
module [RECR3 and is discussed in Section 11.1. This two-word integer
value is a HEAP address of a Configuration data base link-end record and
is another dereferencing convenience.

ntrunkptrn - The type, "trunk_record_ptr", is defined in the INCLUDE
module [RECR3 and is discussed in Section 11.1. This two-word integer
value is a HEAP address of a Configuration data base trunk record and is
another dereferencing convenience.

ncrt buffn - The type, "cmd_str", is defined in the INCLUDE module
[RECR3 and is discussed in Section 11.1. This 80-character string value
is used by the routine "keypress" ($TRLIB) to store input from any
keyboard. This input is attached to the CLASS number for the given
keyboard (heapA.current_crt[crtord] .kybrd_c1ass) and can be recovered by
any program that references that CLASS number.

ncrt_IO_lenn - The type, "INT" , is defined in the INCLUDE module [RECR3
and is discussed in Section 11.1. This one-word integer value is used
by programs to determine the length in characters of input from any
given keyboard. The routine "keypress" uses this variable in conjuction
with "crt_buff" described above. The actual input is placed into
"crt_buff" and the length of the input (in bytes) is placed into
"crt 10 len".

183

ftoutunit ft - The type, "TEXT", is an HP/1000 Pascal enhanced basic type.
The text file is the only output file used by the TRAMCON programs to
output to the display or the printer. To speed up the output to the
display, the file size is adjusted to approximately one screen full by
the compiler directive $LINESIZE 1920$. The directive $LINESIZE 128$
appears immediately following the declaration of "outunit" so that any
other text files declared in any program will have the default 128­
character buffer allocated. By increasing the buffer size, many of the
terminal output statements can be LOGICAL (buffered) instead of
PHYSICAL, thus reducing the number of time-consuming terminal setup
steps required.

Figure 57 shows the INCLUDE file [DTVAR, which looks remarkably like file
[TRVAR, which was discussed above. They look alike because they are the
exact same definition except for the $LINESIZE$ directive in front of the
declaration of the text file "outunit". The programs DT and SR are very
large because they use the space-consuming DS routines. If a large buffer
for the "outunit" file is added, the number of segments for DT or SR becomes
undesirable. Therefore, a separate global VAR definition is maintained for
use by DT and SR only.

VAR heap: heap-ptr; parms: parm_array; id: byte;
word, sname: dictionary_word; soft_key, color: CHAR;
i, j, k, crtord,segord, remoteord, category, 1inkord, sname_len,

local_end,rnr~status,crt_type,trunkord,last_ln,first_1n,In:INT;
time_alfa: time_str; print_it, refresh, colored: BOOLEAN;
oppo_site, siteptr: site_record-ptr; equip: equipment_record-ptr;
crtptr: crt_record-ptr; rem_status-ptr: remote_status-ptr;
remptr: remote_record-ptr; segptr: segment_record-ptr;
cat_status_ptr: current_alarm-ptr; linksptr: link_def_ptr;
linkendptr: linkend_record-ptr; trunkptr: trunk_record-ptr;
crt_buff: cmd_str; crt_IO_len: INT;
$LINESIZE 500$ outunit: TEXT; $LINESIZE 128$

Figure 57. Global data definition module [DTVAR.

The programs DT and SR include the file [DTVAR instead of file [TRVAR so that
their buffer size for the file "outunit" is only 500 characters rather than
1920 characters. This line-size value in file [DTVAR can be adjusted, as
either of these programs is changed, to cause the segmenter to create a
reasonable number of segments.

CAUTION: If changes are made to the definition [TRVAR, the
same changes must be made to file [DTVAR or programs DT
and SR will not work properly. The first symptom will
probably be the Pascal fatal error "must open file ?"
that results from trying to access file "outunit" by the
routine "allocate EMA".

184

The global data definition shown in Figure 58 is separate from [TRVAR
because, unlike the variables in [TRVAR, these variables are not used by most
TRAMCON programs. In fact, these variables are used only by the programs
MTRP, PLRP, CC, PA, and SW; by most of the routines in $MPLIB; and by a few
routines in $TRLIB. Any module that references (INCLUDES) the VAR definition
[MPVAR must insert it immediately after the inclusion of [TRVAR in order for
the compiler to generate the proper addresses.

{ Ref by PLRP and MTRP, ee, PA, SW, $MPLIB, $TRLIB }
VAR cos, polledord, node_idx, response_length, ssy, yr,

sav_ord, response_status: INT;
nodes: ARRAY[expression_ordinal] OF INT;
pl-processor, res_len_ok, parityerr, bad_id, illegal_interrupt,

response_timedout, responded, change_of_s tate , sw_response,any_new,
any~ust_cleared, new_gone, cleared_gone, new_cn, new-pc: BOOLEAN;

cmd buffer: six chars; clk: parm array;
archive_file: FILE OF archive_re~ord;
unpacked_response: unpacked_response_record;
response: response_str;
major_or~inor: BOOLEAN; {TRUE if at least 1 major or minor alarm on}
site_stat, ss_site_stat: two_chars; archive_rec: archive record;
alarms_reported: ARRAY[category_ordinal] OF BOOLEAN; -
init_2states: alarms_array;
init_a2ds: a2ds_array; init_digitals: digitals_array;

{The following are used to process analog and digital parameter data }
bin, decimal-places, two_sided_th, parmord: INT;
decreasing, two_sided, in_a2ds, calibrate, crossed_amber,

crossed_red, red_on: BOOLEAN;
received_id: byte;

Figure 58. Global data definition module [MPVAR.

ftcosft - The type, "INT" , is defined in the INCLUDE module [RECR3 and is
discussed in Section 11.1. This one-word integer value is used by the
response processing routines in $MPLIB to represent the change-of-state
indication in a remote unit response. The value of "cos" is set by routine
"get_answer" in $MPLIB and is non-zero only if bit 5 of the second byte in
the response is ON. This happens to be the way that the currently supported
DATALOKlO remote unit indicates a change-of-state and, of course, may not
indicate the same thing for another remote unit type that might be supported
in the future. If a new remote unit were to be supported, this change-of­
state processing would have to be generalized.

ftpolledordft - The type, "INT", is defined in the INCLUDE module [RECR3 and is
discussed in Section 11.1. This one-word integer value is used by programs
PLRP and MTRP to represent the same values as "remoteord" described above.

ftnode_idx ft - The type, "INT" , is defined in the INCLUDE module [RECR3 and is
discussed in Section 11.1. This one-word integer value is used by routines
"evaluate_node" and "process_response" in $MPLIB. The value is set by
routine "evaluate node" and is used by routine "process_response".

185

"response_length" - The type, "INT" , is defined in the INCLUDE module [RECR3
and is discussed in Section 11.1. This one-word integer value is used by the
routine "get_answer" (see Section 8.2.4.2) to store the length (in bytes) of
each remote unit response received. This value is compared with hard-~oded

valid lengths to set the GLOBAL VAR "res len ok".

"ssy, yr, sav_ord" - The type, "INT" , is defined in the INCLUDE module [RECR3
and is discussed in Section 11.1. The variable "ssy" is no longer used and
can be removed. The variable "yr" is referenced by routine "TimeNow" in
$TRLIB and by routines "archive_it" and "get_answer" in $MPLIB. The value
set by routine "get_answer" is used by routine "archive_it" for the archive
record time stamp. Variables "ssy" and "sav ord" do NOT appear to be
referenced.

"response_status" - The type, "INT" , is defined in the INCLUDE module [RECR3
and is discussed in Section 11.1. This one-word integer value is used by the
remote unit response processing routines in-$MPLIB and the main portions of
programs PLRP and MTRP to reflect the most severe status of each response
processed.

"nodes" - The type, "INT", is defined in the INCLUDE module [RECR3 and is
discussed in Section 11.1. This array of one-word integer values is used by
the recursive routine "evaluate node" to hold the nodes of a combination
alarm expression as it is evaluated. Routine "evaluate_node" is called by
routine "process_response", which is in turn called by the programs MTRP and
PLRP.

"plj>rocessor" - The type, "BOOLEAN", is a Pascal basic type. This one-word
logical value is used by programs to control the behavior of the routines in
the library $MPLIB. The flag "pl_prpcessor" is set to true by the program
PLRP and set to false by any other program. This flag is checked by the
routines "pm_Initialize" and "update_cursor" in $MPLIB.

"res_len_ok, parityerr, bad_id, illegal_interrupt,
response_timedout, responded, change_of_state, sw_response, any_new,
any~ust_cleared, new_gone, cleared_gone, new_cn, new_pc"

The type, "BOOLEAN", is a Pascal basic type. These one-word logical values
are used by the response processing code to define the characteristics of
each response received from a remote unit. These variables determine the
overall site status that is displayed to the left of each station on the
segment MAP and segment status displays. The variable "res len ok" is set by
the r<;>utine "get_answer" in $MPLIB and indicates that the respo~se length is
within the general range of 2 to 270 ("ma~charsj>er_response" defined in
[RECR3). It is referenced three more times in the same routine. One of
those references is to set the flag "responded" and another is to set the
flag "bad_response". The only other place that "res len ok" is referenced is
in routine "process_response" in $MPLIB.

The three values, "parityerr", "illegal_interrupt", and "response_timedout"
are reported directly by the interface driver as individual bits in the value

186

of "response_status" returned by the call to routine "get_lO_length" (alias
"ABREG" , refer to RTE-6jVM Programer's Reference Manual, p. 2-12). The value
"parityerr" is a hardware flag from the BACI interface indicating that at
least one byte in the response had incorrect PARITY. The "illegal_interrupt"
flag is set by the driver when no valid reason for being in the driver could
be found. The "response_timedout" flag is set by the driver when too much
time elapses while waiting for a byte to show up at the BACI input buffer.

The "bad_id" flag is set by the routine "get_answer" and referenced by the
routine "get_answer" and by the program MTRP. If the program is PLRP,
"bad_id" is true if "received_id" does not equal "remptr".remoteyolling_id",
that is the ID of the remote unit just polled. In the monitoring case, the
program MTRP does not know which remote unit was polled and, therefore, can
not match against a known ID. For program MTRP, "bad_id" is true if
"response_timedout" or a search through all the remote unit IDs on the given
segment for the "received_id" does not produce a match.

The variable "responded" is set by routine "get_answer" by LOGICALLY ANDing
several of the other flags. This flag is also set by routine
"unpack_response" if a DELETE character appears anywhere in the response
other than the last character. The variables "change_of_state, any_new,
any~ust_clearednew_gone, cleared_gone" are referenced solely by the routine
"process_response".

The variables "new_cn" and "newyc" are set by routine "process_response"
when at least one counted two-state and at least one PCM digroup alarm are
detected respectively. The routine "update_displays" will not attempt to
refresh any CN or PC display if the corresponding flag, either "new_cn" or
"new_pc", is false. There appear to be no references to the variable
"cmd buffer" .

"clk" - The type, "parm_array" , is defined in the INCLUDE module [RECR3 and
is discussed in Section 11.1. This array of five one-word integer values is
used to hold the time/date clock in the format returned by the routine
"read_clock" (alias EXEC, function 11, refer to RTE-6/VM Programer's
Reference Manual, p. 2-72). This time/date is set by routine "get_answer"
the moment a response is received from a remote unit and represents the
time/date stamp associated with that response. This time/date is used by
routine "archive_it" to time-stamp archive records and by routine
"process_response" to time-stamp changes-of-state of individual elements of
the response.

"archive_file" - The type, "archive_record", is defined in the INCLUDE module
[RECR3 and is discussed in Section 11.1. This file of "archive_record" is
declared globally so that it may be initially opened by the routine
"pm_Initialize" and subsequently used by the routine "archive_it". The
function of the open statement for this file in routine "archive_it" is to
cause the last record logically written to be physically written to the file.
A more appropriate routine is POST, which is discussed in the RTE-6/VM
Programer's Reference Manual, p. 3-82.

187

"unpacked_response" - The type, "unpacked_response_record", is defined in the
INCLUDE module [RECR3 and is discussed in Section 11.1. This record variable
is used by the response processing routines in $MPLIB to hold a generic
unpacked form of each remote unit response. Routine "pm_Initialize"
initializes "unpacked_response" when the programs MTRP and PLRP are
scheduled. After that, the content of "unpacked_response" is overwritten by
routine "unpack_response" each time a response is received from any remote
unit (refer to Section 8.2.4.2 of this manual for discussion of
"unpack_response"). Figure 59 shows the format of the GENERIC response.
Refer to Appendix E for a detailed tabular description of the GENERIC
response formats for the DATALOKIO models lD and 1E remote units. The
GENERIC response has three major divisions; (1) two-state information,
(2) Analog-to-Digital parameter information, and (3) Digital or Pulse Count
parameter information.

Each of these three major divisions contains information for each of
4 possible CATEGORIES (CATEGORY is defined in the DICTIONARY in this manual).
This GENERIC response defines the limits imposed by the TRAMCON software on
the information that can be reported by a single PHYSICAL remote unit. That
is, a single remote unit can report information for 1 Site equipment category
and from 1 to 3 link end categories. Currently, the DATALOKIO remote units
report information for all possible categories.

The two-state alarm/status section accommodates 144 indicators per CATEGORY.
Of this 144 total, only 72 can actually be reported by the remote unit. The
remaining 72 two-state indicators are derived from other information reported
by the remote unit. The 72 derived indicators are allocated and interpreted
as follows

12 A/D threshold crossings (6 Amber, 6 Red)
44 Digital parameter threshold crossings (22 Amber, 22 Red)
16 Combination two-state alarms

Routines "evaluate_node", "p6lor62", and "process_response" process the
response in this generic form.

188

Two-state alarm/status data, 1 bit per alarm/status indicator

for Site category (144

I-bit Alarm/status indicators for link end 2 (144 bits, 9 wds)

Analog-to-Digital data, l-wd integer value representing raw voltage

for Site category (6 A/D, 6 wds)

l-wd int for each A/D value for link end 2 (6 A/D, 6 wds)

Digital (Pulse Count) data, l-wd integer representing number of
occurrences since last response

l-wd int for each Digital value for link end 2 (22 Dig, 22 wds)

each Digital value for

Figure 59. GENERIC remote unit response format.

"response" - The type, "response_str", is defined in the INCLUDE module
[RECR3 and is discussed in Section 11.1 of this manual. This 270
("max_chars_per_response" defined in [RECR3) character string is used by the
remote unit response processing routines in $MPLIB to hold the raw response
from each remote unit. Routine "get_answer" places the response received
over any segment polling channel into "response" by specifying "response" as

189

the input buffer in a call to the routine "get_response" (alias EXEC,
function 21, refer to RTE-6/VM Programer's Reference Manual, p. 2-41), which
recovers the remote unit response that was attached to the CLASS number
"caller'" (either "plrp_class" or "mtrp_class"). Routine "print_response" in
$MPLIB displays a formatted raw response directly from the variable
"response". Routine "unpack_response" transforms the remote unit specific
response in "response" into the generic "unpacked_response" GLOBAL variable.

NOTE

"major_or_minor" - The type, "BOOLEAN", is a Pascal basic type. This
one-word logical value is used solely by the routine "update_displays"
in $MPLIBto indicate that at least one MAJOR or minor alarm is present
in the response just processed. It is set to TRUE if the first letter
of the string "site_stat" equals "M" or "m", which means that the most
severe status for the site whose response was just analyzed is either
"MS" - Major Site, "ME" - Major Equipment, "mS" - minor Site or
"mE" - minor Equipment.

NOTE

"site stat, ss site stat" - The type, "two_chars", is defined in the
INCLUDE module [RECR3 and is discussed in Section 11.1 of this manual
These two 2-character strings are used solely by the routine
"update_displays" in $MPLIB to hold the most severe site status
indication for the site whose response has just been processed.
The string "site_stat" is used to hold the site status indicator for
the segment map display, while the string "ss_site_stat" is used to
hold the site status indicator for the segment status (SS) display.
The possible values of these strings are listed in Section 8.2.4.1
of this manual. The value of these strings is returned as the value
of the VAR parameter when "update_displays" calls routine
"get_site_status" (in $TRLIB).

"archive_rec" - The type, "archive_record", is defined in the INCLUDE module
[RECR3 and is discussed in Section 11.1. This record value is used by
routine "archive_it" in $MPLIB.

"alarms_reported" - This BOOLEAN array contains one BOOLEAN value for each
possible category in a remote unit response. If any array element is true,
at least one alarm/status indicator was reported for the corresponding
category in the remote unit response just received. For the dumb DATALOKIO
remote unit, these indicators are always true since all data for all
categories are reported every time. This feature was intended to support a
remote unit, such as the designed but not implemented IRU, that could
selectively report information. The values are initialized to false by the
routine "unpack_response" just before unpacking each response. The values
are set to true by routine "unpack_response" if the remote unit type is a
DATALOKIO model lD or IE.

190

"init_2states, init_a2ds, init_digitals" - The types, "alarms_array,
a2ds_array, digitals_array", are defined in the INCLUDE module [RECR3 and are
discussed in Section 11.1. These records are set to initial values once at
TRAMCON startup by the routine "pm_Initialize" and are used by routine
"unpack_response" to initialize the generic unpacked response record
"unpacked_response" before unpacking any remote unit response. Initializing
"unpacked_response" ensures that no residual data is left from the previous
response.

11.4 Disc Files

This section describes the disc files used by TRAMCON for data storage and
support of the TRAMCON On-Line system. The TRAMCON field system uses the
HP-79l2 65 Mbyte disc system, which is divided into two main sections called
"cartridges". Each cartridge is associated through the system generation
with a logical unit (LU) number. The software communicates with the disc
using this LU number. The LU numbers assigned to the two disc cartridges are
2 and 10. There is an alternate name, called the cartridge reference number
(CRN) , that can be used to reference the disc cartridges. The CRNs were
chosen to be the same as the LU numbers to avoi.d any unnecessary confusion.

The main guideline used to locate files on the disc is:

PROGRAMS (INCLUDING OPERATING SYSTEM) ON LU 2
NONPROGRAM FILES ON LU 10.

Figure 60 lists the fi.les that should be present on disc cartridge 2 (LU 2)
of every TRAMCON field system.

All of the programs marked with an asterisk are not essential for TRAMCON
operation, but are very useful for diagnosing problems that will continue to
occur for the life of the system. These programs are also very useful for
determining where adjustments should be made to increase the efficiency of
the TRAMCON On-Line software system.

All programs marked with a "D" are distributed systems (DS) modules that
support the InterProcessor Communication (IPC) function. This function
supports a network with each TRAMCON master being a node on that network.

All programs marked with a "U" are utility programs that perform some
cleanup, such as packing the disc cartridges (PAKLU) and closing files that
were left open (CLNUP). They also set some flags in the date file (SETDT)
and set some flags in the operating system disc cartridge table (SETCR). The
program SETCL can be used to set the software clock from the hardware clock
or vise versa.

191

File
Name

D #SEND
$SYENT
(DATE
)MISC
+@CCT!
AL
ARPTR
BROADC
CC
CF
CHECKT

U CLNUP
*CMD

CMMD
CN
CO
CR

* DCODE
D DINIT
D DLIST
*DLX
D DSINF

DT
ED

D EDITR
EDITT

D EXECM
D EXECY

FC
FCOOO
FC001
FC002
FC003
FC004
FC005
FC006

* GENIX
* HELP

HI
HR
INIT
KYBRD
LO
LOF
LON

File
~

6
1
3
4
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6

Disc
Blocks

8
126

1
2

28
193

98
82

163
438

14
122
102
235
141
141
156

60
69
29

218
89

889
154

81
305

29
61
52
89

111
149
140

32
87
59

140
44

139
199
924

83
154

51
78

Record Security
Length Code

128 0
128 -22738
128 0
128 0
128 -31178
128 0
128 0
128 0
128 0
128 0
128 0
128 0
128 0
128 0
128 0
128 0
128 0
128 0
128 0
128 0
128 21583=TO
128 0
128 0
128 0
128 0
128 0
128 0
128 0
128 0
128 0
128 0
128 0
128 0
128 0
128 0
128 0
128 0
128 0
128 0
128 0
128 0
128 0
128 0
128 0
128 0

Figure 60. Contents of disc La 2 for TRAMCON field system.

192

LS 6 177 128 0
LST 6 72 128 0

* LUPRN 6 90 128 0
* LUQUE 6 9 128 0

MA 6 119 128 0
ME 6 155 128 0

U MEDX1 6 98 128 0
U ME1DX 6 101 128 0

MS 6 101 128 0
MSG 6 104 128 0
MTR.P 6 385 128 0
NP 6 106 128 0

D OPERM 6 19 128 0
PA 6 143 128 0

U PAKLU 6 86 128 0
PC 6 112 128 0
PF 6 126 128 0
PH 6 195 128 0
PLRP 6 385 128 0
PM 6 127 128 0
POll. 6 50 128 0
PR 6 100 128 0

D PROGL 6 57 128 0
D PTOPM 6 58 128 0
D REMAT 6 86 128 0
D RFAM 6 71 128 0

RMASTE 6 67 128 0
D RSM 6 23 128 0

SC 6 150 128 0
D SCOM 6 236 128 0

SE 6 118 128 0
U SETCL 6 69 128 0
U SETCR 6 46 128 0
U SETDT 6 61 128 0

SI 6 101 128 0
SR 6 482 128 0
SS 6 121 128 0
SW 6 185 128 0

D SYSAT 6 31 128 0
T1MPAS 6 94 128 0
T1MSET 6 62 128 0
TROFF 6 109 128 0

Figure 60. (cont.)

193

TS 6 114 128 0
UP 6 49 128 0
US 6 130 128 0

D VCPMN 6 8 128 0
WELCOM 3 3 128 0
WZ 6 108 128 0
X 6 59 128 0

D - DS modules
U - Utilities

* - TRAMCON diagnostics

Figure 60. (cont.)

All but a few of the files on LU 2, as shown in Figure 60, are type 6 program
files. This is in keeping with the general· ;file placement rule stated above,
which says to place programs on LU 2 and data files on LU 10. The only files
on LU 2 that are NOT type 6 are

$SYENT
(DATE
)MISC
+@CCT!
WELCOM

1
3
4
1
3

126
1
2

28
3

128 -22738
128 0
128 0
128 -31178
128 0

Each of these five non-type 6 files must be located on the system disc LU 2.
Three of the files, $SYENT, +@CCT!, and WELCOM, are used by the RTE operating
system which looks for them on the system disc cartridge (LU 2). The other
two files, (DATE and)MISC, were created by the TRAMCON software developers
and need to be accessed even when the TRAMCON software is down.

The File Copy utility (FC) MUST be present because, currently, it is the only
way to distribute updates to the Configuration data base.

Figure 61 lists the files that should be present on disc cartridge 10 (LU 10)
of every TRAMCON field system.

The data files marked with a "C" in Figure 61 belong to the current set of.
Configuration data base files. This is the data base that is used by the On­
Line software. The files marked with an "0" belong to the old or fallback
Configuration data base, which can become the current set by selecting the
fallback option using the CO command. The files marked with an "N" are the
new data base files, which can become the current set by selecting the new
option using the CO command. It is this new set that is overwritten with
each Configuration data base distribution tape. The files marked with an "R"
are the run-time data base files.

194

File File Disc Record Security
Name ~ Blocks Length Code

"CM 4 III variable 0
"CM1 4 9 variable 0
"CMIDX 2 18 2250 0
"HE 4 106 variable 0
"HE1 4 2 variable 0
"HEIDX 2 18 2250 0

R (ARCH 2 25216 125 21586=TR
R (CN 2 117 356 21586=TR
C (CRT 15 1 6 2810
R (CURVE 2 273 832 21586=TR
R (DATE 3 1 37 21586=TR
C (DICT 15 55 7000 2810
C (DINIT 15 2 variable 2810
C (EQT 15 181 2313 2810
R (HIST 2 16128 16 21586=TR
C (LINK 15 23 119 2810
C (LINKS 15 18 1750 2810
C (MAST 15 1 47 2810

(MISC 4 2 variable 0
C (NET 15 2 140 2810
R (PF 2 41 12 21586=TR
R (PHIST 2 75 4800 21586=TR
C (REMOT 15 2 15 2810
R (RR 2 120 160 21586=TR

(RUVER 4 11 variable 0
R (SCIDX 2 246 630 21586=TR
C (SEG 15 2 244 2810
C (SITE 15 9 9 2810
R (STATZ 3 9 650 21586=TR
C (TRUNK 15 10 76 2810
N)CRT 15 1 6 2810.
N)DICT 15 55 7000 2810
N)DINIT 15 2 variable 2810
N)EQT 15 145 2313 2810
N)LINK 15 13 119 2810
N)LINKS 15 18 1750 2810
N)MAST 15 1 47 2810
N)MISC 4 2 variable 0
N)NET 15 2 140 2810
N)REMOT 15 1 15 2810
N)SEG 15 2 244 2810
N)SITE 15 9 9 2810
N)TRUNK 15 15 76 2810
o "'CRT 15 1 6 2810
o "'DICT 15 55 7000 2810
o "'DINIT 15 2 variable 2810

Figure 61. Contents of disc La 10 for TRAMCON field system.

195

0 "EQT 15 181 2313 2810
0 "LINK 15 41 119 2810
0 "LINKS 15 18 1750 2810
0 "MAST 15 1 47 2810
0 "NET 15 2 140 2810
0 "REMOT 15 3 15 2810
0 "SEG 15 4 244 2810
0 "SITE 15 9 9 2810
0 "TRUNK 15 36 76 2810

COOFF 4 1 variable 0
STOFF 4 3 variable 0

Figure 61. (cont.)

The data in these files are updated by the TRAMCON On-Line software. Note
that all Configuration data base files are type 15 and have security code set
to 2810. All of the run-time data base files have a security code of "TR".
This allows the user to manipulate these files in groups by using the common
types or security codes.

11.4.1 Changing the Record Size

This section is extremely important because it raises the caution flag to the
software developer when changes are considered that would affect the size of
the records in either the Configuration data base files or the run-time data
base files. Seemingly insignificant changes become difficult to implement if
they cause a change in the record size of any of these files. Most of the
I/O to these files in the TRAMCON On-Line software is done with standard
Pascal I/O statements. Pascal I/O will NOT read a record from any of these
files that is a different length (larger OR smaller) than the record that was
written to the file. The telltale symptom is the FATAL run-time error
message:

PASCAL I/O ERROR ON FILE xxxxxx
SEQUENTIAL ACCESS READ ERROR

where "xxxxxx" is the Pascal logical file name. This message says that the
logical file definition in the Pascal program where the FATAL error occurred
does NOT match the physical file definition.

Changes to the CONSTANTS and TYPE definitions should not be avoided because
they might affect a disc file record size. On the other hand, one must
exercise CAUTION when making changes that affect the records in these files.
In Section 11.1, in discussing the TRAMCON CONSTANTS and TYPE definitions,
there is.an attempt to indicate whether changing a particular CONSTANT or
TYPE would affect any record sizes for any of these disc files. If so, the
reader is cross-referenced to this section for general guidelines on how to
implement such a change to a disc file record.

196

Basically, the method for implementing record changes for Configuration data
base files is the same as that for the Run-time data base files. Pascal
allows records of a different size than is currently in the file to be
written to disc files. The s.olution is to create a program that can write
the new record to a file before any program attempts to read the new record.
That is easier said than done because, in most cases, one wants to preserve
the data in the old records. In order to preserve the already existing data,
the file must be opened and associated with the old record format, each
record must be read with the old format, the existing information must be
transferred to a new format record and that new record must be written to a
file that is associated with the new record format. Gne small consolation,
in a file that has only one record, the two files involved can be the same
file. Otherwise, a new file must be created to accept the new records and,
at completion, the old file must be purged and the new file renamed.

Appendix D contains a listing of a program that can be used to alter the
records in a disc file as described in the preceeding paragraph. The example
in Appendix D was used to change the size of the records on the disc file
(STATZ. Only minor modifications need to be made to the listing in Appendix
D to make the program work for a different disc file. There are seven points
in the source listing where code must be changed to accommodate a different
disc file. These file-specific lines of code are bracketed in front by a
COMMENT that begins with the word ENTER and followed by the COMMENT (end
ENTER) .

The first file-specific piece of information is the new record length in
machine words. This value, referred to as "newrec1en" in the code, can be
determined for simple records by counting the words in the definition. The
size of more complicated records can be determined by removing the COMMENT
brackets from the ($LIST ON, TABLES ON$) line near the end of the listing and
compiling the program with the statement: RU,P,&CHREC,-,%CHREC::10. The new
record definition must have already been entered into the source code. To
find the new record length, simply scan through the listing file 'CHREC to
find the compiler table entry for the record variable type "new record". The
entry should look similar to:

NEW RECORD
<125> Type

This information refers the reader to the TYPE definition with the internal
identifier <125>. Look for a line similar to:

<125> 670/ 0 Record

This line indicates the size of record type <125> in whole machine words plus
any excess bits less than one complete word. In this example, record type
<125> is 670 words + 0 bits long. The value 670 should be placed into the
CHGREC source code as the value of CONST "newrec1en".

Program CHGREC, listed in Appendix D, uses File Manager I/O routines rather
than Pascal routines because File Manager offers greater control and
flexibility in dealing with disc files on this system. This program declares

197

a Data Control Block (DCB) for an input file (olddcb) and a DCB for an output
file (newdcb). The old file is OPENED normally and the new file is CREATED
with the temporary name XXXXXX on the same disc cartridge as the old file.
If the fiJe type is greater than 2 (variable record length), the remainder of
the disc cartridge is reserved for the new file to prevent the creation of
extents for the new file. If the file type is 1 or 2 (fixed record length),
the total number of records must be known so that the actual file size can be
calculated. The program reads each record from the old file, transfers the
existing data from the old record (old_rec) to the new record (new_rec),
possibly initializes some new data in the new record and writes the new
record to the new file (XXXXXX). When all the records have been transferred
(reached EOF on old file), the old file is CLOSED and PURGED and the new file
CLOSED and RENAMED from XXXXXX to the old file name. If the file type is
greater than 2 (variable record length), the file is TRUNCATED to its actual
size.

The only difference between the Configuration files and the Run-time files is
the stage at which the switchover takes place. That is, with the
Configuration files, the switchover must be done prior to any Configuration
with the new records and both the Configuration software and the On-Line
software are affected. A change that only affects the records in the
Run-time files will only affect the On-Line software. Of course, there are
changes that affect both Configuration files and Run-time files.

At the same time, the On-Line software and/or the Configuration software is
recompiled and reloaded with the new record definitions. Once the changeover
program has been run, the TRAMCON software can use the files with the new
record definitions.

11.4.2 Configuration Data Base

The Configuration data base is a collection of static data used by the
On-Line TRAMCON software to describe the operational environment for any
particular TRAMCON master computer. This data base is typically generated by
some central site, remote from any particular TRAMCON master, and distributed
to each master by magnetic tape. This data base is static in the sense that
it is read at initial On-Line startup and is never altered by the On-Line
software. Although, once the TRAMCON system becomes mature, it is not
anticipated that many changes to this data base will be required, though a
few changes will always be necessary. Therefore, there is a scheme for
incorporating future updated versions of this data base.

The Configuration data base consists of 12 record types that are stored in
12 corresponding disc files. Essentially, three copies of these 12 dis~

files are kept on each TRAMCON master computer. One set of 12 files i~

currently used by the On-Line software. The other two sets are for the
fallback and change-to-new data base functions. As with all disc files used
in the TRAMCON system, there is a naming convention used for these
Configuration data base files. The backup set's file names begin with
character """. The current set's names begin with character "(", and the new
set's names begin with the character ")". The remainder of the name for each
of the 12 files is the same for all 3 sets. The 3 sets of 12 Configuration

198

data base disc files are listed in Figure 62. When an updated version of the
data base is received, it is stored on disc replacing the 12 disc files whose
names are spelled as listed in Figure 62 with the character ")" as the first
character of each name. For example, the new disc file name for the
dictionary file is ")" plus "DICT", resulting in the name ")DICT". For ease
of handling these sets of data base files, they all have the same security
code of 2810 and they are all stored on logical unit number 10 of the disc.
This, along with the naming convention, allows the user to store and retrieve
all files with the same security code, whose names begin with ")", "(", or
"",, and that reside on LU 10.

11.4.3 Run-time Data Base

The Run-time data base consists of the 10 disc files listed in Figure 63.
All files must be located on disc cartridge 10, must have security code 2810,
and must be File Manager type 2 (fixed record length) files. Also notice
that the naming convention chosen uses a "(" as the first letter in the file
name.

Current
(DICT
(NET
(LINKS
(MAST
(LINK
(REMOT
(SEG
(TRUNK
(EQT
(CRT
(SITE
(DINIT

New
)DICT
)NET
) LINKS
)MAST
) LINK
)REMOT
)SEG
) TRUNK
)EQT
) CRT
)SITE
)DINIT

Backup
"DICT
"NET
"LINKS
"MAST
"LINK
"REMOT
"SEG
"TRUNK
"EQT
"CRT
"SITE
"DINIT

Figure 62. List of configuration data base disc files.

1. (ARCH - Archived Alarm/Status
2. (CN - Counted 2-state Information
3. (CURVE - Signal Quality Parameter Calibration Curves
4. (DATE - Miscellaneous Run-time Data
5. (HIST - Signal Quality Parameter Histograms (24 hour)
6. (PF - Power Fail Messages
7. (PHIST - PCM Histograms (Passed 24-hour Digroup Alarm History)
8. (RR - Simulator Canned remote unit Responses
9. (SCIDX - Scenario File Index

10. (STATZ - Run-time Statistics

Figure 63. Run-time Data Base Files, All on disc LU 10.

The Run-time data base consists of 10 separate disc files that are currently
sized to hold the data for 42 remote units. The largest file is the

199

parameter histogram file (HIST. Currently, the data base can accommodate two
active segments of up to 21 remote units each. The data base files can be
initialized using the program CF to set all files except (CURVE and (RR to
zeros. Caution should be used when initializing (CURVE since this file may
have been maintained in the field with great care. The data are stored with
no wasted space for nonexistent remotes. That is, although there can be up
to 21 remote units per segment, space is allocated for only those remote
units that are defined. This method wastes no space but is very rigid. For
instance, to add a remote to a segment is a relatively easy task for a
trained person to do, using the Configurator. The tightly packed archive
file is not so accommodating. To preserve all archive data, the data for all
remote units following the point of insertion must be moved.

1. (ARCH

This file contains a fixed amount (currently 200) of past alarm/status
records for each active remote unit. The referencing method is similar to
that described above for file (ALARM. The 200-record portion of the file for
each remote is treated as a circular FIFO file. Once 200 records have been
collected for any given remote, the next record collected for that remote
will overwrite the oldest record for that remote unit. The time spanned by
the 200 records for a given remote unit depends on the alarm activity of that
remote unit. For instance, if a chronic alarm causes an archive record to be
created during each poll, then the oldest record could be only minutes or
hours old. If a remote unit encounters only a few alarms each week, then the
archived information for that remote unit could go back months. Also,
chronic problems will affect the archived information for that remote unit
only. The following FMGR command can be used to CReate the disc file (ARCH:

CR,(ARCH:TR:10:2:8400:125

RECORD Description: length = 125 words, defined in [RECR3
initialized by CF

archive alarm status record - (119 wds)
RECORD
archJear: INT;
arch...Jday: nine_bits;
arch_hour: seven_bits;
arch_minute, arch_second: byte;
archive_alarms: (114 wds)

PACKED ARRAY[category_ordina1(4},link_2state_ordina1(144}] OF
PACKED RECORD (3 bits)
arch...Just_c1eared, arch_new_a1arm,arch_a1arm_on: BOOLEAN
END;

END;
archive_idx_record = ARRAY[1 .. 124] OF INT; (124 wds)

archive record = (125 wds, record for disc file (ARCH)
RECORD

200

CASE ar_rec_type: BOOLEAN OF
FALSE: (arch_idx: archive_idx_record); (124 wds)

TRUE: (arch_red: archive_alarm_status_record) (119 wds)
END;

The "archive_record" definition shown above can be found in INCLUDE module
[RECR3 and is the definition of the records for disc file (ARCH. Note that
the definition actually consists of two alternate definitions, "arch idx" and
"arch red". As described above, the archive file is treated as several
subfiles, one for each remote unit defined in the data base. (Each of these
subfiles is a circular FIFO file of "m~archive_record"many records). The
first record in the archive file is of type "archive_idx_record". This
record contains pointers or indices into these subfiles that indicate the
NEXT available record number for each subfile. All other records in the
archive file are of type "archive alarm status record" and contain the actual
archived information.

NOTE

Changes that will affect the record size for file (ARCH are

1. Changing the constant "nbr_2states_"per_link"
2. Changing the constant "max_linkendsJer_remote"

2. (CN

This file contains one record per remote unit defined in the data base. The
record definition can be found in file [RECR3 and has the identifier
"en record". A flag is stored for each two-state alarm monitored by the
given remote unit. This flag indicates whet:her the number of occurrences of
the given two-state value are being counted or not. If they are being
counted, the start time/date (when the counting began) and the actual count
(number of responses that showed the given two-state ON) are recorded in real
time in the HEAP variable:

"heapA.segment_status[segord].remote_status[remoteord]A.counts".

The record "counts" holds the tally for all counted two-states for all
categories for an entire remote unit. The two-states can be counted
indefinitely, and therefore, it is necessary for the counts to be
periodically saved to this disc file in case the TRAMCON master needs to be
taken down and rebooted. The "counts" record for each remote unit defined in
the data base is copied to this disc file every hour on the hour by the
program HR. Therefore, outside of a disc.head crash, the worst case would
result in the loss of the last 59 minutes data. When the TRAMCON master is
booted up, program INIT reads the records from this file and uses these data
to initialize the HEAP "counts" records.

The following FMGR command can be used to CReate the disc file (CN:

201

CR,(CN:TR:10:2:117:356

RECORD Description: length = 356 words, defined in [RECR3
initialized by CF

counted_array = PACKED ARRAY[link_2state_ordina1{144}]OF BOOLEAN;{9 wds}
counts_array = ARRAY[O ..max_countsyer_1ink{20}-1] OF {80 wds}

PACKED RECORD {4 wds}
val, yr: INT; jdy: nine_bits; hr: seven_bits; minut, secs: byte
END;

cn_record = ARRAY[category_ordina1{4}] OF {356 wds, record for file (CN}
RECORD {89 wds}
cn_va1s:counts_array;{80 wds}
cn_counted:counted_array {9 wds}
END;

NOTE

Changes that will affect the record size for file (CN are

1. Changing the constant "nbr_counts_per_1ink"
2. Changing the constant "max_1inkends_per_remote"
3. Changing the constant "max_2states_per_1ink"

3. (CURVE

This file contains the information to calibrate the analog parameters,
reported in volts, to more useful units such as "dBm". Differences in
equipment characteristics may also be accounted for by using these
calibration curves. Sixteen ("nbr_bins") raw voltage values are kept for
each parameter marking the 16 discrete calibration steps. Also stored in
these records are the range (top and bottom) over which each parameter
(analog and digital) can vary, and the amber and red threshold values for
each parameter (analog and digital). Each 832-word record contains the
calibration, range, and threshold values for an entire remote unit and is
calculated as follows:

16 calibration words per analog parameter
6 ("max_a2d") analog parameters per category
4 categories (3 1inkends + 1 site) per remote unit

PLUS

2 range and 2 threshold values per parameter
6 ("max_a2d") analog and 22 ("max_digital") digital

parameters per category
4 categories (3 linkends + 1 site) per remote unit

202

The following FMGR command can be used to CReate the disc file (CURVE:

CR,(CURVE:TR:lO:2:273:832

RECORD Description: length = 832 words, defined in [RECR3
initialized by CF

parm_record = (832 wds, record for disc file (CURVE}
RECORD (category_ordinal=-1 .. 2, a2d_ordina1=O .. 5 }
cal curves: ARRAY[category_ordina1(4}] OF

ARRAY[a2d_ordina1(6}] OF hist_array; (384 wds}
a2d_bottom , a2d_top , a2d_amber , a2d_red:

ARRAY[category_ordina1(4},a2d_ordina1(6}] OF INT; (96 wds}
digital_bottom , digital_top , digital_amber , digital_red:

ARRAY[category_ordina1(4},digita1_ordina1(22}] OF INT (352 wds}
END;

NOTE

Changes that will affect the record size for file (CURVE are

1. Changing the constant "nbr bins"
2. Changing the constant "max_Iinkends_per_remote"
3. Changing the constant "max_a2ds_per_Iink"
4. Changing the constant "max_digitals_per_Iink"

4. (DATE

This file contains miscellaneous run-time information. It is small but
absolutely essential for TRAMCON operation. Some data such as "unused",
"dmyl", "dmy2", and "dmy3" have become unused during development, but are
left in the "date_record" so that the record size for this file did not
change, (see Section 11.4.1) and so that a few small items may be added as
the need arises. The following FMGR command can be used to CReate the disc
file (DATE: CR,(DATE:TR:10:2:1:37

RECORD Description: length = 37 words, defined in [RECR3, initialized by CF

date_record = {37 words}
RECORD
yr, jdy, offset, heap_c1ass_no, configuration_flag ,unused: INT;(6 wds}
version_date: INTEGER; (2 wds}
version_nbr: REAL; (2 wds}
segnames: ARRAY[master_segment_ordina1(4}] OF six_chars; (12 wds}
nremotes: ARRAY[master_segment_ordina1(4}] OF INT; (4 wds}
dmy1,dmy2,dmy3: INT; (3 wds}
password: parm_array; (5 wds}
time serial number: INT; (1 wd}
mess;ge_seria1_number: ARRAY[1 .. 10] OF INT; (1 wd}
logoff_c1ass_no: INT; {I wd, STOFF· sets to 0 when ST command entered}
END; {AUTOR checks if > 0 then TRAMCON is active}

203

NOTE

A change that will affect the record size for file (DATE is

Changing the constant "max_segments_per_master lt

5. (RIST

This file contains a 24-hour history of the performance of all analog
parameters (e.g., RSL) for every active link-end. Each record (of type
"hist_array") is 16 words long and represents 1 hour's data for a single
parameter. Each analog parameter is converted from a voltage to the proper
units and binned as one of 16 discrete values. The 16 values are kept for
each of the past 24 hours for each of 28 parameters (22 digital and 6 analog)
for each category (3 link-end and 1 site) for each remote unit (up to 21) on
every segment (up to 2) defined in the data base. The following FMGR command
can be used to CReate the disc file (HIST:

CR,(RIST:TR:lO:2:l6l28:l6

RECORD Description: length = 16 words, defined in [RECR3
initialized by CF

hist_array = ARRAY[l. .nbr_bins{16)] OF 1NT;

Each 16-word (ltnbr_bins lt) record in this file contains the 16 bin values for
a given parameter for 1 hour. On the hour, program HR copies the past hour's
information for each parameter defined in the data base from the HEAP
variables

nheapA.segment_status[segord].remote_status[remoteord]A.
cat_status[category]A.hist_a2d and

nheapA.segment_status[segord].remote_status[remoteord]A.
cat_status[category]A.hist_digital

to the corresponding records in this file.

NOTE

A change that will affect the record size for file (HIST is

Changing the constaI).t Itnbr bins lt

204

6. (PF

This file contains time-stamped power fail messages. Each message is written
to this file by program AUTOR. Any existing messages can be viewed by the
TRAMCON operator using the PF command. Each 12-word record corresponds to
one power fail event. The file currently holds 400 power fail messages. The
following FMGR command can be used to CReate the disc file (PF:

CR,(PF:TR:lO:2:4l:l2

RECORD Description: length = 12 words, defined in [RECR3
initialized by CF

pf record = {12 wds, record for disc file (PF)
RECORD
onyear , on..J day , on_hour , on minute , on sec , on msec,
offyear ,off..Jday ,off_hour ,off_minute ,off_sec ,off_msec: INT
END;

7. (PRIST

This file is a 24-hour history of the performance of the digroup alarms for
all segments. No space conservation is necessary since this file is
relatively small (only 75 disc blocks). Each 4800-word record contains the
24-hour history of all 100 possible trunks per segment for each of 2 trunk
ends. The file is currently set to handle da.ta for two segments or
two 4800-word records. The following FMGR command can be used to CReate the
disc file (PHIST: CR,(PRIST:TR:lO:2:75:4800

RECORD Description: length = 4800 words, defined in [RECR3,initia1ized by CF

pcm_histogram_array = {200 wds}
ARRAY[1 .. 2,O ..max_trunks-per_segment{lOO}-1] OF INT;

pcm_histogram_record = ARRAY[0 .. 23] OF pcm_histogram_array; {4800 wds}

There is one large (4800-word) record of type "pcm_histogram_record" in file
(PHIST for each segment defined in the data base. Each record contains 24
200-word arrays of type "pcm_histogram_array". Data are recorded by the
program HR, on the hour, into the array element that corresponds to the
current hour. Each of these arrays holds the digroup alarms for each end of
each TRUNK (up to "max_trunks-per_segment") defined on a given segment for a
given hour of the day. The digroup alarms are accumulated in the HEAP VAR
"heap".segment_status[segord].pcm_counts" for each segment defined in the
data base.

NOTE

A change that will affect the record size for file (PHIST is

Changing the definition of "pcm_histogram_record" by
Changing the constant "max_trunks_per_segment"

205

8. (RR

This file contains simulated responses for each of the active remotes on a
master. The program SI reads the remote response from this file if the
remote response is being simulated. This file is currently sized for 33
remotes. Two responses are kept for each remote. One is the current
response and the other is the default or start-over response. This default
response is hard-coded in the program CF. The operator may set the current
response equal to the default response anytime by using the proper SI
command. The following FMGR command can be used to CReate the disc file (RR:

CR,(RR:TR:lO:2:l44:l72

RECORD Description: length = 172 words, defined in [RECR3
initialized by CF

si_response_record = {172 wds, Simulator response record, file (RR)
RECORD
request_error: INT; (I wd, non-zero if remote unit detected error in

request received from TMT.
1. msg length limit exceeded.
2. command error.
3. category error.
4. number(s) out of range.
5. date-time error.
6. numbers NOT in ASCENDING order.
7. numbers duplicated.
8. count error.
9. action error.

10. unwired/unused error.
11. momentary control deactivation error.
12. configuration table error.)

diag_error: INT; (I wd, non-zero if remote unit background
diagnostics discover an error.

1. main processor failure.
2. data acquisition failure.
3. memory board failure.

4-17. I/O card failure.
18-255. software fault.)

diags: twenty_chars; {10 wds, one char per module in remote unit.
"0" - no CPU fault identified.
"m" - main CPU fault.
"a" - auxiliary CPU fault.

response_body: unpacked_response_record; (160 wds)
END; (si_response_record)

206

NOTE

Changes that will affect the record size for file (RR are

1. Changing the definition of "unpacked_response_record" by
changing the constant "max_2states_per_1ink"
changing the constant "max_1inkends_per_remote"
changing the constant "max_a2ds_per_1ink"
changing the constant "max_digita1s_per_1ink"

2. Changing the definition to "twenty_chars"

9. (SCIDX

This file contains a list of all scenario files on this master. The sample
scenario file SCENOO is delivered with the TRAMCON system, and its name is
entered in this index when initialized by the program CF. The following FMGR
command can be used to CReate the disc file (SCIDX:

CR,(SCIDX:TR:10:2:5:630

RECORD Description: length = 630 words, defined in [RECR3
initialized by CF

sc indexs record

10. (STATZ

ARRAY[0 .. 29] OF {630 wds, record for disc file (SC)
RECORD passwd:two_chars; {1 wd}
f_description:forty_chars {20 wds}
END;

This file has one record of type "statz_record", which contains system
performance statistics. This record can be initialized to zeros by running
program CF. The record definition "statz_record" is defined in INCLUDE
module [RECR3. At boot-up, program INIT reads the contents of this record
from disc file (STATZ and places these values into the miscellaneous shared
memory record "heap" under name "heap".statz". The information in the
"statz_record" is updated in memory as it changes but it is permanently
recorded on disc only once an hour, on the hour by the program HR. The
information can be viewed on-line by entering command US. The data may also
be initialized using the same command. The following FMGR command can be
used to CReate the disc file (STATZ: CR,(STATZ:TR:10:2:6:650)

207

RECORD Description: length = 650 words, defined in [RECR3, initialized by CF

statz record = {650 wds, record description for file (STATZ)
RECORD
cnt_cmds: ARRAY[un .. us{46}, master_crt_ordinal{5}] OF TNT; {230 wds}
transmission:

ARRAY[master_segment_ordinal{4}] OF
ARRAY[segment_remote_ordinal{2l},msg_status{5}] OF TNT; {420 wds}

END;

The single record in the STATZ file currently contains:

1. Operator command usage for each terminal keyboard.
Name: heapA.statz.cnt_cmds[cmd,crtord]
Updated by: CMMD in the HEAP as each command is entered.

2. TRAMCON remote unit transmission performance statistics.
Name: heapA.statz.transmission[segord] [remoteord,msg_status]
Updated by: PLRP or MTRP as each remote unit response is received.

"msg_status" has the following values:

1. polls - total poll msgs sent
2. msg_ok - no transmit problem detected
3. par_err - parity error detected
4. bad res - invalid response length or invalid remote id
5. no ans - no response received

NOTE

Changes that will affect the record size for file (STATZ are

1. Adding or deleting TRAMCON commands between "un" and "us"
2. Changing the constant "max_crts_per_master"
3. Changing the constant "max_segments_per_master"
4. Changing the constant "max_remotes_per_segment"
5. Changing the CLASS definition "msg_status"

12. RUN-TIME DIAGNOSTICS AND STATISTICS GATHERING UTILITIES

A diagnostic facility has been built into the software and can be invoked by
entering the master password (see Section 12.1) to turn off the access
restricted flag and then including the "d" option on any TRAMCON command.
The "d" option has a toggle affect on the diagnostic flag just like the
master password has on the access restricted flag. This means that each time
the option is included in a command, the sense of the flag will change. That
is, if the diagnostic flag is off and the "d" option is included in any
TRAMCON command, the diagnostic flag will be set to on and vice versa.

208

Therefore, to turn diagnostics on and leave them on, just include the "d"
option in anyone command. The diagnostic flag will remain on for all
successive operations until the "d" option is included in another TRAMCON
command.

Remember, the access restricted flag must also be set to false in order for
the diagnostic code to be activated. The access restricted flag and the
diagnostic flag are kept in the shared data area called the HEAP. They are
Pascal BOOLEAN values and are referenced by any program as
"heap".access_restricted" and "heap".diag", respectively. Sections 12.3
through 12.7 describe the use of this diagnostic feature by particular
program modules.

The diagnostic code was some of the last to be added to the software and, in
most cases, was added to diagnose a particular problem. Most of the
diagnostic code is for the use of a professional software developer, not for
the untrained. The explanations to follow are the only source for complete
understanding of what some of the diagnostics are telling the user. Since
this diagnostic feature is protected by the two flags mentioned above, there
is minimal risk to the operational TRAMCON software when additions,
corrections, or enhancements are made to this code.

12.1 Use of Passwords

There are three distinct uses of passwords in the TRAMCON On-Line software.
To distinguish them for this discussion, they will be referred to as the
LOGON, DT, and master passwords.

The LOGON password is currently in a non-implemented or hard-coded state.
When an operator logs on to a remote terminal, a password is required. The
intention was to require valid log-on IDs and valid passwords for security.
The log-on program La asks for a log-on ID and for a password. Currently,
any input is accepted as a valid ID and the hard-coded password "tr" is
accepted as the password. If tighter security is required in the future,
this facility can easily be enhanced.

The DT password is used by all programs that transfer data from one master to
another. Program DT requires this password when an operator chooses to send
data to another master. The intention here is to protect any master's data
from being improperly overwritten by someone who does not have permission
and/or the knowledge to do so. Program SR requires this password when the
operator wishes to broadcast the time/date to other masters, thus altering
their system clocks. This password is stored in the disc file (DATE and can
be changed by the operator using the PW command.

The PW command is processed by the program cm1D in routine
"process_simple_cmd". Also, the command parsing routine "parse_it" in CMMD
allows the PW command to be entered from the system console only. When the
operator enters the PW command with no further parameters, program CMMD
displays the following prompt:

209

Password:

If the "access_restricted" flag is false, the value of the DT password will
be displayed immediately after the above prompt. For example:

Password: TR

In the example above, the DT password consists of the two ASCII characters
"TR". The operator must now enter the current password (in the example, the
operator must enter "TR"). If the proper password is entered, the operator
is prompted to enter a new value for the DT password as follows:

New Password:

The new value of the DT password will be the first 1 to 10 characters
entered. The password is stored in the (DATE file in an encoded format so
that it can not be read by looking at the record in the (DATE file.

NOTE

A small refinement should be made to this password with respect to
the DT function of sending data TO another master. Rather than
requiring that the DT operator know the local DT password, he/she
should be required to know the DT password of the receiving master.
This gives greater control to a TRAMCON master when data are being
sent TO them.

The third and final password used by the TRAMCON software is the master
password. This password is hard-coded in routine "Initialize" in program
CMMD and its current value is: e mn !eezz

This password toggles the "access_restricted" flag described in
.Section 11.1.2. Each time the master password is correctly entered, the
value of "access_restricted" is toggled from false to true or true to false.
To enter the master password, the operator must first enter

pw,-l

Program CMMD responds with the prompt

Restricted Access is XXXXX, Enter Password to toggle:

where XXXXX is either "TRUE" or "FALSE".

As mentioned above, the value of the master password is hard-coded in routine
"Initialize" in program CMMD, approximately line 872. To change the master
password, the programmer simply changes the assignment statement in routine
"Initialize" and recompiles and relinks the program CMMD. If more security
is desired for this password, one simple step would be to encode/decode this
password with the same routines used for the DT password.

210

The "access_re'stricted" flag controlled with this password is used to
restrict use of certain TRAMCON commands. The commands that are allowed only
if this flag is false are contained in the set: of commands "restricted cmds"
in the program CMMD. The current value of "restricted cmds" is set in­
routine "Initialize", approximately line 918, as follows:

restricted cmds := [cf,cr,dn,eq,10,lu,ms,off,ru,sc,sm,up,us];

The "access_restricted" flag is also used, in conjunction with the "diag"
flag, to allow any software to display diagnostic information that can aid
the software developer in diagnosing problems. The next two sections
describe how some programs make use of this diagnostic feature.

12.2 Statistics Gathering (US command)

The program US currently gathers performance statistics to help the TRAMCON
software developers and maintainers diagnose trouble spots, bottlenecks, and
general software performance problems so that the software can be intelli­
gently tailored to give maximum performance and operator responsiveness.
Program US is protected by the "restricted_ac(:ess" flag. It is NOT
documented in the Operator's Manual because it is for diagnostic purposes
only and does not perform a critical TRAMCON function.

Program US does not do the statistics gathering. Instead, it is used to
initialize the statistics data, turn the statistics gathering code ON/OFF,
and display the statistics that are gathered.

Currently, four sets of data are gathered and displayed by this US function.
These are referred to as the COMMAND, TRANSMISSION, TIMING, and PROGRAM STATE
sets. The first set is displayed as shown in Figure 64.

The COMMAND set of statistics data shown in Figure 64 indicates how many
times each TRAMCON command, from UN to US, is entered at each terminal device
defined on the given master. For example, in Figure 64, the value 143
alongside the PM command indicates that the PM command was entered 143 times
at the system console or HIN terminal keyboard. These data are very useful
for determining which TRAMCON commands are favored by the operators and which
are of little or no use.

211

1. This master is in POLLER mode for segment UK2 because there are
non-zero entries in the "Polls" column.

2. All remote units except BFM are being polled.
3. The remote unit just polled was HYE since it has been polled 100

times and the next remote unit has only been polled 99 times.
4. There is a physical break with the CRS remote unit or this Remote

Unit is powered off because the unit has never responded.

*** HIN *** *** HINI ***

UN 0 SI 1 UN 0 SI 0
MA 75 DE 336 MA 35 DE 195
SS 163 PR 33 SS 35 PR 1
AL 300 LS 74 AL 24 LS 4
AR 27 SC 0 AR 14 SC 1
PA 30 SR 6 PA 10 SR 3
ME 28 MS 4 ME 19 MS 1
HE 13 OL 0 HE 7 OL 0
HI 5 CO 2 HI 6 CO 0
CN 15 ST 3 CN 12 ST 7
PC 6 DI 66 PC 7 DI 7
PH 0 LO 0 PH 8 LO 0
SW 34 WH 16 SW 2 WH 2
CR 19 LU 3 CR 8 LU 1
CC 37 EQ 0 CC 10 EQ 0
CF 10 UP 0 CF 0 UP 0
PO 47 DN 0 PO 4 DN 0
AC 0 OF 1 AC 0 OF 1
IN 0 RU 0 IN 0 RU 0
EN 1 VE 3 EN 0 VE 0
DT 198 US 5 DT 45 US 131
PM 143 PM 21
OP 12 OP 0
SE 20 SE 1
SM 215 SM 60

Figure 64. US - TRAMCON operator command usage.

212

The data in Figure 65 show the TRANSMISSION status for every response
received from each remote unit on each segment defined on the given master.
The example in Figure 65 is for the Hillingdon, England, master, which has
the two segments UK2 and UK/BE defined in its data base. From the example in
Figure 65, one can conclude that the Hillingdon master is in MONITOR mode (NO
entries in the "Polls" column) on segment UK/BE (UK - Belgium) and is NOT
receiving any responses from any of the remote units on that segment. For
segment UK2 we can deduce the following:

*** UK2 *** *** UK/BE ***

Polls OK PE BR NA Polls OK PE BR NA

CRO 100 100 0 0 0 BFM 0 0 0 0 0
CRS 100 0 0 0 100 LDN 0 0 0 0 0
RYE 100 97 1 1 1 CDW 0 0 0 0 0
HYB 99 99 0 0 0 DNK 0 0 0 0 0
HIN 99 99 0 0 0 SWG 0 0 0 0 0
BFM 0 0 0 0 0 HOU 0 0 0 0 0
LDN 99 99 0 0 0 \\fEZ 0 0 0 0 0

;FLO 0 0 0 0 0
CHE 0 0 0 0 0
CH3 0 0 0 0 0
SCC 0 0 0 0 0
LEC 0 0 0 0 0
FLR 0 0 0 0 0
LEC 0 0 0 0 0
SHR 0 0 0 0 0

,

BNA 0 0 0 0 0
SPP 0 0 0 0 0

Figure 65. US - TRAKCON segment transmission statistics.

The data in Figure 66 show a breakdown of the time required to process
responses from each remote unit defined on ea.ch segment on the given master.
As indicated by the notes, all values are in milliseconds and "----,,
indicates that a particular timing value is NOT being collected. For each
remote unit, the time elapsed for the latest response (from when the poll
message was issued to the update of the last display) is shown in the "Total"
column. That "Total" time is further broken into three parts: disc I/O time
(Disc), response transmission time (Xmit) , and display update time (Disp).
If bottlenecks in the remote unit response handling exist, they should be
indicated here.

213

*** UK2 *** *** UK/BE ***

Total CPU Disc Xmit Disp Total CPU Disc Xmit Disp

CRO - - -- 0 0 ---- 0 BFM 0 0 0 - - -- 0
CRS - - -- 0 0 - - -- 0 LDN 0 0 0 - - -- 0
RYE - - -- 0 0 - - -- 0 CDW 0 0 0 - - -- 0
HYB -- -- 0 0 - - -- 0 DNK 0 0 0 - - -- 0
HIN -- -- 0 0 - - -- 0 SWG 0 0 0 - - _.- 0
BFM - - -- 0 0 - - -- 0 HOU 0 0 0 - - -- 0
LDN - - -- 0 0 - - -- 0 WEZ 0 0 0 -'- -- 0

FLO 0 0 0 - -_.- 0
CHE 0 0 0 - - -- 0
CH3 0 0 0 - - -- 0
SCC 0 0 0 - - -- 0
LEC 0 0 0 -- -- 0
FLR 0 0 0 - --- 0
LEC 0 0 0 - - -- 0
SHR 0 0 0 - - -- 0

, BNA 0 0 0 - - -- 0
SPP 0 0 0 - - -- 0

I

Notes: All values in milliseconds
----- indicates NOT being monitored

Figure 66. US - TRAMCON remote response timing.

The fourth page of US diagnostics is requested by entering "US,TS" and
results in the execution of the program TS rather than US. Figure 67 shows
the display produced when the operator enters "US,TS".

The PROGRAM STATE display shown in Figure 67 is divided into two parts. The
top part gives a detailed account of how much of its lifetime a selected
program spends in each possible PROGRAM STATE. Only the active programs that
are selected by the operator are detailed in this portion. In the example,
the two programs PLRP and MTRP were selected. Also from the example we can
see that the program MTRP has spent its entire lifetime (100%) in the General
WAIT (more specifically, the Class GET) state. Program PLRP has spent 1% of
its time Scheduled to run, 2% of its time I/O Suspended, and the rest of the
time in the Class GET General WAIT state.

214

CPU: o % <------- WAITING - - - - - - - ->1<- - - - - -- General WAIT ------->
Prog Dor- Sche- for SegmtlCL# RN# LU/EQ buffr Class Lockd
Name mant duled 10 Son Memrv Disc Swan IAllc Allc Down limit poet LU
PLRP 1 2 97
MTRP 100
- - - PARTITION - - - -------------- PROGRAM ---------------------

Number Pages Priority Name State

1 32 RT R 1 D.RTR
2 5 BG 99 RSM Class GET 1
3 5 BG 10 AUTOR I/O Wait 1
4 12 BG 99 UP26 I/O Wait 1
5 18 BG 53 TS25 <--Scheduled Lock 1
6 25 BG 99 KYBRD Class GET 1
7 32 BG 85 POLL Class GET 1
8 32 BG 99 CMMD Class GET Swap 1
9 49 BG 99 PLRP Class GET Lock 1

10 49 BG 99 MTRP Class GET Lock 1
11 190 BG SH SHARI 9 EMA

Figure 67. US,TS - Real-time program state display.

The second portion of the display shows the real-time activity in each of the
memory partitions. This display is ordered on the left by partition number.
The partition number is followed by the partition size in 1024-word pages,
the type (RT - Real-Time or BG - BackGround) and whether the partition is
Reserved (R) and/or Sharable (SH). From the example, we can see that
partition number 11 is the 190-page shared EMA partition called SHARI.
Partition number 1 is a 32-page Real-Time partition Reserved strictly for use
by the disc I/O handler D.RTR. On the right side is the program Priority,
program Name, and the current program State. The last two columns indicate
whether the partition is Locked (Lock) by the resident program to prevent
swapping and whether the present program is being Swapped (Swap). The
information presented in this display is derived from either the Memory
Address Table (MAT) or the ID segment for the particular program. The MAT is
pointed at by the entry point $MATA and is described in detail in the
RTE-6/VM Technical Specifications Manual (part no. 92084-90015) p. 8-39.

12.3 ALlAR Diagnostics

The diagnostic code in the module AL pertains mostly to the display of
archive rather than Alarm/Status information. The archive system is very
complicated and has been difficult to maintain without detailed diagnostics
to aid the debugging process.

215

The first diagnostic information displayed as the operator enters the AR
program is as follows:

heap".archive idx.arch idx[i]- -

FRG1
12 2 212 202 410 402 609 602 808 802

1009 1002 1207 1202 1411 1402 1607 1602 1808 1802
2024 2002 2208 2202 2408 2402 2605 2602 2805 2802
3005 3002 3205 3202

FRG2
3420 3436 3615 3623 3815 3823 4015 4008 4214 4208
4416 4408 4614 4607 4814 4807 5014 5008 5214 5207

The example above indicates that there are 17 remote units defined for
segment FRG1. There are 10 remote units defined for segment FRG2, with each
pair of numbers corresponding to an individual remote unit in the order in
which the remote units are defined in the data base. That is, the numbers 12
and 2 belong to the first remote unit defined on the first segment defined in
the data base, FRG1. The numbers 3615 and 3623 belong to the second remote
unit defined on segment FRG2 and so on.

These numbers are indices into the archive files (ARCH (REGULAR archive data)
and (ARCHX (TRANSFERRED archive data) and are used to carefully maintain the
integrity of the archive files. There are two values for each remote unit
defined in the data base. Each pair of values are the next available record
numbers in files (ARCH and (ARCHX for the remote unit represented by the
array index "i". For example, the values 12 and 2 listed above are the next
available record numbers in the files (ARCH (12) and (ARCHX (2) for the first
remote unit in the segment FRG1. The records for each remote unit begin at
intervals of 200 records starting with record number 2. Therefore, the
numbers 12 and 2 indicate that there are 10 (12 - 2) valid records in file
(ARCH, and 0 (2 - 2) records in file (ARCHX for the first remote unit in
segment FRG1. In fact, the example above indicates that there are no
TRANSFERRED archive records for any remote unit on segment FRG1.

The password-protected program CF is used by the experienced operator to
initialize the archive files including the pointers being discussed here.
This program does not check the exclusive use flag; therefore, the operator
must ensure that all activity on the archive file is suspended before
initializing any portion of this file.

The archive file uses the first record to store these NEXT AVAILABLE RECORD
pointers and currently reserves 200(max_archive_record) records for each
remote unit. Therefore, the record numbers that belong to the first remote
unit are 2 through 201. The next 200 records, 202 through 401, belong to the
next remote unit and so on. These are the respective ranges for each of
these pointers discussed here and each set belonging to a particular remote
unit is treated in a circular FIFO fashion. The corresponding pointers for
the file (ARCHX are also kept in the first record of file (ARCH. This was
done to avoid changing the definition of the HEAP. The pointers for file
(ARCHX are offset by 62. That is, the two pointers for the first remote unit

216

of the first segment defined are found in array locations 1 and 63. A copy
of the first record on file (ARCH is kept in the HEAP array
"heap.... archive_idx..arch_idx.". This array is used for quick update and could
be used in the future to reduce access to the archive file if disc I/O
activity needs to be reduced. Currently, each time an archive record is
recorded, the index is updated in this HEAP array and record number one is
updated on the disc from this array. The updating of record one could be
done on a less often periodic basis, effectively halving the I/O involved in
creating archive records. There are comments about this in the routine
"archive_it" in library $MPLIB.

With these three sets of pointers displayed, there are three courses of
action that can be taken. If the SPACE BAR is pressed, the program will re­
list the pointers. This allows the operator to monitor the updating of these
pointers in real-time as they are updated by any of the modules such as DT,
MTRP, or PLRP. If the operator is dissatisfied with the values of these
pointers, he may leave the AR program by pressing "RETURN". The following
messages will be displayed:

Archive file in use
TRY Again

fl: Enter Command
f2: DEB1 Status

If the operator is satisfied with the values of these pointers, he may
proceed to view the archive records by pressing "z". The archive records
will be displayed with diagnostic information interspersed with the actual
archive data as follows:

Alarm/Status Archive ***
FRC165 Pulsecom

26

Alarm/Status Archive *** 25: 5/ 6:40:19
FRC165 Pulsecom

5/06:48:14 *** DEB1
HST - Hohenstadt

recnum= 226 offset=

5/06:48:14 *** DEBI
HST - Hohenstadt

ext idx.= 0
arch idx.= 25
nrecs= 25
nbr extents= 0
arch-yearO=-11989
arch-yearl= 0
arch-year2= 0
max_category= 1 FALSE
next archive record= 227- -
ext idx.= 0 FALSE -1
ext-idx.= 0 FALSE 0
Hohenstadt link from Zugspitze

MAJOR Receiver Baseband Degradation Red
ext idx.= 0 TRUE 1
Hohenstadt link from Zugspitze

MAJOR Receiver Baseband Degradation Red

217

FRC-162/165

FRC-162/165

89/ 8:54:59 New

89/ 8:54:59 New

The diagnostic portion of the above display example is accented with BOLD and
UNDERLINE. This diagnostic information pertains to the Multiple (extended)
remote unit feature, discussed in Section 6.4. The physical record number is
represented by "recnum" and is computed by the formula

recnum = (prevrem + r) * max_archive_record + offset , where

prevrem = the number of remote units in segments defined before the
given segment. The segment order is derived from the
"segment_info" array in the Data Base master record.

r the ordinal of the given remote unit for the given segment.
The remote unit order is derived from the "remote info"
array in the Data Base SEGMENT record.

offset the number of records from the BASE record for the given
remote unit. The BASE record number for any given remote unit
is the lowest value of the range of values discussed above.

In the example above, the given segment is DEBI and is the first segment
(ordinal 0) defined in the master record. This means "prevrem" equals O.
The given remote unit is Hohenstadt, which is the second remote unit (ordinal
1) defined in the DEBI segment record. This ordinal is the value of "r".
The constant "max_archive_record" is currently set to 200. The BASE record
number for the Hohenstadt remote unit on segment DEB1 is (0 + 1) * 200.
Since disc file record numbers begin with 1, we must add 1, to the BASE value
of 200. Also, as explained above, we must add 1 because the first record of
this file is used to store the index. So the ABSOLUTE BASE record number for
the Hohenstadt remote unit is 202. IF there are fewer than
"max_archive_record" records on file for Hohenstadt, then the RELATIVE BASE
record number equals the ABSOLUTE BASE value. Otherwise, the RELATIVE BASE
number equals one record number beyond the NEXT AVAILABLE RECORD number
indicated by the pointers above. The NEXT AVAILABLE RECORD number for
Hohenstadt must be a value in the range 202 - 401.

In the example, "nrecs" indicates that there are only 25 archive records for
this remote unit. Therefore, the LOGICAL BASE equals 202.

The "offset" equals the number of records that the record being displayed is
removed from the LOGICAL BASE RECORD number. The logical record being
displayed is shown in the upper right-hand corner of the display as the first
value in the time/date stamp (in the example, the logical record number is
25). This logical record number is the value of local variable "arch_idx".
Therefore, the actual physical record number of the archive record being
displayed is 226 and is represented by "recnum".

The GLOBAL VARs "ext idx" and "nbr extents" are used to track MULTIPLE
Remotes and is explained in Section 6.4. In our example, "nbr_remotes"
equals zero indicating that the Hohenstadt remote unit is a single unit.

The year value of each archive record indicates that the record was created
to mark a NO ANSWER event by being set to the negative of the actual year

218

value minus 10000. This value is displayed as "archJearO" and in the
example, the actual year is 1989.

12.4 CR Diagnosti.cs

The program CR is a password-protected program and is therefore NOT covered
in the TRAMCON Operator's manual. Nevertheless, this program is and will
continue to be a source of very valuable diagnostic information concerning
the operational status of each of the terminal devices defined on a given
master. The first page of this CR display, shown below, is a summary of all
the terminals defined on this master.

218/14:46:21
Location
o Schoenfeld
1 Schoenfeld2

CurSeg
DEB4C:M
DEB4C:M

CRT Status ***
Current Display
CRT Information
CRT is DOW

Opr: Rick
Operator Name
Rick Statz
Logged OFF

Statz
Default Disp
Seg Status
Segment Map

A second page, shown below, presents more detail for individually selected
terminal devices. The first line of this display is the normal nondiagnostic
portion. The information starting with "line nbr" is the data available
through the diagnostic function.

Schoenfeld
Hard/
Modem
Hardwire

218/14:46:21 ***
Gr Mode Terminal
Graphics Type
F / T HP-2397A

Printer
HP-2932A

CRT (0)

Parity Color
OFF TRUE

Parity
Sense

ODD

Opr: Rick Statz
Baud Auto
Rate Answer
9600 FALSE

line nbr:
nbr lines:

pgs_remaining:
curJ>age:

prevJ>ages:
maxJ>age:

sav len:
mise:

locked In:
sav_fkey_entr:

fkey_entry:
max_dsp_In:

max-,-key:
sav_dsp: SS
old_dsp: CR

remotes_disp1: []

o
o

100
o
o
5

-1
o
o
5
5

23
4

first line
o
o
o
o
o
o

o 1

lines
o
o
o
o
o
o

1 11788 10

The information from "line_nbr" to "remotes_disp1" is kept in the HEAP record
"current crt" for each terminal defined in the Configuration data base for
the give~ master. This is a good place to look for a problem if a terminal
is failing to respond or interact with an operator.

219

12.5 DT Diagnostics

Since the original version of the DT program was fielded, many improvements
have been made to make this very complicated program more user-friendly and
more intelligent. One of the greatest problems was the fact that the
operator could be led quite far into the DT process before learning that the
desired data transfer process was not possible at this time. This informa­
tion is now available at the start of the DT process and has been made known
early-on to the operator.

For example, when the operator is presented with the list of TRAMCON masters,
as shown in Figure 68, some or all of those masters may not be communicating
with this master at this time. The information is conveyed to the operator
by displaying in red the masters that cannot be reached, and in green, the
ones that can be reached.

List of masters in the TRAMCON Network. This node is Vaihingen
What other master should be used for Data Transfer?

A. Enter Command
B. Default Display

1. (DON) Donnersberg
2. (RAG) Reese-Augsburg
3. (FEL) Feldberg
4. (BLN) Berlin
5. (GAR) Garlstedt
6. (CHE) Chievres
7. (SCH) Schoenfeld
8. (KKR) Kalkar
9. (CRO) Croughton

10. (HIN) Hillingdon
11. (DBG) Nuernberg
12. (AVO) Aviano
13. (CLO) Coltano
14. (SGT) Stuttgart

Enter NODE # or SITE CODE:

Green
Red

15. HDG
16. FKT
17. HAN
18. RSN

Master Available
Master NOT Available

Heidelberg
Frankfurt
Hahn
Ramstein

Figure 68. DT - List of masters display.

In Figure 68, the operator is reminded in the upper right-hand corner that
hisfher machine is the Vaihingen master and, of course, Vaihingen does not
appear in the list because a given master cannot transfer data to/from
itself. Also in the example, the three masters with which communication has
been established at this time are underlined. This means that, at the
present time, the Vaihingen master can physically contact the Schoenfeld,
Aviano, and Coltano masters.

220

The number of masters listed in display shown in Figure 68 is dependent upon
the master password (refer to section 12.3). If the master password was
entered to set "access_restricted" to FALSE, all the masters in the network
are displayed. If "access restricted" is TRUE, only the immediate neighbors
are listed.

Just because a master is shown in green does NOT necessarily mean that the
Vaihingen operator wishes to or CAN exchange data with that master. A
particular master can (this won't happen often) be operational and have a
working communication channel to the contacting master while it is running
the TRAMCON software. In most cases, this would mean that the DT session is
not possible with the particular master because the operator is usually
interested in transferring TRAMCON data which requires that the TRAMCON
software be running on both machines. This piece of information is added to
the display in Figure 68, as shown in Figure 69, if the "diag" flag is set.

Two columns of information have been added to the display in Figure 68
resulting in the display shown in Figure 69. The first column contains a
BLANK or an "N" indicating that the corresponding master is a Neighbor of
Vaihingen. That is, the Aviano and Co1tano masters are directly connected to
the Vaihingen master and have no other TRAMCON masters as intermediate nodes.

List of masters in the TRAMCON Network. This node is Vaihingen
What other master should be used for Data Transfer?

A. Enter Command Green Master Available
B. Default Display Red Master NOT Available

D l. (DON) Donnersberg 15. HDG Heidelberg
D 2. (RAG) Reese-Augsburg 16. FKT Frankfurt
D 3. (FEL) Feldberg 17. HAN Hahn
D 4. (BLN) Berlin 18. RSN Ramstein
D 5. (GAR) Gar1stedt
D 6. (CHE) Chievres
U 7. (SCH) Schoenfeld
D 8. (KKR) Ka1kar
D 9. (CRO) Croughton
D 10. (HIN) Hi11ingdon
D 11. (DBG) Nuernberg

N U 12. (AVO) Aviano
N D 13. (CLO) Coltano

D 14. (SGT) Stuttgart

Enter NODE # or SITE CODE:

Figure 69. DT - List of masters display with diagnostics.

The second column of diagnostic information contains either the letter "D" or
the letter "U" indicating that the TRAMCON software is either DOWN (not

221

running) or UP (running) at the corresponding master. In Figure 69, the only
masters that have the TRAMCON software operational are Schoenfeld and Aviano.

The dispiay shown in Figure 70 would be the result of successfully contacting
the Schoenfeld master. The information highlighted in the middle of the
display is a result of having the "diag" flag set. The data displayed verify
that the Schoenfeld master was contacted. The response should always be
47 words long. The information received is read from the (DATE file at the
far end (Schoenfeld in this case). From the diagnostic data in Figure 70,
the user can tell that 47 words were returned to Vaihingen. Those 47 words
inform the DT operator that the TRAMCON software is operational (TRAMCON: UP)
at Schoenfeld and that the TRAMCON Configuration Data at Schoenfeld has two
Segments (DEB4C and DEB3S) defined with 10 remote units and 13 remote units,
respectively.

The message "The two masters have no TRAMCON data in common." appears with or
without diagnostics set and indicates that the two masters (in this case
Vaihingen and Schoenfeld) do not monitor any common TRAMCON segment. In this
example, Vaihingen monitors the DEB1 segment and Schoenfeld monitors the
DEB4C and DEB3S segments. Therefore, the operator is not offered the option
of transferring TRAMCON data such as Archive records or Calibration Curve
data. This is the look-ahead, time-saving code that has been added so that
the operator will not be led deep into the DT process just to discover that
there is no information to be shared with the chosen master.

Calling Schoenfeld
Please WAIT

)
}

}

}

}

read, 27435 TRAMCON: UP
10
13

47 words
O. DEB4C
1. DEB3S
2. Undefined
3. Undefined

(
(

(

(

(

The two masters have no
TRAMCON data in common.

Press RETURN to continue.

Figure 70. DT - Contact master display with diagnostics.

Figure 71 is an example of the display presented by
information is actually exchanged between masters.
indicates that TRAMCON alarm/status archive records
master at Schoenfeld.

DT when data base
The example in Figure 71
were transmitted to the

222

Transmitting Archives to Schoenfeld

Remote Unit: Schoenfeld
Segment: FRG2

{

{
{

37 Blocks
37 Blocks

from:
to:

new pointer:

(37 recs) to transmit
transmitted
3424 3460

2 38
39

}

}

}

{

{
{

Data Transfer Completed Successfully

Transfer Time: 1 min 57 secs

9472 bytes @80 bytes/sec
37 records (125 wds/rec)

Press RETURN to continue.

}

}

}

Figure 71. DT - Data transmission display with diagnostics.

The archive records transmitted belonged to the Schoenfeld Remote Unit on
segment FRG2. There were 37 valid records to transmit, of which 37 records
were successfully transmitted. The information marked with {} is presented
to the operator if the "access_restricted" is FALSE and the system diagnostic
flag "heap.diag" is TRUE. The first three lines of diagnostic information
indicate the starting and ending record numbers at the transmitting (from)
master and the starting and ending record numbers at the receiving (to)
master. In the example, the archive records from 3424 thru 3460 were
transferred to record numbers 2 thru 38 at thE~ Schoenfeld (receiving) master.
The third line is shown for archive data only. It represents the
"next_archive_record" pointer which is changed at the receiving master to
reflect the new amount of archive information for the given Remote Unit. The
last three lines of diagnostic information informs the operator of the
transfer rate. This information should be chBcked if transfer times seem
excessive.

223

12.6 SE Diagnostics

The program SE displays status information for each of the TRAMCON segments
defined in the Configuration data base for a"given master. Shown below is
the display produced by the SE program.

Ord
O.
1.

Number
remotes

7
17

Status
Poller
Monitor

Long Segment Name

*********** Segment Information ***********
TMT I/O
Channel
(Octal)

15
16

United Kingdom Segment 2
United Kingdom / Belgium

225/22:05:37
Short
Segment
Name
UK2
UK/BE

In the sample SE display above, the master has two segments, UK2 and UK/BE,
defined in its Configuration data base. These segments can be referred to in
TRAMCON command entry by using either the "Short Segment Name" or the
corresponding ordinal "Ord". Below is the SE display as it appears when the
"diag" flag is enabled.

Ord
O.
1.

*********** Segment Information ***********225/22:05:37
Short
Segment
Name
UK2
UK/BE

Shared
Start
141376
117573

Memory (EMA,wrds decimal)
Stop Required Status
117573 23804 Poller

57903 59670 Monitor

TMT I/O
Channel
(Octal)

15
16

Number
remotes

7
17

The Long Segment Name has been replaced by some shared memory (EMA)
information for each segment defined. These values are the HEAP variables
EMA_start, EMA_end and EMA_required, respectively. The meaning of these
values is discussed in Section 11.1. In this example, segment UK2 has seven
remote units and requires 23804 words of EMA storage, and segment UK/BE has
17 remote units and requires 59670 words of EMA. The "stop" value for the
last defined segment (57903 for UK/BE above) indicates the amount of EMA
currently unused.

13. SOFTWARE DISTRIBUTION AND SYSTEM: RECOVERY FROM DISC FAIIlJRE

The software distribution procedure became relatively simple once the new
7912 disc drive was incorporated into the TRAMCON system. The software has
always been distributed as a bit-for-bit copy of the disc. With the old 7906
disc drive, only the portion of the disc containing the software could be
saved and restored. This partial disc save-restore is no longer an option on
the new 7912 drive. The entire disc must be saved and restored, but the
procedure for saving and restoring has been reduced to the pushing of a few
buttons rather than the lengthy interactive save-restore routines that were
previously used. The major drawback to saving the entire disc is the fact

224

that the Run-time data files, such as the archive file (ARCH and the
calibration curve file (CC, are also overwritten with the contents of these
files from the software distributor's machine. If software is being
distributed to a newly-insta+led machine, the distributor should ensure that
these data files are initialized to the default values by running the program
CF for all files and segments. If new software is being sent to an
operational machine, these files should be saved with the File Copy (FC)
routine before the new software is installed and restored with the FC routine
after the new software is operational. Files that one might want to save
include:

1. "HE - The procedures HELP file if any local modifications,
"HEIDX such as to the SOP, were made using the ED command

2. (ARCH - Alarm/status archives
3. (CC - Parameter calibration curves and thresholds
4. All three sets of Configuration data base files

NOTE: These files ALL reside on disc LU 10 and have the
exclusive security code 2810 so that they can be
easily saved and restored as a set by specifying
all files that fit the descriptor "------:10:2810".

Current
(DICT
(NET
(LINKS
(MAST
(LINK
(REMOT
(SEG
(TRUNK
(EQT
(CRT
(SITE
(DINIT

New
)DICT
)NET
)LINKS
)MAST
)LINK
)REMOT
)SEG
) TRUNK
)EQT
)CRT
)SITE
)DINIT

Backup
"DICT
"NET
"LINKS
"MAST
"LINK
"REMOT
"SEG
"TRUNK
"EQT
"CRT
"SITE
"DINIT

The save-restore procedure for the new disc drive is referred to here as a
PUSHBUTTON save or restore. The pushbutton-save copies the entire contents
of the 7912 disc including formatting information to a GOO-foot pre-formatted
cassette tape. The pushbutton-restore copies the entire contents of the
cassette tape to the 7912 disc. Both of these functions are performed
entirely off-line by the disc unit and require no support from the HP-1000.

225

1. STOP all activity on the TRAMCON master.
2. Remove the front panel from the 7912 disc drive by using the

fingerholds on either side of panel and pulling straight out.
3. Place a formatted and certified 600-footcassette tape in the drive

located on the front of the disc drive. Tapes may be purchased.
from HP already certified and ready to use for approximately $37
per cassette. They may also be purchased directly from 3M already
formatted for the HP-79l2 (Model DC600HC) but uncertified for
approximately $17 per cassette. The cassettes can be certified
using the On-Line routine FORMC. This certification takes
approximately 1 hour per cassette. Allow approximately 3
minutes for the tape to load. The tape drive makes an unusual
clacking sound when the tape is loaded and the busy light on the
tape drive will turn off. The busy light is the yellow LED on
the left and the write protect is the yellow LED on the right.
Make sure that the write-protect tab located in the upper left
hand corner of the cassette points away from the SAFE setting.
If this is set properly, the write-protect LED will NOT be lit.

4. This is the crucial step. With a simple button press, an entire
medium, cassette tape or 7912 disc, will be irreversibly
overwritten. First, locate the red save-restore switches
on the front of the disc drive immediately below the cassette
tape drive. These switches are labeled to indicate their
function. One switch (Sl) is for the save operation, which copies
data FROM the disc drive ONTO the cassette tape, destroying the
previous contents of the cassette tape. The other switch (S2)
is used to restore the data FROM the cassette tape ONTO the
disc drive, destroying the previous contents of the disc. As
a precaution, the switches are labeled as follows:

S2
TAPE - - -> DISC

RESTORE

Sl
DISC ---> TAPE

SAVE

The diagram above indicates that switch S2 is for the restore
or tape-to-disc procedure and switch Sl is for the save or
disc-to-tape procedure. The switches are momentary toggle switches
that must be pushed to the right to activate. They will automatically
return to the left rest position. As an added precaution, to
perform the save or restore function the appropriate switch must be
pushed to the right, which will cause the busy LED indicator to blink
for approximately 8 seconds. If the same switch is NOT pressed a
second time within the 8 seconds, the operation will be aborted. If
the switch is pressed a second time within 8 seconds, the save
or restore operation will proceed for approximately 25 minutes,
saving or restoring the entire 65 Mbytes.

5. After the restore procedure is performed, the system should be
booted-up by following the procedure detailed in Section 15 of this
manual to activate the new system software just restored to the disc.

Figure 72. Pushbutton-save or restore procedure.

226

In summary, the software distribution procedure is as follows:

1. Software maintenance organization records the software version number
and date/time-stamp in file (DATE by executing the program SETVE after
insuring that the development system clock is set to the current
time/date. The program SETVE is executed by entering the program name
as an FMGR command and specifying the version number as the first and
only run-time parameter as follows: "SETVE,1.8" to set the version
number to 1.8. The SETVE program reads the system time/date clock in
the two-word integer format (seconds since 00:00 1 January 1970) and
places the time/date read into the two-word integer variable
"version_date" in the "date_record" in disc file (DATE. The version
number is read as a real number and placed in real variable
"version_nbr" in record "date_record" in disc file (DATE. This version
number and time/date-stamp are displayed by routine "logo" in program
INIT when the TRAMCON system is booted-up and by routine "simp1e_cmds"
in program CMMD upon operator request via the VE command.

2. Software maintenance organization performs the save function described
above and mails the cassette to the field.

3. Site personnel save all disc files that contain information specific to
the site as discussed above.

4. Site personnel perform the restore procedure as described above.

5. Site personnel restore the disc files saved in Step 3 using the FC
program as described above.

The software distribution tape should be kept by the site personnel
indefinitely and used to recover the system any time there is a disc failure.
Whenever the data on the disc are lost by hardware failure or diagnostic
maintenance routines that overwrite the disc, Steps 4 and 5 must be
performed. Step 3 should be done periodically so that the data restored in
Step 5 will be as current as possible.

227

14. CONFIGURATION DATA BASE DISTRIBUTION AND IMPLEMENTATION

As stated in the introduction to this manual, the TRAMCON software was
written to be as independent of the environment as possible. In order to
accomplish this, the TRAMCON On-Line software relies on the Configuration
data base for any specific information about the environment in which it
operates for a given master. This section describes how changes made to the
Configuration data base are distributed to field sites and subsequently
introduced to the operational TRAMCON system at those sites. The data base
creation and distribution process is depicted in Figure 73. A program called
the Configurator maintains the data base for the entire TRAMCON network. At
any time, the Configurator can generate a subset of this overall data base
for any given TRAMCON master system. These subset data bases are referred to
as master-specific data bases and consist of the 12 disc files listed in
Figure 73.

A new data base consisting of the 12 files whose names begin with ")" is
distributed to field on tape cassette in File Copy (FC) format. The RE
procedure file shown in Figure 75 is required to be on disc LU 10 of every
TRAMCON field system and is used by the field personnel to copy these new
files from tape to disc. The statement ":RU,FC,CO,-8"BDV", runs the
program FC and instructs it to copy the entire contents of the tape (LU = 8)
to disc, replacing any files of the same name (D) and verifying the results
(V).

15. SYSTEM POWER FAILURE AUTORECOVERY AND SYSTEM BOOT-UP

This section discusses the general concepts of system autorecovery from power
failure and system boot-up. The mechanics of the boot-up procedure are
carefully detailed both On-Line under the HE,BO command and on hard copy in
the TRAMCON User's Manual, p. 76. The boot-up procedure is intended to be
used sparingly in the field to recover from a failure that has caused the
TRAMCON programs to stop functioning. In the operational system, a failure
of this severity should be rare. As stated in the introduction, the TRAMCON
master system is designed with battery reinforced memory and time/date clock
to survive power failures anywhere from short fluctuations up to 3 hours of
constant power outage. To "survive" a power failure means that business
resumes as usual after the power failure and the only indication that the
power failure occurred is the record of the event kept by the power fail
recovery program AUTOR. This power failure recovery system is diagrammed in
Figure 76.

228

Configurator Universal
Configuration Data
Base, "<"

Create master
Specific

Data Base, ")"

Master Specific
Data Base
II)"

File Copy (FC)
FC,)-----:2810,-8
Copy master Specific
Data Base onto
150 ft cassette tape

150 ft cassette
Mail tape to field tape

File Copy (FC)
FC, -8, , d
Copy cassette tape
to field disc
NEW Data Base files New Data Base

on disc, ")1t

TRAMCON CO command
Switch to NEW
Data Base

NEW files, 11)"
renamed to
CURRENT files, n(1I

Figure 73. Configuration data base creation and distribution.

229

I.
2 ..
3.
4.
5.
6.
7~

8.
9.

10.
II.
12.

File
Name
}DICT
)NET
) LINKS
)MAST
) LINK
)REMOT
)SEG
) TRUNK
)EQT
) CRT
)SITE
)DINIT

Number
Records

1
1
1
1

indef
indef
indef
indef
indef
1 to 5
indef
TEXT

Record
Size(words)

7000
140

1750
47

119
15

244
76

2313
6
9

variable

Description
Dictionary
IPC Network
Links defined in Network
TRAMCON master record
Link-End records
remote unit records
Segment records
Digroup trunk records
Transmission equipment records
Terminal (CRT) records
Site records
DS Initialization (for DINIT)

Figure 74. Master specific configuration data base files.

:SV,4, ,IH

:TE, ***
:TE, *** Installing NEW Configuration Data ***
:TE, ***
:RU,FC,CO,-8"BDV
: :)MISC

Figure 75. RE - New configuration data base REplacement.

230

1.5 Mbyte Central Memory (RAM)

(Power Failure
Autorecovery Program)

* Get Power Failure
Time/Date from
Select Code 4

* Read Current Time/Date
from Hardware Clock and
update Software Clock

* Reschedule Periodic
Program HR

* Record Power Failure
Event on File (PF

File (PF
on LU 10

Battery Backup
for RAM

Two Batteries
each
PIN 09501596

Time/Date
of Power
Failure

Battery Backup
for Hardware
Clock
(6 volt lantern

battery)

Power
Restored

I I

6
Volt

Hardware Clock
I/O Select Code 11
PIN 93770A

Power Fail
I/O Select Code 4

Figure 76. Power failure automatic recovery system.

231

16. REFERENCES

Farrow, J.E. and Skerjanec, R.E. (1986), Transmission Monitoring and Control
of Strategic Communication Systems, IEEE Journal on Sel~cted Areas in
Communications, SAC-4, No.2, March 1986.

Hewlett-Packard Company (1981), RTE-6/VM On-Line Generator Reference Manual,
Part No. 92084-90010.

Hewlett-Packard Company (1981), RTE-6jVM System Manager's Reference Manual,
Part No. 92084-90009.

Hewlett-Packard Company (1981), RTE-6/VM Technical Specifications Manual,
Part No. 92084-90015.

Hewlett-Packard Company (1981), EDIT/1000 User's Manual,
Part No. 92074-90001.

Hewlett-Packard Company (1981), Pascal/1000 Reference Manual,
Part No. 92833-90001.

Hewlett-Packard Company (1981), Fortran 77 Reference Manual,
Part No. 92836-90001.

Hewlett-Packard Company (1981), Macro/1000 Reference Manual,
Part No. 92059-90001.

Hewlett-Packard Company (1981), Relocatable Library Reference Manual,
Part No. 92084-90013.

Hewlett-Packard Company (1981), RTE-6/VM Loader Reference Manual,
Part No. 92084-90008.

Hewlett-Packard Company (1981), RTE-6/VM LINK User's Manual,
Part No. 92084-90038.

Hewlett-Packard Company (1981), RTE-6jVM Utility Programs Reference Manual,
Part No. 92084-90007.

Hewlett-Packard Company (1981), RTE-6/VM Programer's Reference Manual,
Part No. 92084-90005.

Hewlett-Packard Company (1981), RTE-6/VM Quick Reference Guide,
Part No. 92084-90003.

Hewlett-Packard Company (1984), HP-2647F Reference Manual,
Part No. 02647-90037.

232

Hewlett-Packard Company (1985), HP-2627A Reference Manual,
Part No. 02627-90002.

Hewlett-Packard Company (1986), HP-2397A Reference Manual,
Part No. 02397-90002.

233

APPENDIX A: PROCEDURE FILES FOR IMPLEMENTING PROGRAM "CONFI"

Compiling, Indexing, Segmenting, Loading, and Saving Program CONFI

This appendix lists all the FMGR procedure files used to implement changes
made to the data base Configurator program CONFI. The first file listed in
Figure A-I purges the previous relocatable files for all segments of program
CONFI and packs the disc cartridge on which they reside.

:**
:*** FMGR Procedure File - RUNCL Purges Relocs & Compiles CONFI ***
:*** ***
:*** This Procedure File does the following: ***
:*** 1. Purges the old Relocatable files for the program CONFI ***
:*** 2. Compiles all Segments of program CONFI ***
:*** 3. Transfers to Procedure File RUNC which Indexes, ***
:*** Segments, Loads and Saves the program CONFI. ***
:**
:PU,%CONSO: :10
:PU,%CONSl: :10
: PU, %CONS2: :10
:PU,%CONS3: :10
:PU,%CONS4: :10
:PU, %CONSS: :10
:PU,%CONS6: :10
:PU,%CONS7: :10
:PU,%CONS8: :10
: PU, %CONS9: :10
: PU, %CONSA: :10
:PU,%CONFI: :10
:PK,lO
:RU,P,&CONSO,,%CONSO::lO:S:120
:RU,P,&CONSl,,%CONSl::lO:S:120
:RU,P,&CONS2,,%CONS2::l0:S:l20
:RU,P,&CONS3,,%CONS3::l0:S:l20
:RU,P,&CONS4,,%CONS4::l0:S:l20
:RU,P,&CONSS,,%CONSS::lO:S:120
:RU,P,&CONS6,,%CONS6::l0:S:l20
:RU,P,&CONS7,,%CONS7::l0:S:l20
:RU,P,&CONS8,,%CONS8::l0:S:l20
:RU,P,&CONS9,,%CONS9::l0:S:l20
:RU,P,&CONSA,,%CONSA::lO:S:120
:RU,P,&CONFI,,%CONFI::10:S:120
:TR,RUNC: :10

Figure A-I. FMGR procedure file for compiling CONFI - RUNCL.

234

The procedure file in Figure A-I places the relocatable modules for the
program GONFI onto disc LU 10. At this point the program GONFI consists of
11 segments and the main program. Once all the modules for GONFI are
compiled, the RUNGL procedure file transfers to the procedure file RUNG,
which indexes, segments, edits, loads, and saves program GONFI. FMGR
procedure file RUNG is listed in Figure A-2.

Implementing the program GONFI is a lengthy process. The clock is displayed
using the RTE TI command at the start of major steps to inform the programer
how long each step has been running. The RTE TI command is issued
three times with the FMGR command "SYTI" as shown in Figure A-2. The first
step in procedure RUNG is to gather together all the relocatable modules used
in program GONFI and index them. This indexing step is performed by program
INDXR, which gets its instructions from file #RUNGL and produces the indexed
file of relocatable modules called %GONF. The INDXRdirective file #RUNGL is
listed in Figure A-3.

:**
:*** FMGR Procedure File - RUNG Indexes, Segments & Loads GONFI ***
:*** ***
:*** The program CONFI is assumed to be Compiled before this ***
:*** Procedure File is executed. ***
:*** ***
:*** This Procedure File does the following: ***
:*** 1. Indexes the CONFI relocatables using program INDXR ***
:*** 2. Segments CONFI producing loader directive file #CONFI, ***
:*** 3. Edits the comments and spaces out of file #CONFI, ***
:*** 4. Loads the program GONFI with MLLDR and ***
:*** 5. Saves the program on LU 10 ***
:**
:SYTI
: PU, %CONF: :10
:RU, INDXR,#RUNCL: :10
:PU,#CONFI::10
:RU,SGMTR,%CONF::10,#CONFI::10:4:l00,29,GONFI,D
:PU,#Z: :10
:RU,EDIT,#CONFI::10,TR,ARUNCL::10/
:PU,#GONFI::10
:ST,#Z::10,#CONFI::10:4:-l
:OF,GONFI
:SYTI
:RU,MLLDR,#CONFI::10
:PU,GONFI::10
:PK,lO
:SP,GONFI: :10
:SYTI
:EX

Figure A-2. File for indexing, segmenting, and loading CONFI - RUNG.

235

CR,%CONF::10:5:200
IN, %CONFI : : 10
IN, %CONSO: : 10
IN, %CONS1: : 10
IN, %CONS2: : 10
IN, %CONS3: : 10
IN, %CONS4: : 10
IN, %CONS5: : 10
IN, %CONS6: : 10
IN, %CONS7: : 10
IN, %CONS8: : 10
IN, %CONS9: : 10
IN, %CONSA: : 10
IN, %CNLIB: : 10
IN,$PLIB
IN,%PLDH2
IN,$SHSLD
IN,$FMP6
EN

Figure A-3. INDXR directive file for program CONFI - #RUNCL.

File #RUNCL listed in Figure A-3 directs program INDXR to create an indexed
library file called %CONF on disc LU 10 and include it in the main program
relocatable for program CONFI, the 11 segment relocatable modules for program
CONFI, a library of routines for program CONFI in file %CNLIB, the Pascal
library $PLIB, the short EMA routines in file %PLDH2, the short run-time
error message routines in file $SHSLD, and the library $FMP6.

The output of the INDXR step shown in Figure A-3 is first used by program
SGMTR to automatically segment program CONFI. As shown in Figure A-2, the
segmenter SGMTR is directed to segment the modules it finds in file %CONF and
produce a loader directive file called #CONFI on disc LU 10. The main
program is called CONFI, the path length is limited to 29 pages and the
segments are to be disc (D) resident.

The output produced by the segmenter as stated above is disc file #CONFI.
This file is filled by program SGMTR with unusable comments and spaces.
Removing these comments and spaces can speed-up the loading process
considerably (see Section 8.2.3 of this manual). The removal of this
unwanted text is accomplished using the program EDIT. As shown in Figure A­
2, the program EDIT is directed to edit file #CONFI and look in file ARUNCL
for editing instructions. The editor instruction file ARUNCL is listed in
Figure A-4.

236

f/TOTAL PROGRAM SIZE/\/\k\-l\j\p=\g/ /-I\1\j\3\ LI,%PLDH2\ LI,$SHSLB
sere onI3$x/ //q\3$d/A [A-Z,=]/aqll\sewcl,1\f/=/\sewc\p*lg/-I /\ec#Z::lO

Figure A-4. EDIT instructions for CONFI segmentation file - A RUNCL .

A detailed discussion on how these EDIT comma.nd files are interpreted and
used can be found in Section 8.2.3 of this ma.nual. Basically, file ARUNCL in
Figure A-4 instructs program EDIT to remove all unnecessary text such as
comments and spaces from the file specified in the edit run-string (in this
case, file #CONFI). The two library directives for the loader, ILI,%PLDH2"
and "LI,$SHSLB", are inserted after line 3. The edited file is placed on the
temporary file #Z so that the excess file space created by this editing step,
#CONFI, can be recovered.

237

APPENDIX B: GENERATION ANSWER FILE "ANTR"

**
* Answer File ANTR for TRAMCON System last edited <871021.1250> *
* ** System has following I/O Slot (Select Code) Configuration: *
* ** Select Code Device - Interface *
* ----------- --*
* 4 Power Fail *
* 10 FEM board for VM 1000 firmware *
* 11 Time/Date Clock (*
* 12 7912 System Disc (1282lA interface) *
* 13 2397A System Console (BACI l2966A) *
* 14 2647F,2627A or 2397A terminal (BACI l2966A) *
* 15 TRAMCON segment 1 (BACI l2966A) *
* 16 TRAMCON segment 2 (BACI l2966A) *
* 17 2647F,2627A or 2397A terminal (BACI l2966A) *
* 20 DS channel 1 (12794B - pin 5061-4913) *
* 21 DS channel 2 (12794B - pin 5061-4913) *
* 22 Relay Output (*
* 23 Unused *
* 24 Unused *
* 25 2647F,2627A or 2397A terminal (BACI) *
**
"TRMCN::lO * Generation List file name
YES * Echo questions and answers
!TRMCN::lO::5000 * Generation Output file name
7912 * System disc type: CS80, 65 Mbytes
12 * System disc Select Code (I/O Slot)
**
* Disc Subchannel definitions, 7912 disc layout *
**
* model: CTD
* HP-IB: 0
* unit: 1
* volume: 0
* initial number of blocks: n/a

** subchannel#/
* disc cache n/a
* ----------
* 0 assigned n/a

** model: 7912
* HP-IB address: 0
* unit: 0

Figure B-1. TRAMCON field system generation answer file - ANTR.

238

blocks
remaining

192256
256

°

- -------_._-----

* volume: °
* initial number of blocks: 256,256

** subchannel#/ blocks
* disc cache # of tracks blocks/track extended
* -------------- ----------- ------------ --------
* 1 (system) 1000 64 64000
* 2 (data) 3000 64 192000
* disc cache CTD ° 256
* disc input format device(model,hp-ib address,unit,volume)
CTD,O,l,O * integrated cartridge tape drive
7912,0,0,0 * disc definition
1000,64 * subchannel 1 (system + all progs)
3000,64 * subchannel 2 (TRAMCON data files)
CTD,O * disc cache
/E * TERMINATE SUBCHANNEL DEFINITION
**
1 * System subchannel
NO * AUXILIARY DISC?
11 * TBG SELECT CODE° * PRIV. INT. SELECT CODE
YES * MEM. RES. ACCESS TABLE AREA II
YES * RT MEMORY LOCK
YES * BG MEMORY LOCK
50 * SWAP DELAY
512 * Memory Size (1024 word pages)° * NO boot file
**
* RELOCATABLE MODULES *
~.***********************

* RTE-6jVM OPERATING SYSTEM
**
MAP MODULES, LINKS
LINKS IN CURRENT
REL,%CR6S1
REL,%CR6S2
REL,%CR6S3
REL,%$CNFG
**
* I/O DRIVERS
~,***********************
REL,%DVA76 * TRAMCON segment #0 driver
REL,%DVA77 * TRAMCON segment #1 driver
REL,%DVS72 * l6-BIT RELAY OUTPUT DRIVER
REL,%DVR23 * 7970 MAGNETIC TAPE UNIT
REL,%DVM33 * 7912 disc, 65 Mbytes
REL,%DVT43 * TOD/TBG CLOCK
REL,%4DP43 * POWER FAIL
REL,%DVA66 * 1000-1000 HDLC & 1000-3000 BISYNC

Figure B-1. (cont.)

239

* Fortran system indo library
* FMP library
* RTE-6VM System library
* ACCOUNTS LIBRARY
* DS
* DS LIBRARY FOR ALL DS NODES
* DS LIBRARY WHEN OTHER 1000'S IN NETWORK
* DS LIBRARY IF NO LINKS TO 3000s
* DS RE-ROUTING LIBRARY
* DS LIBRARY WHEN HAVE SESSION MONITOR
* FTN WITH DS LIB
* DS LIBRARY WHEN WANT MESSAGE ACCTG
* HPIB LIBRARY

REL, %MDVOO * REMOTE I/O MAPPING DRIVER
REL,%DVX05 * BACI CRT Driver
**
* MODULE
**
MAP OFF, MODULES
REL,%BMPGl * FILE MANAGER
REL, %BMPG2 * D. RTR
REL, %WHZAT * SYSTEM STATUS PROGRAM
REL, %LGTAT * SYSTEM DISC LOG TABLE
REL,%$LDR * RELOCATING LOADER
REL,%ACCTS * ACCOUNT MAINTENANCE
REL,%AUTOR * Power Failure Recovery Untility
REL, %QUEUE * DS INTERRUPT REQUEST HANDLER
REL,%GRPM * DS General Req-Rep Processor
REL,%QCLM * DS ERROR MESSAGE LOGGER
REL,%RTRY * DS COMM. LINE RETRY PROCESSOR
REL,%RESSM * DS SSGA "res" mod for RTE-IVB
REL,%SMONl * SESSION MONITOR #1
REL,%SMON2 * SESSION MONITOR #2
REL,%T5IDM * SHORT ID SEGMENT HANDLER
REL,%IOMAP * INTERFACE FOR MAPPED LUS
REL,%LUMAP * INTERFACE FOR MAPPED LUS
REL,%#SPLU * ENTRY POINT FOR REMOTE I/O MAPPING
REL,%DSMOD * DS NETWORK MODIFICATION
REL,%DINIS * NETWORK INITIALIZATION WITH SHUTDOWN
REL,%UPLIN * DS NETWORK WATCHDOG MONITOR
REL,%MATIC * DS Message Accounting
REL,%CSERR * CS80 Error Reporter
**
* LIBRARIES
**
REL,$MATH * System Mathematics Library
REL,$FOLDF * Fortran file I/O(FMGR file system)
REL,$FMP6,NOLIB
REL,$FLIB
REL,%BMPG3
REL,$6SYLB
REL,$ACCLB
REL,$DSMX6
REL,$DSLB1
REL,$DSLB2
REL,$DSLB3
REL,$DSRR
REL,$DSSM
REL,$FDSLB
REL,$DSMA
REL,$IB6A

Figure B-1. (cont.)

240

* DECIMAL STRING ARITHMETIC

* USER DEBUG ROUfINE
* LOADER LIBRARY
* MULTI LEVEL LOADER LIBRARY

*

REL,%DBUGR
REL,$LDRLN
REL,$MLSLB
REL,$UTLIB
REL,%DECAR
IE
**
* PROGRAM PARAMETERS
**
WZAT,1,2 * MEMORY RESIDENT-PRIORITY OF 2
IOMAP, 19 * CHANGE FROM RT DISC RES TO BG
LUMAP,19 * CHANGE FROM RT DISC RES TO BG
FMGR,3,100 * BG PRI 100
AUTOR,4,10 * Background, NO Table Area 2, Priority 10
LGOFF,3,102 * LGOFF PRIORITY BELOW FMGR
T5IDM,1 * MEMORY RESIDENT
MATIC,17 * MEMORY RESIDENT
PVMOO,13 * make type 13, so goes in Table Area II
IE * TERMINATE PARAMETER INPUT
**
* ENTRY POINT CHANGES
**
* FORTRAN77 COMPILER
Z$DBL,RP,4 * 4 WORD DOUBLE PRECISION IS DEFAULT
Z$INT,RP,l * 16-bit INTEGERS ARE DEFAULT
Z$LPP,RP,73 * 59 LINES PER PAGE DEFAULT
Z$F67,RP,7 * COMPILER DEFAULTS TO 77 MODE
Z$CDS,RP,O * non-cds code generation
Z$CWD,RP,l * 6-bit system lu's in read and write

* statements with control bits honored
**
* EMA/VMA FIRMWARE EQUIVALENTS
**
.PMAP,RP,105240 * MAP VMA/EMA PAGE IN MAP REG
$LOC,RP, 105241 * MEMORY-RESIDENT NODES LOAD ON CALL
.IMAP,RP,105250 * SINGLE INT FTN4X ARRAY CALC + MAP
. IMAR,RP, 105251 * SINGLE INT SUBSCRIPT ARRAY CALC
.JMAP ,RP , 105252 * DOUBLE INT FTN4X ARRAY CALC + MAP
.JMAR,RP, 105253 * DOUBLE INT SUBSCRIPT ARRAY CALC
.LPXR,RP, 105254 * TWO DEF POINTER ADD AND MAP
.LPX,RP,105255 * A- AND B- REG. POINTER + DEF OFFSET
* * AND MAP
.LBPR,RP,105256 * ONE DEF POINTER AND MAP
.LBP,RP,105257 * MAP POINTER IN A- AND B-REGISTER
**
* Operating System Firmware For E- and F-Series
**
$LIBR,RP, 105340 * EMULATE SYSTEM ENTRY $LIBR
$LIBX,RP,105341 * EMULATE, SYSTEM ENTRY $LIBX

Figure B-l. (cont.)

241

.FNW,RP,105345 * FIND WORD WITH USER INCREMENT

.LLS,RP,105347 * LINKED LIST SEARCH

.CPM,RP,105352 * COMPARE WORDS IN MEMORY

. ENTN, RP, 105354 * ENTRY POINT RESOLVER

.ENTC,RP,105356 * ENTRY POINT RESOLVER
**
* SCIENTIFIC INSTRUCTION SET (SIS)
**
TAN,RP,105320
SQRT,RP,105321
ALOG,RP,105322
ATAN,RP,105323
COS,RP,105324
SIN,RP,105325
EXP,RP,105326
ALOGT,RP,105327
TANH,RP,105330
DPOLY,RP,105331
/CMRT,RP,105332
/ATLG,RP,105333
FPW,RP,105334
.TPW,RP,105335
**
* FAST FORTRAN (FFP)
**
CLRIO,RP,2001
DBLE,RP,105201
SNGL,RP,105202
.DFER,RP,105205
.XPAK,RP,105206
.BLE,RP,105207
.NGL,RP,105214
.XCOM,RP,105215
.. DCM,RP,105216
DDINT,RP,105217
.XFER,RP,105220
.GOTO,RP,105221
• •MAP ,RP, 105222
. ENTR,RP, 105223
.ENTP,RP,105224
.PW2,RP,105225
.FLUN,RP,105226
$SETP,RP,105227
.PACK,RP,105230
.CFER,RP,105231
· . FCM,RP, 105232
· . TCM,RP, 105233
**
* HFPP - TWO WORD

Figure B-1. (cont.)

242

**
.FIXD,RP,I05104
.FLTD,RP,I05I24
**
* HFPP - THREE WORD
**
.XADD,RP,I0500I
.XSUB,RP,I0502I
.XMPY,RP,I0504I
.XDIV,RP,I0506I
.XFX.S,RP,I0510I
.DINT,RP,I0510I
.XFXD,RP,I05105
.XFTS,RP,I05I2I
. IDBL,RP,I05I2I
.XFTD,RP,I05I25
**
* HFPP FOUR WORD
**
.TADD,RP,I05002
.TSUB,RP,I05022
.TMPY,RP,I05042
.TDIV,RP,I05Q62
.TFXS,RP,I05102
.TINT,RP,I05102
.TFXD,RP,I05106
.TFTS,RP,I05I22
.ITBL,RP,I05I22
.TFTD,RP,I05I26
**
* DOUBLE WORD INTEGER
**
.DAD,RP,I050I4
.DSB,RP,I05034
.DMP,RP,I05054
.DDI,RP,I05074
.DSBR,RP,I05II4
.DDIR,RP,I05I34
.DNG,RP,I05203
.DIN,RP,I05210
.DDE,RP,I052II
.DIS,RP,I052I2
.DDS,RP,I05213
.DCO,RP,I05204
~,***********************
* VECTOR INSTRUCTION SET FIRMWARE EQUIVALENTS
~.***********************
.VECT,RP,IOI460
VPIV,RP,IOI46I

Figure B-I. (cont.)

243

* EQT 1 - 7912 DISC (System)
* EQT 2 - SEGMENT CONSOLE #1
* EQT 3 - Segment Console #2
* EQT 4 - SEGMENT # 0
* EQT 5 - SEGMENT # 1
* EQT 6 - CRT #3
* EQT 7 - DS LINK #1 (TX)
* EQT 8 - DS LINK #1 (RX)
* EQT 9 - DS LINK #2 (TX)
* EQT 10 - DS LINK #2 (RX)
* EQT 11 - RELAY OUTPUT (DUMMY)
* EQT 12 - Unused
* EQT 13 - Terminal interface (BACI)
* EQT 14 - REMOTE I/O RESERVED LU
* EQT 15 - MAPPING EQT #1
* EQT 16 - MAPPING EQT #2
* EQT 17 - MAPPING EQT #3

VABS,RP,101462
VSUM,RP,101463
VNRM,RP,101464
VDOT,RP,101465
VMAX,RP,101466
VMAB,RP,101467
VMIN,RP,101470
VMIB,RP,101471
VMOV,RP,101472
VSWP,RP,101473
.DVCT,RP,105460
DVPIV,RP,105461
DVABS,RP,105462
DVSUM,RP,105463
DVNRM,RP,105464
DVDOT,RP,105465
DVMAX,RP,105466
DVMAB,RP,105467
DVMIN,RP,105470
DVMIB,RP,105471
DVMOV,RP,105472
DVSWP,RP,105473
/E * TERMINATE ENTRY POINT CHANGES
**
* Alias Name Section *
**
/E * Terminate alias name section
**
* EQUIPMENT TABLE ENTRIES
**
* 10 fem
* 11 tbg
l2,DVM33,D
13, DVX05 ,X=13
14,DVX05,X=13
15,DVA76,X=13
16 , DVA77 ,X=13
17,DVX05,X=13
20,DVA66,X=12
20,DVA66
21,DVA66,X=12
21,DVA66
22,DVS72,T=3000
23,DVX05,X=13
25,DVX05,X=13
71,DWOO
71, DWOO,X=7
71,DWOO,X=7
71,DWOO,X=7

Figure B-1. (cont.)

244

* EQT 18 - TOD/TBG CLOCK
* EQT 19 - Unused
* EQT 20 - POYER FAIL

11,DVT43,S
24,DVX05,X=13
4,DVP43,M
/E
**
* DEVICE REFERENCE TABLE
**
2,0
1,1
o
2,1
2,2
2,4
o
1,0
o
1,2
o
o
20
11
4
5
7
8
9
10
o
o
o
o
2,0
3,0
6,0
13,0
o
o
18
14
15
16
17
o
o
o
o
o
o
2,4

* LU 1 - SYSTEM CONSOLE
* LU 2 - Disc, 7912, 15 Mbytes (system)
* LU 3 - unused
* LU 4 - RIGHT CTU SYSTEM CONSOLE
* LU 5 - LEFT CTU SYSTEM CONSOLE
* LU 6 - PRINTER ON SYSTEM CONSOLE
* LU 7 - unused
* LU 8 - disc subchanne1 0 (CTD)
* LU 9 - unused
* LU 10 - Disc,7912,50 Mbytes,(data files)
* LU 11 - unused
* LU 12 - unused
* LU 13 - POWER FAIL
* LU 14 - REIAY OUTPUT
* LU 15 - SEGMENT # 0
* LU 16 - SEGMENT # 1
* LU 17 - DS CHANNEL #1 (TX)
* LU 18 - DS CHANNEL #1 (RX)
* LU 19 - DS CHANNEL #2 (TX)
* LU 20 - DS CHANNEL #2 (RX)
* LU 21 - unused
* LU 22 - unused
* LU 23 - unused
* LU 24 - unused
* LU 25 - TRAMCON CRT #1
* LU 26 - TRAMCON CRT #2
* LU 27 - TRAMCON CRT #3
* LU 28 - MUX port
* LU 29 - unused
* LU 30 - unused
* LU 31 - TOD/TBG CLOCK
* LU 32 - REMOTE I/O RESERVED LU
* LU 33 - MAPPING LU 1
* LU 34 - MAPPING LU 2
* LU 35 - MAPPING LU 3
* LU 36 - unused
* LU 37 - Reserved for UP
* LU 38 - Reserved for UP
* LU 39 - Reserved for UP
* LU 40 - Reserved for UP
* LU 41 - Reserved for UP
* LU 42 - CRT #1 Printer

Figure B-1. (cont.)

245

3,4 * LU 43 - CRT #2 Printer
6,4 * LU 44 - CRT #3 Printer
13,4 * LU 45 - CRT #4 Printer
o * LU 46 - unused
o * LU 47 - unused
o * LU 48 - unused
o * LU 49 - unused
o * LU 50 - unused
o * LU 51 - unused
o * LU 52 - unused
o * LU 53 - unused
o * LU 54 - unused
o * LU 55 - unused
o * LU 56 - unused
o * LU 57 - unused
o * LU 58 - unused
o * LU 59 - unused
o * LU 60 - unused
/E * TERMINATE DRT
**
* INTERRUPT TABLE

4,ENT,$POWR * POWER FAIL
*10,fem * fem for VIDa firmware
*ll,tbg * time base generator
12,EQT,1 * 7912 disc, 65 Mbytes
13,PRG,PRMPT * System Console
14,PRG,PRMPT * EXTRA TERMINAL #1
15,EQT,4 * SEGMENT # 0
16,EQT,5 * SEGMENT # 1
17,PRG,PRMPT * CRT #3
20,EQT,7 * DS CHANNEL #1
21,EQT,9 * DS CHANNEL #2
22,EQT,11 * RELAY OUTPUT
23,PRG,PRMPT * Unused terminal port
24,PRG,PRMPT * Unused terminal port
25,PRG,PRMPT * Terminal Interface (BACI)
71,PRG,PRMPT
/E

* SYSTEM BOUNDARIES

3 * CHANGE DRIVER PART. SIZE? (YES)
o * CHANGE RT COMMON? (NO)
1 * CHANGE BG COMMON? (1 EXTRA PAGE)
64 * # OF I/O CLASSES
24 * # OF LU MAPPINGS
40 * # OF RESOURCE NUMBERS
100,400 * BUFFER LIMITS

Figure B-1. (cont.)

246

ASSIGN PROGRAM PARTITIONS
* D.RTR ASSIGNED FIRST PARTITION

SHAREABLE EMA PROGRAMS
IE
*
D.RTR,1
IE

40 * # OF BLANK. ID SEGMENTS
25 * # OF BLANK. SHORT ID SEGMENTS
25 * # OF BLANK. ID EXTENSIONS
14 * MAXIMUM NUMBER OF PARTITIONS
**
* PARTITION DEFINITION
**
71 * EXTRA SAM
32,RT,R * PARTITION 1 (FOR D.RTR)
5,BG * PARTITION 2
5,BG * PARTITION 3
12,BG * PARTITION 4
14,BG * PARTITION 5
27,BG * PARTITION 6
32,BG * PARTITION 7
32,BG * PARTITION 8
46,BG * PARTITION 9
NO * NO subpartitions
46,BG * PARTITION 10
NO * NO subpartitions
190,BG * PARTITION 11
NO * NO subpartitions
IE
**
* MODIFY PROGRAM PAGE REQUIREMENTS
**
FMGR,16
LOADR,27
ACCTS,18
D.RTR,32
IE
**
* SHAREABLE EMA PARTITIONS
**
11, SHARI
IE
*

Figure B-1. (cont.)

247

APPENDIX C: PROCEDURE FILE *LOAD6

Except in cases where the program is permanently loaded, or LOADR is
required for some other reason, LINK is used to load all programs.
This is done for two reasons: 1) LINK is fast and creates one type 6
file that contains the program and all the segments; 2) for those
programs that do not have a load command file, LINK can accept multiple
files and commands in the run-string.

Load System Utilities, Software Development Tools and TRAMCON
Segmented programs. This must be done immediately after
SWITCHING to a newly GENERATED system.

programs loaded here are grouped into the following sections:
System Manager Utilities
System Utilities
Program Development Utilities
File System Utilities
Help Utilities
Backup Utilities
Diagnostic and Disc Formatting Utilities
Distributed System (DS) Programs
TRAMCON Segmented Programs

:SV,l,9,IH
:* *LOAD6 ­
:*
:*
:* The
:*
:*
:*
:*
:*
:*
:*
:*
:*
:*
:*
:*
:*
:*
:*
:*
:*
:* For programs that are segmented, a list of segment names is
:* given. If the LOADR is used, this command file will SP the main
:* and all the segments.
:**
:** NOT E *
:** Before any software can be loaded, the programs LINK and *
:** LINDX must be loaded and the new revision of library $FMP6 *
:** must be indexed ihto the LINK SNAP file using LINDX. *
:DP,Loading LINK
: RU , LOADR, #LINK
:SP,LINK
:SP,LINKl
:SP,LINK2
:SP,LINK3
:SP,LINK4
: SP , LINKS
:DP,Loading LINDX
:RU,LOADR,#LINDX
:SP,LINDX
:SP,LINDI
:SP,LIND2
:SP,LIND3
:** Now create the snap file for LINK
:** Ask if he wants to include any libraries other than $FMP6

Figure C-l. FMGR procedure file *LOAD6.

248

- _._-------_._------_ .._~_.~._- --- - ---- ------

:DP,Do you want to include any libraries in the snap file
:DP,other than $FMP6?
:DP, (answer "TR, ,YES" or "TR, ,NO")
: PAUSE
:** upshift and blank-fill answer
:CA,-3S:P,-3SP,AND,lS7400B,OR,40B
:IF,-3SP,EQ,S4440B, 1
:IF, ,EQ" 9
:**ENDIF
:DP,Execute the following command appending tete libraries you want,
:DP,then return to me with the "TR" command.
:DP,
:DP ,RU ,LINDX, SYSTEM, SNAP. 6 , $FMP6 ,<library>, <library>, ... ,+NL
:DP,
: PAUSE
: IF" EQ" 5
:**
:DP,Indexing the system and building SNAP.6 with $FMP6.
:RU , LINDX, SYSTEM, SNAP. 6 , $FMP6 ,+NL
: IF" EQ" 1
:**
:RU,LINDX, SYSTEM, SNAP. 6, $FMP6,+NL
:*
:* System Manager Utilities
:* ------------------------
:* RT6GN segments: RT6Gl,RT6G2,RT6G3,RT6G4,RT6GS,RT6G6,RT6G7,RT6G8,RT6G9
:RU,LINK,#RT6GN,RT6GN::2
:*
:* SWTCH segments: SWSG1,SWSG2,SWSG3
:RU,LINK,#SWTCH,SWTCH::2
:*
:* System Utilities
:* ----------------
:RU ,LINK, %LUPRN , LUPRN: : 2
:*
:* Program Development Utilities
:* -----------------------------
:RU , LINK, %DRREL, $LDRLN ,+SZ: +2, DRREL: : 2
:RU,LINK,%DRRPL,+SZ:+2,DRRPL::2
:*
:* EDIT segments: EDITO,EDIT1,EDIT2,EDIT3,EDIT4
:RU,LINK,#ED1K6,EDIT::2
:RU,LINK,%INDXR,INDXR::2
:*
:* MACRO segments: MACRO,MACR1,MACR2,MACR3,MA.CR4,MACRS,MACR6,MACR7
:RU,LINK,#MACRO,MACRO::2
:*

Figure C-l. (cant.)

249

:* MLLDR segments: MLLD1,MLLD2,MLLD3,MLLD4
:* (MLLDR may not always load because of an overflow of base
:* page links. If this occurs (LOADR L-OV BSE error), follow
:* the instructions in the load command file #MLLD6 to correct
:* the situation.)
:RU , LOADR, #MLLD6
:SP,MLLDR: :2
:SP,MLLD1::2
: SP ,MLLD2: : 2
: SP ,MLLD3: : 2
:SP,MLLD4: :2
:*
:* SGMTR segments: SGMT1,SGMT2,SGMT3,SGMT4,SGMT5,SGMT6
:RU , LOADR, #SGMTR
:SP,SGMTR: :2
:SP,SGMT1::2
:SP,SGMT2: :2
:SP,SGMT3::2
:SP,SGMT4: :2
:SP,SGMT5::2
:SP,SGMT6::2
:*
:* SXREF segments: SXRE1,SXRE2,SXRE3,SXRE4,SXRE5,SXRE6
:RU ,LINK, #SXREF , SXREF: : 2
:*
:* File System Utilities
:* ---------------------
:RU,LINK,#MERGE,MERGE::2
:RU,LINK,#OLDRE,OLDRE::2
:RU,LINK,#SCOM,SCOM::2
:*
:* Help Utilities
:* --------------
:RU,LINK,%CMD,$PLIBN,+LB,+SZ:28,CMD::2
:RU,LINK,%GENIX,$PLIBN,+EB,+SZ:30,GENIX::2
:RU,LINK,%HELP,$PLIBN,HELP::2
:*
:* Backup Utilities
:* ----------------
:* FC segments: FCOOO,FC001,FC002,FC003,FC004,FC005,FC006
:RU,LINK,#FC6,FC::2
:RU,LINK,#TF,TF::2
:*
:* Diagnostic and Disc Formatting Utilities
:* --
:RU,LINK,#FORMC,FORMC::2
:RU,LINK,#FORMT,FORMT::2
:RU,LINK,~TVVER,%TVLIB,TVVER::2

:*

Figure C-l. (cont.)

250

:* Distributed System (DS) Programs
:* -----------------~--------------
:TR, (DS,REMAN
:**
:** PROGRAM TO PROGRAM COMM SLAVE MONITOR
:TR,(DS,PTOPM
:**
:** REMOTE EXEC MONITOR
:TR,(DS,EXECM
:**
:** REMOTE 'SCHEDULE WITH WAIT / MONITOR
:TR, (DS ,EX.ECW
:**
:** REMOTE RTE OPERATOR COMMAND PROCESSOR
:TR, (DS,OPERM
:**
:** DS INFORMATION UTILITY
:TR,(DS,DSINF
:**
:** REMOTE DIRECTORY LISTER
:TR,(DS,DLISI
:**
:** REMOTE FILE ACCESS MONITOR
:TR, (DS,RFAM2
:**
:** DYNAMIC MESSAGE REROUTING
:TR,(DS,#SEND
:**
:** REMOTE SESSION MONITOR
:TR, (DS ,RSM
:**
:** REMOTE I/O MAPPING MODULES
:TR,(DS,SYSAT
:TR,(DS,LUQUE
:**
:** VIRTUAL CONTROL PANEL MONITOR
:TR, (DS, VCPMN
:**
:** SLAVE MONITOR FOR REMOTE DOWN-LOAD FROM CBL
:TR,(DS,PROGL
:**
:** DS VERSION OF EDITR
:TR, (DS,EDI6D
:*
:**********************
:** Load Program CF *
:OF,CF
:RU,MLLDR,#CF
:PU,CF

Figure C-l. (cont.)

251

:SP,CF
:PU,@CF
:**********************
:** Load Program DT *
:OF,DT
:RU,MLLDR,#DT
:PU,DT
:SP,DT
:PU,@DT
:**********************
:** Load Program INIT *
:RU,MLLDR,#INIT
:PU,INIT
:SP,INIT
:PU,@INIT
:**********************
:** Load Program MTRP *
:OF,MTRP
:RU,MLLDR,#MTRP
:PU,MTRP
:SP,MTRP
:PU,@MTRP
:**********************
:** Load Program PLRP *
:OF,PLRP
:RU,MLLDR,#PLRP
:PU,PLRP
:SP,PLRP
:PU,@PLRP
:**********************
:** Load Program SR *
:OF,SR
:RU,MLLDR,#SR
:PU,SR
:SP,SR
:PU,@SR
:*
:SV, 9G" IH

Figure C-l. (cont.)

252

#RT6GN - LINK command file for RT6GN, 92084-17268 rev. 2440
EB
EC
EM,lOO
LI,$R6GNL
* LI, $FMP6: :A85
* LI,$FLIB: :A85
RE,%RT6GN
end rt6gn

#SWTCH - LINK command file for SWTCH, 92084-17039 REV. 2440
ps
LI,$DTCLB
LI,$DSCLB
* LI,$FMP6 '" FOR OLDER SYSTEMS
RE,%SSTCH
end swtch

#EDIK6 - LINK command file for EDIT, 92074-17003 REV.2440
OP,EB
OP,PE
SZ,32, * 24 TO 32 PAGES. LARGER = FASTER.
LIB,$EDIK6
RE,%EDITA
RE,%EDITB
EN

#MACRO - LINK command file for MACRO, 92059-17004 REV.2340

NOTE: Sizing macro to 32 pages will make it run fastest.
21 pages is minimum.

EB
SZ,32
RE,%MACRO
RE,%MACRO
RE,%MACR3
RE,%MACR7
RE,%MACRl
RE,%MACR2
RE,%MACR4
RE,%MACR5
RE,%MACR6
EN

Figure C-2. LINK and KLLDR command files used by *LOAD6.

253

#MLLD6 - LOADR command file for MLLDR, 92084-17189 REV.2226
EBCP
SZ,32
LI,$RBLIB
RE,%MLLDR
*LO,lOOOOB ,USE IF LOADR GIVES L-OV BSE
RE,%M.LIB
*LO,16000B ,USE IF LOADR GIVES L-OV BSE
RE,%MLLDA
*LO,22000B ,USE LOADR GIVES L-OV BSE
RE,%MLLDB
*LO,40000B ,USE IF LOADR GIVES L-OV BSE
EN

#SGMTR - LOADR command file for SGMTR, 92084-17106 REV.2121
WS,5
LI,$RBLIB
CPLBVM
RE,%SGMTR
EN

#MERGE - LINK command file for MERGE, 92084-17208 REV.2340
LI,$FMP6
RE,%MERGE
EN

#OLDRE - LINK command file for OLDRE, 92059-17002 REV.2213
RE,%OLDRE
RE,%ATRAN
EN

#SCOM - LINK command file for SCOM,
EB
LI,$FMP6
RE,%SCOM
EN

92084-17036 REV.2340

#FC6 - LINK command file for FC, 92084-17151 REV.2302
OP,EB
SZ,32
OP,MP
LI,$FCLI
LI,$FCL2
LI,$PLIB
RE,%FCM6
RE,%FCO
RE,%FCI
RE,%FC2
RE,%FC3

Figure C-2. (cont.)

254

RE,%FC4
RE,%FC5
RE,%FC6
EN

#TF - LINK command file for TF, 92077-17102 REV.2440

NOTE: The value in the EM command may be increased to
allow larger copy command groups.

EB
EM, 11
LI,$TFLIB
RE,%TF
EN

#FORMC - LINK command file for FORMC,
eb
li,$dtclb
li,$dsclb
li,$fmp6
re,%formc
re,%fcOOO
en

92077-17034 REV.2440

#FORMT - LINK command file for FORMT, 92084-17029 REV.2340
SZ,18
RE,%FORMT
SEA,$DSCLB
EN

#DS - Referenced by file (DS to load each DS program
BG
SH,SHARl
LI,$PLIB
EN

Figure C-2. (cont.)

255

(DS - used to load each DS program, written by ITS
:CA,2,lG,j,400B
:CA,3,lG
:CA,-27:P,-27P,AND,177B
:CA,-26:P,-26P,AND,177B
:CA,-25:P,O
:CA,3,3G,*,400B
:CA,-30:P,-30P,OR,-27P
:CA,-29:P,-29P,OR,-26P
:CA,-3l:P,-31P,OR,22400B
:OF,lG
:RU,LOADR:IH,#DS,2G
:PU,lOG
:SP,lOG
:TR

Figure C-3. Procedure files referenced by *LOAD6.

256

APPENDIX D: PROGRAM -CHGREC- - USED TO CHANGE DISC FILE RECORD SIZE

$PASCAL 'Change disc file record size' , HEAPPARMS OFF $
$RECURSIVE OFF , RANGE OFF$
PROGRAM chgrec; {<880818.1550>}

CaNST scode = 21586 {TR}; eof = -1; temp_name = 'XXXXXX';
newrec1en =

{ENTER length (in words) of NEW record)
670;

(end ENTER)

$INCLUDE '[RECR3'$

ARRAY[l .. 2] OF INT;

new record

(ENTER NEW record definition here)
statz_record;

(end ENTER)

old record

(ENTER the OLD record definition here)
RECORD
cnt_cmds: ARRAY[un .. us , master_crt_ordina1] OF INT; {count cmds
transmission: ARRAY[master_segment_ordina1] OF

ARRAY[segment_remote_ordina1,msg_status] OF INT;
END;

(end ENTER)

VAR i,j,k,crn,sectors,offset,nxtb1k,nxtrec,ftype,rec1en,err,len,recnbr: INT;

size: size_array;
new_rec: new_record;
old rec: old record;
$LINESIZE 500$ outunit: TEXT; key: two_chars;
olddcb,newdcb: data_control_block;
old_name: six_chars;

{ENTER special purpose variables here}
cmd: cmds; msg_st: msg_status;

{end ENTER}

PROCEDURE read_key $ALIAS'EXEC'$(f,lu: INT; buf:two_chars; l:INT);EXTERNAL;

Figure D-1. Source listing &CHREC.

257

PROCEDURE creat (dcb:data_contro1_b1ock; VAR err: INT; nam: six chars;
size: size_array; ftype,scode,crn: INT); EXTERNAL;

PROCEDURE locf (dcb:data_contro1_b1ock; VAR err,nxtrec,nxtb1k: INT;
VAR offset,sectors,lu,ftype,rec1en: INT); EXTERNAL;

PROCEDURE openf (dcb:data_contro1_b1ock;
VAR err: INT; nam: six_chars); EXTERNAL;

PROCEDURE c10sf $ALIAS'CLOSE'$ (dcb:data_contro1_b1ock;
VAR err: INT; trunate: INT); EXTERNAL;

PROCEDURE readf (dcb:data_contro1_b1ock; VAR err: INT;
VAR buf: old_record; rec1en: INT; VAR len: INT); EXTERNAL;

PROCEDURE writf (dcb:data_contro1 block; VAR err: INT;
VAR buf: new_record; len: INT); EXTERNAL;

PROCEDURE namf (dcb:data_contro1_b1ock; VAR err: INT;
oldnam,newnam: six_chars; scode,crn: INT); EXTERNAL;

PROCEDURE purge (dcb:data_contro1_b1ock; VAR err: INT;
nam: six_chars; scode,crn: INT); EXTERNAL;

BEGIN {chgrec}
old name :=

{ENTER name of OLD file here}
, (STATZ';

{end ENTER}

rewrite(outunit,'l' ,nocct1_shared);
openf(olddcb,err,old_name);
write1n(outunit,lf,lf, 'NEWREC Opening File' ,old_name: 6,

, err = ' ,err:6,lf,lf);
locf(olddcb,err,nxtrec,nxtb1k,offset,sectors,crn,ftype,rec1en);
IF ftype > 2 THEN BEGIN size[l] := -1; size[2] := 128 END
ELSE

BEGIN size[l] := (sectors+1) DIV 2;
size[l] := size[l] +

{ENTER more or less blocks to overall file size due to record size change}
1;

{end ENTER}

size[2]
END;

newreclen

Figure D-l. (cont.)

258

prompt(outunit, 'Changing record size for File', 01d_name:6,lf,lf,ret,
'Blocks ' size[l] :6,lf,ret,
'oldreclen reclen:6,lf,ret,
'newreclen size[2] :6,lf,ret,
'crn crn:6,lf,ret,
'ftype ftype:6,lf,ret,
'err err:6,lf,ret,lf,
'OK to Proceed ?(Y or N)' ,bell);

read_key(1,65,key,-1);
IF (key[l] = 'Y') or (key[l] = 'y') THEN

BEGIN creat(newdcb,err,temp_name,size,ftype,scode,crn); len := 0;
recnbr := 1; readf(olddcb,err,old_rec,reclen,len);
prompt(outunit,ret, 'Reading Record Number', recnbr:6);
WHILE len <> eof DO

BEGIN
{ENTER code to transfer old rec to new rec }

FOR cmd := un TO us DO
FOR i := 0 TO max_crts_per_master-l DO

new_rec.cnt_cmds[cmd,i] := 0;
FOR i := 0 TO max_segments_per_master-l DO

FOR j := 0 TO max_remotes_per_segment-l DO
FOR msg_st := polls TO no_ans DO

new_rec.transmission[i] [j,msg_st] :=
old_rec.transmission[i] [j,msg_st] ;

{end ENTER}
writf(newdcb,err,new_rec,newreclen);
readf(olddcb,err,old_rec,reclen,len);
IF len <> eof THEN

BEGIN recnbr := recnbr+l; prompt(outunit,esc, '&a-6C' ,recnbr:6) END
END;

purge(olddcb,err,old_name,scode,crn); {Purge OLD File}
writeln(outunit,lf,ret,lf, 'Purging File' ,old_name: 6, , err =' ,err:6);
write(outunit,lf,lf, 'Closing the NEW' ,old_name: 6, , File');
IF ftype > 2 THEN

BEGIN locf(newdcb,err,nxtrec,nxtblk,offset,sectors,crn,ftype,reclen);
j := (sectors DIV 2); k := nxtblk+l; i := j - k - 1;
write(outunit,' , Truncating from' ,j:6,' to ' ,k:6,' Blocks');
closf(newdcb,err,i)
END;

namf(newdcb,err,temp_name,old_name,scode,crn);
wri teln(outunit, ret, If, If, If, , Renaming File ' , temp_name: 6 ,

, to ' ,old_name: 6, , err =' ,err:6)
END;

writeln(outunit,lf,lf,ret, 'chgrec end' ,bell)
{COMMENT brackets should be removed from the following line for the first
compilation so that the NEW record size (in words) can be determined from
the compiler TABLES in the listing file 'CHREC. To generate this listing
file, the compiler should be run as follows: RU,P,&CHREC,-,%CHREC::IO

{$LIST ON, TABLES ON$}
END. {chgrec }

Figure D-l. (cont.)

259

APPENDIX E: DATALOKlO, MODELS lD AND IE, RAW' RESPONSE FORMATS

This appendix presents the raw response formats for the DATALOK10, models 1D
and 1E, remote units. The responses are listed in the order they are
received, with the byte number listed on the left. For example, byte
number 5 is the fifth byte in the response. The 8 bits in each byte are
listed just to the right of the byte number. The 8 bits are shown in reverse
order. That is, bit 0 is received first and bit 7 is received last. Bit 7
is the Parity bit. The DATALOK10 remote unit uses EVEN parity.

Each alarm/status byte contains 6 bits of data. The CATEGORY and TWO-STATE
assignments for these 6 bits are detailed just below the given byte.

I bit sl
byte l765432101

1 P100xxxx
2 P100yyyy
3 11010001
4 POxxxxxx

1
2
3
4
5
6

5 POxxxxxx
7
8
9

10
11
12

6 POxxxxxx
13
14
15
16
17
18

7 POxxxxxx
19
20
21
22
23
24

8 POxxxxxx
25
26
27
28

Datalok 10, model IE response format

Description
Polling 1D - byte 1 (High-order 4 bits of Polling 1D)
Polling 1D - byte 2 (Low-order 4 bits of Polling 1D)
Polling 1D - byte 3 (Always set to ASCII "A")
1J4 - byte 1 of 1st 18-point encoder
bit 0 - category 0, two-state 52

1 - category 0, two-state 53
2 - category 0, two-state 54
3 - category 0, two-state 55
4 - category 0, two-state 56
5 - category 0, two-state 57

1J4 byte 2 of 1st 18-point encoder
bit 0 - category 0, two-state 58

1 - category 0, two-state 59
2 - category 0, two-state 60
3 - category 0, two-state 61
4 - category 0, two-state 62
5 - category 0, two-state 63

1J4 byte 3 of 1st 18-point encoder
bit 0 - category 0, two-state 64

1 - category 0, two-state 65
2 - category 0, two-state 66
3 - category 0, two-state 67
4 - category 0, two-state 68
5 - category 0, two-state 69

1J5 byte 1 of 2nd 18-point encoder
bit 0 - category 1, two-state 52

1 - category 1, two-state 53
2 - category 1, two-state 54
3 - category 1, two-state 55
4 - category 1, two-state 56
5 - category 1, two-state 57

1J5 byte 2 of 2nd 18-point encoder
bit 0 - category 1, two-state 58

1 - category 1, two-state 59
2 - category 1, two-state 60
3 - category 1, two-state 61

260

29 4 - category 1, two-state 62
30 5 - category 1, two-state 63

9 POxxxxxx lJ5 - byte 3 of 2nd 18-point encoder
31 bit 0 - category 1, two-state 64
32 1 - category 1, two-state 65
33 2 - category 1, two-state 66
34 3 - category 1, two-state 67
35 4 - category 1, two-state 68
36 5 - category 1, two-state 69

10 POxxxxxx 1J6 - byte 1 of 3rd 18-point encoder
37 bit 0 - category 2, two-state 52
38 1 - category 2, two-state 53
39 2 - category 2, two-state 54
40 3 - category 2, two-state 55
41 4 - category 2, two-state 56
42 5 - category 2, two-state 57

11 POxxxxxx lJ6 - byte 2 of 3rd 18-point encoder
43 bit 0 - category 2, two - stat4~ 58
44 1 - category 2, two-state 59
45 2 - category 2, two-state 60
46 3 - category 2, two-state 61
47 4 - category 2, two-state 62
48 5 - category 2, two-state 63

12 POxxxxxx 1J6 - byte 3 of 3rd 18-point encoder
49 bit 0 - category 2, two-state 64
50 1 - category 2, two-state 65
51 2 - category 2, two-state 66
52 3 - category 2, two-state 67
53 4 - category 2, two-state 68
54 5 - category 2, two-state 69

13 POxxxxxx lJ7 - byte 1 of 4th 18-point encoder
55 bit 0 - site category, two-s'tate 12
56 1 - site category, two-state 13
57 2 - site category, two-state 14
58 3 - site category, two-state 15
59 4 - site category, 16
60 5 - site category, 17

14 POxxxxxx 1J7 - byte 2 of 4th 18-point encoder
61 bit 0 - site category, 18
62 1 - site category, 19
63 2 - site category, 20
64 3 - site category, 21
65 4 - site category, 22
66 5 - site category, 23

15 POxxxxxx 1J7 - byte 3 of 4th 18-point encoder
67 bit 0 - site category, 24
68 1 - site category, 25
69 2 - site category, 26
70 3 - site category, 27
71 4 - site category, 28
72 5 - site category, 29

16 POxxxxxx 1J8 - byte 1 of 1st 12-point encoder

261

73 bit ° - site category, two-state °74 1 - site category, two-state 1
75 2 - site category, two-state 2
76 3 - site category, two-state 3
77 4 - site category, two-state 4
78 5 - site category, two-state 5

17 Poxxxxxx 1J8 - byte 2 of 1st 12-point encoder
79 bit ° - site category, two-state 6
80 1 - site category, two-state 7
81 2 - site category, two-state 8
82 3 - site category, two-state 9
83 4 - site category, two-state 10
84 5 - site category, two-state 11

18 Poxxxxxx 1J9 - byte 1 of 2nd 12-point encoder
85 bit ° - category 0, two-state °
86 1 - category 0, two-state 1
87 2 - category 0, two-state 2
88 3 - category 0, two-state 3
89 4 - category 0, two-state 4
90 5 - category 0, two-state 5

19 poxxxxxx 1J9 - byte 2 of 2nd 12-point encoder
91 bit ° - category 0, two-state 6
92 1 - category 0, two-state 7
93 2 - category 0, two-state 8
94 3 - category 0, two-state 9
95 4 - category 0, two-state 10
96 5 - category 0, two-state 11

20 Poxxxxxx 1J10 - byte 1 of 3rd 12-point encoder
97 bit ° - category 0, two-state 12
98 1 - category 0, two-state 13
99 2 - category 0, two-state 14

100 3 - category 0, two-state 1,
101 4 - category 0, two-state lb
102 5 - category 0, two-state 17

21 POxxxxxx 1J10 - byte 2 of 3rd 12-point encoder
103 bit ° - category 0, two-state 18
104 1 - category 0, two-state 19
105 2 - category 0, two-state 20
106 3 - category 0, two-state 21
107 4 - category 0, two-state 22
108 5 - category 0, two-state 23

22 POxxxxxx 1J11 - byte 1 of 4th 12-point encoder
109 bit ° - category 0, two-state 24
110 1 - category 0, two-state 25
111 2 - category 0, two-state 26
112 3 - category 0, two-state 27
113 4 - category 0, two-state 28
114 5 - category 0, two-state 29

23 POxxxxxx 1J11 - byte 2 of 4th 12-point encoder
115 bit ° - category 0, two-state 30
116 1 - category 0, two-state 31
117 2 - category 0, two-state 32

262

118
119
120

24 POxxxxxx
121
122
123
124
125
126

25 POxxxxxx
127
128
129
130
131
132

26 POxxxxxx
133
134
135
136
137
138

27 POxxxxxx
139
140
141
142
143
144

28 POxxxxxx
145
146
147
148
149
150

29 POxxxxxx
151
152
153
154
155
156

30 POxxxxxx
157
158
159
160
161
162

3 - category 0, two-state 33
4 - category 0, two-state 34
5 - category 0, two-state 35

1J12 - byte 1 of 5th 12-point encoder
bit 0 - category 1, two-state 0

1 - category 1, two-state 1
2 - category 1, two-state 2
3 - category 1, two-state 3
4 - category 1, two-state 4
5 - category 1, two-state 5

1J12 - byte 2 of 5th 12-point encoder
bit 0 - category 1, two-state 6

1 - category 1, two-state 7
2 - category 1, two-state 8
3 - category 1, two-state 9
4 - category 1, two-state 10
5 - category 1, two-state 11

1J13 - byte 1 of 6th 12-point encoder
bit 0 - category 1, two-state 12

1 - category 1, two-state 13
2 - category 1, two-state 14
3 - category 1, two-state 15
4 - category 1, two-state 16
5 - category 1, two-state 17

1J13 - byte 2 of 6th 12-point encoder
bit 0 - category 1, two-state 18

1 - category 1, two-state 19
2 - category 1, two-state 20
3 - category 1, two-state 21
4 - category 1, two-state 22
5 - category 1, two-state 23

1J14 - byte 1 of 7th 12-point encoder
bit 0 - category 1, two-state 24

1 - category 1, two-state 25
2 - category 1, two-state 26
3 - category 1, two-state 27
4 - category 1, two-state 28
5 - category 1, two-state 29

1J14 - byte 2 of 7th 12-point encoder
bit 0 - category 1, two-state 30

1 - category 1, two-state 31
2 - category 1, two-state 32
3 - category 1, two~state 33
4 - category 1, two-state 34
5 - category 1, two-state 35

1J15 - byte 1 of 8th 12-point encoder
bit 0 - category 2, two-state 0

1 - category 2, two-state 1
2 - category 2, two-state 2
3 - category 2, two-state 3
4 - category 2, two-state 4
5 - category 2, two-state 5

263

31 POxxxxxx
163
164
165
166
167
168

32 POxxxxxx
169

. 170
171
172
173
174

33 POxxxxxx
175
176
177
178
179
180

34 POxxxxxx
181
182
183
184
185
186

35 POxxxxxx
187
188
189
190
191
192

36 POxxxxxx
193
194
195
196
197
198

37 POxxxxxx
199
200
201
202
203
204

38 POxxxxxx
205
206

1J15 - byte 2 of 8th 12-point encoder
bit °- category 2, two-state 6

1 - category 2, two-state 7
2 - category 2, two-state 8
3 - category 2, two-state 9
4 - category 2, two-state 10
5 - category 2, two-state 11

1J16 - byte 1 of 9th 12-point encoder
bit 0 - category 2, two-state 12

1 - category 2, two-state 13
2 - category 2, two-state 14
3 - category 2, two-state 15
4 - category 2, two-state 16
5 - category 2, two-state 17

1J16 - byte 2 of 9th 12-point encoder
bit 0 - category 2, two-state 18

1 - category 2, two-state 19
2 - category 2, two-state 20
3 - category 2, two-state 21
4 - category 2, two-state 22
5 - category 2, two-state 23

1J17 - byte 1 of 10th 12-point encoder
bit 0 - category 2, two-state 24

1 - category 2, two-state 25
2 - category 2, two-state 26
3 - category 2, two-state 27
4 - category 2, two-state 28
5 - category 2, two-state 29

1J17 - byte 2 of 10th 12-point encoder
bit °- category 1, two-state 30

1 - category 1, two-state 31
2 - category 1, two-state 32
3 - category 1, two-state 33
4 - category 1, two-state 34
5 - category 1, two-state 35

1J18 - byte 1 of 11th 12-point encoder
bit °- category 0, two-state 36

1 - category 0, two-state 37
2 - category 0, two-state 38
3 - category 0, two-state 39
4 - category 0, two-state 40
5 - category 0, two-state 41

1J18 - byte 2 of 11th 12-point encoder
bit °- category 0, two-state 42

1 - category 0, two-state 43
2 - category 0, two-state 44
3 - category 0, two-state 45
4 - category 0, two-state 46
5 - category 0, two-state 47

2J2 - byte 1 of 12th 12-point encoder
bit °- category 0, two-state 48

1 - category 0, two-state 49

264

207
208
209
210

39 POxxxxxx
211
212
213
214
215
216

40 POxxxxxx
217
218
219
220
221
222

41 POxxxxxx
223
224
225
226
227
228

42 POxxxxxx
229
230
231
232
233
234

43 POxxxxxx
235
236
237
238
239
240

2 - category 0, two-state 50
3 - category 0, two-state 51
4 - category 1, two-state 36
5 - category 1, two-state 37

232 - byte 2 of 12th 12-point encoder
bit 0 - category 1, two-state 38

1 - category 1, two-state 39
2 - category 1, two-state 40
3 - category 1, two-state 41
4 - category 1, two-state 42
5 - category 1, two-state 43

233 - byte 1 of 13th 12-point encoder
bit 0 - category 1, two-state 44

1 - category 1, two-state 45
2 - category 1, two-state 46
3 - category 1, two-state 47
4 - category 1, two-state 48
5 - category 1, two-state 49

233 - byte 2 of 13th 12-point encoder
bit 0 - category 1, two-state 50

1 - category 1, two-state 51
2 - category 2, two-state 36
3 - category 2, two-state 37
4 - category 2, two-state 38
5 - category 2, two-state 39

234 - byte 1 of 14th 12-point encoder
bit 0 - category 2, two-state 40

1 - category 2, two-state 41
2 - category 2, two-state 42
3 - category 2, two-state 43
4 - category 2, two-state 44
5 - category 2, two-state 45

234 - byte 2 of 14th 12-point encoder
bit 0 - category 2, two-state 46

1 - category 2, two-state 47
2 - category 2, two-state 48
3 - category 2, two-state 49
4 - category 2, two-state 50
5 - category 2, two-state 51

Ana1og-to-Digita1 Parameters (16 channel AID Mux card)

44 10000001
45 00000000
46 POOTHHHH
47 POOOTTTT
48 POOOUUUU
49 10000010
50 00000000
51 POOTHHHH
52 POOOTTTT
53 POOOUUUU

235, pin 1 - 1st Analog Value, Parameter 0, category 0
Scale ID (set to 0)
Thousands digit (bit 4) and Hundreds digit (BCD)
Sign bit (bit 4, set to 0) and Tens digit (BCD)
Overflow bit (bit 4) and Units digit (BCD)

235, pin 2 - 2nd Analog Value, Parameter 1, category 0
Scale ID (set to 0)
Thousands digit (bit 4) and Hundreds digit (BCD)
Sign bit (bit 4, set to 0) and Tens digit (BCD)
Overflow bit(bit 4) and Units digit (BCD)

265

54 00000011
55 00000000
56 POOTHHHH
57 POOOTTTT
58 POOOUUUU
59 10000100
60 00000000
61 POOTHHHH
62 POOOTTTT
63 POOOUUUU
64 00000101
65 00000000
66 PO0THHHH
67 POOOTTTT
68 POOOUUUU
69 00000110
70 00000000
71 POOTHHHH
72 POOOTTTT
73 POOOUUUU
74 10000111
75 00000000
76 POOTHHHH
77 POOOTTTT
78 POOOUUUU
79 10001000
80 00000000
81 POOTHHHH
82 POOOTTTT
83 POOOUUUU
84 00001001
85 00000000
86 PO0THHHH
87 POOOTTTT
88 POOOUUUU
89 00001010
90 00000000
91 POOTHHHH
92 POOOTTTT
93 POOOUUUU
94 10001011
95 00000000
96 POOTHHHH
97 POOOTTTT
98 POOOUUUU
99 00001100

100 00000000
101 POOTHHHH
102 POOOTTTT
103 POOOUUUU
104 10001101
105 00000000

2J5, pin 3 - 3rd Analog Value, Parameter 0, category 1
Scale ID (set to 0)
Thousands digit (bit 4) and Hundreds digit (BCD)
Sign bit (bit 4, set to 0) and Tens digit (BCD)
Overflow bit(bit 4) and Units digit (BCD)

2J5, pin 4 - 4th Analog Value, Parameter 1, category 1
Scale ID (set to 0)
Thousands digit (bit 4) and Hundreds digit (BCD)
Sign bit (bit 4, set to 0) and Tens digit (BCD)
Overflow bit(bit 4) and Units digit (BCD)

2J5, pin 5 - 5th Analog Value, Parameter 0, category 2
Scale ID (set to 0)
Thousands digit (bit 4) and Hundreds digit (BCD)
Sign bit (bit 4, set to 0) and Tens digit (BCD)
Overflow bit(bit 4) and Units digit (BCD)

2J5, pin 6 - 6th Analog Value, Parameter 1, category 2
Scale ID (set to 0)
Thousands digit (bit 4) and Hundreds digit (BCD)
Sign bit (bit 4, set to 0) and Tens digit (BCD)
Overflow bit(bit 4) and Units digit (BCD)

2J5, pin 7 - 7th Analog Value, Parameter 0, Site Cat
Scale ID (set to 0)
Thousands digit (bit 4) and Hundreds digit (BCD)
Sign bit (bit 4, set to 0) and Tens digit (BCD)
Overflow bit(bit 4) and Units digit (BCD)

2J5, pin 8 - 8th Analog Value, UNUSED
Scale ID (set to 0)
Thousands digit (bit 4) and Hundreds digit (BCD)
Sign bit (bit 4, set to 0) and Tens digit (BCD)
Overflow bit(bit 4) and Units digit (BCD)

2J5, pin 9 - 9th Analog Value, Parameter 2, category °
Scale ID (set to 0)
Thousands digit (bit 4) and Hundreds digit (BCD)
Sign bit (bit 4, set to 0) and Tens digit (BCD)
Overflow bit(bit 4) and Units digit (BCD)

2J5, pin 10 - 10th Analog Value, Parameter 3, category °
Scale ID (set to 0)
Thousands digit (bit 4) and Hundreds digit (BCD)
Sign bit (bit 4, set to 0) and Tens digit (BCD)
Overflow bit (bit 4) and Units digit (BCD)

2J5, pin 11 - 11th Analog Value, Parameter 2, category 1
Scale ID (set to 0)
Thousands digit (bit 4) and Hundreds digit (BCD)
Sign bit (bit 4, set to 0) and Tens digit (BCD)
Overflow bit(bit 4) and Units digit (BCD)

2J5, pin 12 - 12th Analog Value, Parameter 3, category 1
Scale ID (set to 0)
Thousands digit (bit 4) and Hundreds digit (BCD)
Sign bit (bit 4, set to 0) and Tens digit (BCD)
Overflow bit(bit 4) and Units digit (BCD)

2J5, pin 13 - 13th Analog Value, Parameter 2, category 2
Scale ID (set to 0)

266

106
107
108
109
110
111
112
113

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

POOTHHHH
POOOTTTT
POOOUUUU
10001110
00000000
POOTHHHH
POOOTTTT
POOOUUUU

POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx
POxxxxxx

Thousands digit (bit 4) and Hundreds digit (BCD)
Sign bit (bit 4, set to 0) and Tens digit (BCD)
Overflow bit (bit 4) and Units digit (BCD)

2J5, pin 14 - 14th Analog Value, Parameter 3, category 2
Scale ID (set to 0)
Thousands digit (bit 4) and. Hundreds digit (BCD)
Sign bit (bit 4, set to 0) and Tens digit (BCD)
Overflow bit(bit 4) and Units digit (BCD)

Digital Parameters (FEC Cards, 4 bytes per card)

2J13,Parameter 0, Category 0, low-order 6 bits
Parameter 0, Category 0, high-order 6 bits
Parameter 1, Category 0, low-order 6 bits
Parameter 1, Category 0, high-order 6 bits

2J14,Parameter 2, Category 0, low-order 6 bits
Parameter 2, Category 0, high-order 6 bits
Parameter 3, Category 0, low-order 6 bits
Parameter 3, Category 0, high-order 6 bits

2J15,Parameter 4, Category 0, low-order 6 bits
Parameter 4, Category 0, high-order 6 bits
Parameter 5, Category 0, low-order 6 bits
Parameter 5, Category 0, high-order 6 bits

2J16,Parameter 6, Category 0, low-order 6 bits
Parameter 6, Category 0, high-order 6 bits
Parameter 7, Category 0, low-order 6 bits
Parameter 7, Category 0, high-order 6 bits

2J17,Parameter 0, Category 1, low-order 6 bits
Parameter 0, Category 1, high-order 6 bits
Parameter 1, Category 1, low-order 6 bits
Parameter 1, Category 1, high-order 6 bits

2J18,Parameter 2, Category 1, low-order 6 bits
Parameter 2, Category 1, high-order 6 bits
Parameter 3, Category 1, low-order 6 bits
Parameter 3, Category 1, high-order 6 bits

3J3, Parameter 4, Category 1, low-order 6 bits
Parameter 4, Category 1, high-order 6 bits
Parameter 5, Category 1, low-order 6 bits
Parameter 5, Category 1, high-order 6 bits

3J4, Parameter 6, Category 1, low-order 6 bits
Parameter 6, Category 1, high-order 6 bits
Parameter 7, Category 1, low-order 6 bits
Parameter 7, Category 1, high-order 6 bits

3J5, Parameter 0, Category 2, low-order 6 bits
Parameter 0, Category 2, high-order 6 bits
Parameter 1, Category 2, low-order 6 bits
Parameter 1, Category 2, high-order 6 bits

3J6, Parameter 2, Category 2, low-order 6 bits
Parameter 2, Category 2, high-order 6 bits
Parameter 3, Category 2, low-order 6 bits
Parameter 3, Category 2, high-order 6 bits

3J7, Parameter 4, Category 2, low-order 6 bits

267

155 POxxxxxx Parameter 4, Category 2, high-order 6 bits
156 POxxxxxx Parameter 5, Category 2, low-order 6 bits
157 POxxxxxx Parameter 5, Category 2, high-order 6 bits
158 POxxxxxx 3J8, Parameter 6, Category 2, low-order 6 bits
159 POxxxxxx Parameter 6, Category 2, high~order 6 bits
160 POxxxxxx Parameter 7, Category 2, low-order 6 bits
161 POxxxxxx Parameter 7, Category 2, high-order 6 bits

162 11111111 End of Transmission Character (ASCII <DELETE>)

268

I bit s I
byte I765432101

1 P100xxxx
2 P100yyyy
3 11010001
4 POxxxxxx

1
2
3
4
5
6

5 POxxxxxx
7
8
9

10
11
12

6 POxxxxxx
13
14
15
16
17
18

7 POxxxxxx
19
20
21
22
23
24

8 POxxxxxx
25
26
27
28
29
30

9 POxxxxxx
31
32
33
34
35
36

10 POxxxxxx
37
38
39

Datalok 10. model lD Response format

Description
Polling ID - byte 1 (High order 4 bits of Polling ID)
Polling ID - byte 2 (Low order 4 bits of Polling ID)
Polling ID - byte 3 (Always set to ASCII "A")
1J4 (strapped for 3 bytes) - byte 1 of 1st 18-point encoder
bit 0 - site category, two-state unassigned

1 - site category, two-state unassigned
2 - site category, two-state unassigned
3 - site category, two-state unassigned
4 - site category, two-state unassigned
5 - site category, two-state unassigned

1J4 - byte 2 of 1st 18-point encoder
bit 0 - category 0, two-state 56

1 - category 0, two-state 57
2 - category 1, two-state 56
3 - category 1, two-state 57
4 - category 2, two-state 56
5 - category 2, two-state 57

1J4 - byte 3 of 1st 18-point encoder
bit 0 - category 0, two-state 58

1 - category 0, two-state 59
2 - category 1, two-state 58
3 - category 1, two-state 59
4 - site category, two-state unassigned
5 - site category, two-state 13

1J5 (strapped for 3 bytes) - byte 1 of 2nd 18-point encoder
bit 0 - site category, two-state 14

1 - site category, two-state unassigned
2 - site category, two-state 15
3 - site category, two-state unassigned
4 - site category, two-state unassigned
5 - site category, two-state unassigned

1J5 - byte 2 of 2nd 18-point encoder
bit 0 - category 0, two-state 52

1 - category 0, two-state 53
2 - category 1, two-state 52
3 - category 1, two-state 53
4 - category 2, two-state 52
5 - category 2, two-state 53

1J5 - byte 3 of 2nd 18-point encoder
bit 0 - category 2, two-state 54

1 - category 2, two-state 55
2 - category 1, two-state 54
3 - category 1, two-state 55
4 - category 2, two-state 54
5 - category 2, two-state 55

1J6 (strapped for 2 bytes) - byte 1 of 3rd 18-point encoder
bit 0 - site category, two-state 16

1 - site category, two-state 17
2 - site category, two-state 18

269

40 3 - site category, two-state unassigned
41 4 - site category, two-state unassigned
42 5 - site category, two-state unassigned

11 poxxxxxx 1J6 - byte 2 of 3rd 18-point encoder
43 bit ° - site category, two-state unassigned
44 1 - site category, two-state unassigned
45 2 - site category, two-state unassigned
46 3 - site category, two-state unassigned
47 4 - site category, two-state unassigned
48 5 - site category, two-state unassigned

12 Poxxxxxx lJ7 - byte 1 of 1st 12-point encoder
49 bit ° - site category, two-state °
50 1 - site category, two-state 1
51 2 - site category, two-state 2
52 3 - site category, two-state 3
53 4 - site category, two-state 4
54 5 - site category, two-state 5

13 poxxxxxx 1J7 - byte 2 of 1st 12-point encoder
55 bit ° - site category, two-state 6
56 1 - site category, two-state 7
57 2 - site category, two-state 8
58 3 - site category, two-state 9
59 4 - site category, two-state 10
60 5 - site category, two-state 11

14 Poxxxxxx lJ8 - byte 1 of 2nd 12-point encoder
61 bit ° - category 0, two-state 1
62 1 - category 0, two-state 3
63 2 - category 0, two-state 5
64 3 - category 0, two-state 2
65 4 - category 0, two-state 4
66 5 - category 0, two-state 6

15 poxxxxxx 1J8 - byte 2 of 2nd 12-point encoder
67 bit ° - category 0, two-state 7
68 1 - category 0, two-state °
69 2 - category 0, two-state 8
70 3 - category 0, two-state unassigned
71 4 - category 0, two-state unassigned
72 5 - category 0, two-state unassigned

16 poxxxxxx 1J9 - byte 1 of 3rd 12-point encoder
73 bit ° - category 0, two-state 18
74 1 - category 0, two-state 19
75 2 - category 0, two-state 24
76 3 - category 0, two-state 25
77 4 - category 0, two-state 20
78 5 - category 0, two-state 21

17 poxxxxxx 1J9 - byte 2 of 3rd 12-point encoder
79 bit ° - category 0, two-state 22
80 1 - category 0, two-state 23
81 2 - site category, two-state unassigned
82 3 - site category, two-state unassigned
83 4 - site category, two-state unassigned
84 5 - site category, two-state unassigned

270

18 POxxxxxx
85
86
87
88
89
90

19 POxxxxxx
91
92
93
94
95
96

20 POxxxxxx
97
98
99

100
101
102

21 POxxxxxx
103
104
105
106
107
108

22 POxxxxxx
109
110
111
112
113
114

23 POxxxxxx
115
116
117
118
119
120

24 POxxxxxx
121
122
123
124
125
126

25 POxxxxxx
127
128

1J10 - byte 1 of 4th 12-point encoder
bit 0 - category 1, two-state 1

1 - category 1, two-state 3
2 - category 1, two-state 5
3 - category 1, two-state 2
4 - category 1, two-state 4
5 - category 1, two-state 6

1J10 - byte 2 of 4th 12-point encoder
bit 0 - category 1, two-state 7

1 - category 1, two-state 0
2 - category 1, two-state 8
3 - category 1, two-state unassigned
4 - category 1, two-state unassigned
5 - category 1, two-state unassigned

1J11 - byte 1 of 5th 12-point encoder
bit 0 - category 1, two-state 18

1 - category 1, two-state 19
2 - category 1, two-state 24
3 - category 1, two-state 25
4 - category 1, two-state 20
5 - category 1, two-state 21

1J11 - byte 2 of 5th 12-point encoder
bit 0 - category 1, two-state 22

1 - category 1, two-state 23
2 - site category, two··state unassigned
3 - site category, two-state unassigned
4 - site category, two-state unassigned
5 - site category, two-state unassigned

1J12 - byte 1 of 6th 12-point encoder
bit 0 - category 2, two-state 1

1 - category 2, two-state 3
2 - category 2, two-state 5
3 - category 2, two-state 2
4 - category 2, two-state 4
5 - category 2, two-state 6

1J12 - byte 2 of 6th 12-point encoder
bit 0 - category 2, two-state 7

1 - category 2, two-state 0
2 - category 2, two-state 8
3 - category 2, two-state unassigned
4 - category 2, two-state unassigned
5 - category 2, two-state unassigned

1J13 - byte 1 of 7th 12-point encoder
bit 0 - category 2, two-state 18

1 - category 2, two-state 19
2 - category 2, two-state 24
3 - category 2, two-state 25
4 - category 2, two-state 20
5 - category 2, two-state 21

1J13 - byte 2 of 7th 12-point encoder
bit 0 - category 2, two-state 22

1 - category 2, two-state 23

271

129
130
131
132

26 POxxxxxx
133
134
135
136
137
138

27 POxxxxxx
139
140
141
142
143
144

28 POxxxxxx
145
146
147
148
149
150

29 POxxxxxx
151
152
153
154
155
156

2 - site category, two-state unassigned
3 - site category, two-state unassigned
4 - site category, two-state unassigned
5 - site category, two-state unassigned

1J14 - byte 1 of 8th 12-point encoder
bit 0 - category 0, two-state 36

1 - category 0, two-state 37
2 - category 0, two-state 38
3 - category 0, two-state 39
4 - category 0, two-state 40
5 - category 0, two-state 41

1J14 - byte 2 of 8th 12-point encoder
bit ° - category 0, two-state 42

1 - category 0, two-state 43
2 - category 0, two-state 44
3 - category 0, two-state 45
4 - category 0, two-state 46
5 - category 0, two-state 47

1J15 - byte 1 of 9th 12-point encoder
bit ° - site category, two-state unassigned

1 - site category, two-state unassigned
2 - site category, two-state unassigned
3 - site category, two-state unassigned
4 - site category, two-state unassigned
5 - site category, two-state unassigned

1J15 - byte 2 of 9th 12-point encoder
bit ° - site category, two-state unassigned

1 - site category, two-state unassigned
2 - site category, two-state unassigned
3 - site category, two-state unassigned
4 - site category, two-state unassigned
5 - site category, two-state unassigned

30 01100011 Group 1D character

Ana1og-to-Digita1 Parameters (5 bytes per card)

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

10000001
00000000
POOTHHHH
POOOTTTT
POOOUUUU
10000010
00000000
POOTHHHH
POOOTTTT
POOOUUUU
00000011
00000000
POOTHHHH
POOOTTTT
POOOUUUU

2J4, pin 17 - 1st Analog Value, Parameter 0, category 0
Scale 1D (set to 0)
Thousands digit (bit 4) and Hundreds digit (BCD)
Sign bit (bit 4, set to 0) and Tens digit (BCD)
Overflow bit(bit 4) and Units digit (BCD)

2J5, pin 17 - 2nd Analog Value, Parameter 1, category 0
Scale 1D (set to 0)
Thousands digit (bit 4) and Hundreds digit (BCD)
Sign bit (bit 4, set to 0) and Tens digit (BCD)
Overflow bit(bit 4) and Units digit (BCD)

2J6, pin 17 - 3rd Analog Value, Parameter 2, category 0
Scale 1D (set to 0)
Thousands digit (bit 4) and Hundreds digit (BCD)
Sign bit (bit 4, set to 0) and Tens digit (BCD)
Overflow bit(bit 4) and Units digit (BCD)

272

46 10000100
47 00000000
48 POOTHHHH
49 POOOTTTT
50 POOOUUUU
51 00000101
52 00000000
53 POOTHHHH
54 POOOTTTT
55 POOOUUUU
56 00000110
57 00000000
58 POOTHHHH
59 POOOTTTT
60 POOOUUUU
61 10000111
62 00000000
63 POOTHHHH
64 POOOTTTT
65 POOOUUUU
66 10001000
67 00000000
68 POOTHHHH
69 POOOTTTT
70 POOOUUUU
71 00001001
72 00000000
73 POOTHHHH
74 POOOTTTT
75 POOOUUUU

76 01100011
77 POxxxxxx
78 POxxxxxx
79 POxxxxxx
80 POxxxxxx
81 11100100
82 POxxxxxx
83 POxxxxxx
84 POxxxxxx
85 POxxxxxx
86 01100101
87 POxxxxxx
88 POxxxxxx
89 POxxxxxx
90 POxxxxxx

2J7, pin 17 - 1st Analog Value, Parameter 0, category 1
Scale ID (set to 0)
Thousands digit (bit 4) and Hundreds digit (BCD)
Sign bit (bit 4, set to 0) and Tens digit (BCD)
Overflow bit(bit 4) and Units digit (BCD)

2J8, pin 17 - 2nd Analog Value, Parameter 1, category 1
Scale ID (set to 0)
Thousands digit (bit 4) and Hundreds digit (BCD)
Sign bit (bit 4, set to 0) and Tens digit (BCD)
Overflow bit(bit 4) and Units digit (BCD)

2J9, pin 17 - 3rd Analog Value, Parameter 2, category 1
Scale ID (set to 0)
Thousands digit (bit 4) and Hundreds digit (BCD)
Sign bit (bit 4, set to 0) and Tens digit (BCD)
Overflow bit(bit 4) and Units digit (BCD)

2J10, pin 17 - 1st Analog Value, Parameter 0, category 2
Scale ID (set to 0)
Thousands digit (bit 4) and Hundreds digit (BCD)
Sign bit (bit 4, set to 0) and Tens digit (BCD)
Overflow bit(bit 4) and Units digit (BCD)

2J11, pin 17 - 2nd Analog Value, Parameter 1, category 2
Scale ID (set to 0)
Thousands digit (bit 4) and Hundreds digit (BCD)
Sign bit (bit 4, set to 0) and Tens digit (BCD)
Overflow bit (bit 4) and Units digit (BCD)

2J12, pin 17 - 3rd Analog Value, Parameter 2, category 2
Scale ID (set to 0)
Thousands digit (bit 4) and Hundreds digit (BCD)
Sign bit (bit 4, set to 0) and Tens digit (BCD)
Overflow bit(bit 4) and Units digit (BCD)

Digital Parameters (FEC Cards, 5 bytes per card)

2J17,Group/Point ID, Strap 13 = A, Switch S3 set to 143 Octal
Parameter 0, Category 0, low-order 6 bits
Parameter 0, Category 0, high-order 6 bits
Parameter 1, Category 0, low-order 6 bits
Parameter 1, Category 0, high-order 6 bits

2J18,Group/Point ID, Strap 13 = A, Switch S3 set to 144 Octal
Parameter 0, Category 1, low-order 6 bits
Parameter 0, Category 1, high-order 6 bits
Parameter 1, Category 1, low-order 6 bits
Parameter 1, Category 1, high-order 6 bits

3J3, Group/Point ID, Strap 13 = A, Switch S3 set to 145 Octal
Parameter 0, Category 2, low-order 6 bits
Parameter 0, Category 2, high-order 6 bits
Parameter 1, Category 2, low-order 6 bits
Parameter 1, Category 2, high-order 6 bits

91 11111111 End of Transmission character (ASCII <DELETE>)

273

Datalok 10 Poll and Response Character Formats

A typical character sent or received by a Data10k 10 Remote Unit has a start
bit, 7 data bits, a parity bit, and 2 stop bits:

SXXXXXXXPTT
01234567
10 - hi

Where S
X
P
T

start bit (always = 0)
data bit
parity bit
stop bit (always = 1)

Station ID
XXXX001
XXXXA01

XXXXA01

characters, X = programmable data bit
1st character
2nd character

A = 1 for change of state (from Remote Unit)
= 1 for manual interrogate (from Master)

3rd character
A 0 for single master (from Master)

1 for multi-master (from Master)
1 (from Remote Unit)

Special characters, X = data bits
XXXXX11 Group ID
1111111 End of Transmission, ASCII <DELETE> character
XXXXXXX Data character
XXXXXXO Alarm Data character

Analog Data
AAAABBO A
AABCCCO A
XXXXABO X
XXXXAOO X
XXXXAOO X

point ID, B = card ID
card ID (continued), B = data valid, C = option code
100's digit, A = 1/2 (1000's) digit, B = mode of multiplexer
10's digit, A = polarity (1 positive, 0 = negative)
l's digit, A = overflow (1 = over-range)

FEC Card Data, FEC data is formatted in reverse
(i.e. bit 5 first down to bit 0

XXXXXXO
XXXXXXO
XXXXXXO
XXXXXXO

Error seconds (low order six bits)
Error seconds (high order six bits)
Error count (low order six bits)
Error count (high order six bits)

order from other data
last)

Relay (Switch) Commands. A switch command is made up of two characters, a
card select and one of four relay commands,

XXXX011 Card Select
XXXXOOO Relay interrogate (X = relay numter)
XXXX010 Relay Preselect
XXXX100 Relay execute
UUUU1l0 Relay clear (clears all preselects), U = doesn't matter

Relay (Switch) Replies. A Switch reply is made up of two characters, a card
reply and a relay reply.

XXXX111 Card reply
XXXXABO Relay rep1y(A 1 = energized, 0 de-energized, B 1 preselected)

274

APPENDIX F: DATALOK10, MODElS 1D AND 1E, DATA POINT ASSIGNMENTS

DATALOK10 Model 1E

DATALOK10 1E - Alarm/Status Assignments

Equip Site Linkend 0 Linkend 1 Linkend 2
Rec'd
Ord T Card Pin T Card Pin Card Pin Card Pin

0 L 138 1 L 139 1 IJ12 1 IJ15 1
1 L 2 L 2 2 2
2 L 3 L 3 3 3
3 L 4 L 4 4 4
4 L 5 L 5 5 5
5 L 6 L 6 6 6
6 L 7 L 7 7 7
7 L 8 L 8 8 8
8 L 9 L 9 9 9
9 L 10 L 10 10 10

10 L 11 L 11 11 11
11 L 12 L 12 12 12
12 M 137 1 L IJI0 1 IJ13 1 IJ16 1
13 M 2 L 2 2 2
14 M 3 L 3 3 3
15 M 4 L 4 4 4
16 M 5 L 5 5 5
17 M 6 L 6 6 6
18 M 7 L 7 7 7
19 M 8 L 8 8 8
20 M 9 L 9 9 9
21 M 10 L 10 10 10
22 M 11 L 11 11 11
23 M 12 L 12 12 12
24 M 13 L IJ11 1 IJ14 1 IJ17 1
25 M 14 L 2 2 2
26 M 15 L 3 3 3
27 M 16 L 4 4 4
28 M 17 L 5 5 5
29 M 18 L 6 6 6
30 L 7 7 7
31 L 8 8 8
32 L 9 9 9
33 L 10 10 10
34 L 11 11 11
35 L 12 12 12
36 L IJ18 1 2J2 5 2J3 9
37 L 2 6 10
38 L 3 7 11

275

DATALOKIO IE - Alarm/Status Assignments (cant.)

Equip Site Linkend 0 Linkend 1 Linkend 2
Rec'd
Ord T Card Pin T Card Pin Card Pin Card Pin

39 L 1318 4 2J2 8 2J3 12
40 L 5 9 2J4 1
41 L 6 10 2
42 L 7 11 3
43 L 8 12 4
44 L 9 2J3 1 5
45 L 10 2 6
46 L 11 3 7
47 L 12 4 8
48 L 2J2 1 5 9
49 L 2 6 10
50 L 3 7 11
51 L 4 8 12
52 M 134 1 IJ5 1 136 1
53 M 2 2 2
54 M 3 3 3
55 M 4 4 4
56 M 5 5 5
57 M 6 6 6
58 M 7 7 7
59 M 8 8 8
60 M 9 9 9
61 M 10 10 10
62 M 11 11 11
63 M 12 12 12
64 M 13 13 13
65 M 14 14 14
66 M 15 15 15
67 M 16 16 16
68 M 17 17 17
69 M 18 18 18

DATALOKIO IE - Analog Parameter Assignments

Equip Site Linkend 0 Linkend 1 Linkend 2
Rec'd
Ord Card Pin Card Pin Card Pin Card Pin

0 2J5 7 2J5 1 2J5 3 2J5 5
1 8 2 4 6
2 15 9 11 13
3 16 10 12 14

276

DATALOKIO IE - Digital Parameter Assignments

Equip Site Linkend 0 Linkend 1 Linkend 2
Rec'd
Ord Card Pin Card Pin Card Pin Card Pin

0 2J13 1 2J17 1 3J5 1
1
2 2J14 1 2J18 1 3J6 1
3
4 2J15 1 3J3 1 3J7 1
5
6 2J16 1 3J4 1 3J8 1
7

DATALOKIO IE - Switch Assignments

Equip Site Linkend 0 Linkend 1 Linkend 2
Rec'd
Ord T TB Pins CD R1y T TB Pins CD R1y TB Pins CD R1y TB Pins CD R1y

0 M 4B 13-15 1 5 M 4A 1-3 0 1 4B 19-21 1 7 5B 7-9 3 3
1 M 16-18 1 6 M 4-6 0 2 22-24 1 8 10-12 3 4
2 M 5B 1-3 3 1 M 7-9 0 3 25-27 1 9 13-15 3 5
3 M 4-6 3 2 M 10-12 0 4 28-30 1 10 16-18 3 6
4 M 6A 19-21 4 7 M 13-15 0 5 5A 1-3 2 1 19-21 3 7
5 M 22-24 4 8 M 16-18 0 6 4-6 2 2 22-24 3 8
6 M 25-27 4 9 M 19-21 0 7 7-9 2 3 25-27 3 9
7 M 28-30 4 10 M 22-24 0 8 10-12 2 4 28-30 3 10
8 L 6B 1-3 5 1 M 25-27 0 9 13-15 2 5 6A 1-3 4 1
9 L 22-24 6 3 M 28-30 0 10 16-18 2 6 4-6 4 2

10 L 25-27 6 4 M 4B 1-3 1 1 19-21 2 7 7-9 4 3
11 L 28-30 6 5 M 4-6 1 2 22-24 2 8 10-12 4 4
12 M 7-9 1 3 25-27 2 9 13-15 4 5
13 M 10-12 1 4 28-30 2 10 16-18 4 6
14 L 6B 4-6 5 2 6B 10-12 5 4 6B 16-18 6 1
15 L 7-9 5 3 13-15 5 5 19-21 6 2

277

DATALOKlO Model lD

DATALOKlO lD - Alarm/Status Assignments

Equip Site Linkend 0 Linkend 1 Linkend 2
Rec'd
Ord T Card Pin T Card Pin Card Pin Card Pin

0 L 1J7 1 L U8 8 U10 8 U12 8
1 L 2 L 1 1 1
2 L 3 L 2 2 2
3 L 4 L 3 3 3
4 L 5 L 4 4 4
5 L 6 L 5 5 5
6 L 7 L 6 6 6
7 L 8 L 7 7 7
8 L 9 L 9 9 9
9 L 10 L 10 10 10

10 L 11 L 11 11 11
11 L 12 L 12 12 12
12
13 M 1J4 18
14 M 1J5 1
15 M 3
16 M U6 1
17 M 2
18 M 3 L 1J9 1 U11 1 U13 1
19 L 2 2 2
20 L 5 5 5
21 L 6 6 6
22 L 7 7 7
23 L 8 8 8
24 L 3 3 3
25 L 4 4 4
26 L 9 9 9
27 L 10 10 10
28 L 11 11 11
29 L 12 12 12
30
31
32
33
34
35
36 L 1J14 1 U14 9 1J15 5
37 L 2 10 6
38 L 3 11 7

278

DATALOKIO ID - Alarm/Status Assignments (cont.)

Equip Site Linkend 0 Linkend I Linkend 2
Rec'd
Ord T Card Pin T Card Pin Card Pin Card Pin

39 L 1314 4 1314 12 1315 8
40 L 5 1315 1 234 9
41 L 6 2 10
42 L 7 3 11
43 L 8 4 12
44
45
46
47
48
49
50
51
52 M 135 7 135 9 135 11
53 M 8 10 12
54 M 13 15 17
55 M 14 16 18
56 M 134 7 134 9 134 11
57 M 8 10 12
58 M 13 15
59 M 14 16
60
61
62
63
64
65
66
67
68
69

DATALOKIO ID - Analog Parameter Assignments

Equip Site Linkend 0 Linkend 1 Linkend 2
Rec'd
Ord Card Pin Card Pin Card Pin Card Pin

0 234 17 237 17 2310 17
1 235 17 238 17 2311 17
2 236 17 239 17 2312 17

279

DATALOKIO ID - Digital Parameter Assignments

Equip Site Linkend 0 Linkend 1 Linkend 2
Rec'd
Ord Card Pin Card Pin Card Pin Card Pin

0 2J13 1 2J17 1 3J5 1
1
2 2J14 1 2J18 1 3J6 1
3
4 2J15 1 3J3 1 3J7 1
5
6 2J16 1 3J4 1 3J8 1
7

DATALOKIOID - Switch Assignments

Equip Site Linkend 0 Linkend 1 Linkend 2
Rec'd
Ord T TB Pin CD R1y T TB Pin CD R1y TB Pin CD R1y TB Pin CD R1y

0 L 3B 1-3 2 1
1 L 4-6 2 M 4B 7- 9 4 3 4B 13-15 4 5 4B 19-21 4 7
2 L 7-9 3 M 10-12 4 16-18 6 22-24 8
3 L 13-15 5 L 3A 19-21 1 2 3A 25-27 1 4
4 M 4B 25-27 4 9 L 22-24 3 28-30 5
5
6
7
8
9

10 M 4A 4- 6 3 2 4A 16-18 3 6 4A 28-30 3 0
11 M 1- 3 1 13-15 5 25-27 9
12 M 10-12 4 22-24 8 4B 4- 6 4 2
13 M 7- 9 3 19-21 7 1- 3 1
14 L 3A 1- 3 0 1 3A 7- 9 0 3 3A 13-15 0 5
15 L 4- 6 2 10-12 4 16-18 1 1

280

APPENDIX G: OPTIMIZING THE LOADING OF SEGMENTED PROGRAMS

This appendix illustrates how the loading of the large segmented programs can
be modifed by hand to produce a more efficient program and dramatically
improve the resource requirements of these programs.

Specifically, these modifications can reduce the number of segments and,
therefore, reduce swapping activity and improve the execution of the large
program. By placing the redundent modules into the root node, the size of
the type 6 program file can be reduced. For the memory-resident segmented
programs, MTRP and PLRP, moving the redundent modules to the root node also
results in a significant reduction in the memory partition space required.
This is important because memory is already scarce.

The modification is performed in two stages. In Step one, the loader
directive file that is produced by the segmenter program SGMTR is examined
for modules that are specified to be loaded in every path of the program.
These NA and SY directives should be moved to the root node. After the first
step, the program should be loaded and the load map should be stored on a
disc file. Step .two examines the load map for routines that were not
mentioned explicitly in the loader directive file, but are still being loaded
into every path. Explicit NA or SY directives for these modules should be
added to the loader directive file in the root node.

The example shown here is the optimization of the memory-resident program
MTRP. Before modification, program MTRP requires a dedicated 49 page memory
partition and the size of the type 6 disc file is 266 blocks. Listed below
is the loader directive file #MTRP for program MTRP before modifcation.

* RU,SGKTR,@KTRP,#XX: :IO,28,KTRP,H * 2:55 PH HON., 22 FEB., 1988
SH,SHAR1
SZ,30
LI,@KTRP
LI,$PLDH2
OP,EK
OP,BP
* *TOTAL PROGRAM SIZE IN DECIMAL 34322 *SGKTR: 3 NODES CREATED
H
NA,KTRP
NA,PAS.1
NA,PAS.2
NA, PAS. STOP
NA,PAS.CURRKARC2
NA,PAS.GETKEMINF02
NA,PAS.HIWATERHEAP2
NA,PAS.HIWATERKARK2
NA, PAS. LOWATERHEAP2
NA,PAS.LOWATERKARK2
NA,PAS.PREVFREE2
NA,PAS.SETKEMINF02
NA,PAS.TOPOFHEAP2
NA,PAS.TOPOFSTACK2

281

NA,PAS.GETNEWPARMS
NA,PAS.INITIALIZE
NA,PAS.NUKERICPARMS
NA, PAS .RUNSTRINGLEN
NA,PAS.RUNSTRINGPTR
NA,PAS.STRENDS
NA,PAS.BITMASKO
NA,PAS.BITMASKl
SY,RMPAR
SY,D$XFR.
SY,D.R
SY,R/W$
SY, .OFLG
SY,RFLG$
SY,RlJNI)$
SY,WFLG$
SY, .DBTS
SY, .BFSZ
SY,EMA
SY,SWP
SY,L$PTE
SY,S$PTE
SY,VMAST
SY,LOC
SY,LOD
SY, .RRGR
SY, .SVRG
SY,OVRD.
H.l
NA,UPDATE_CURSOR
NA,GET_ANSWER.
NA ,UPDATE_DISPlAYS
NA.SET DATA FRAME
NA,PAS.CLOSEFILE
NA,PAS.CDSCONFLICT
NA,PAS.NONCDS
NA,PAS.TRACEBEGIN
NA,PAS.TRACECLOSE
NA,PAS.TRACEEND
NA,PAS.TRACEINIT
NA,PAS.INITMEMINF02
NA,PAS.INITFILE
H.2
NA,PH_INIT
NA,PRQCESS_RESPONSE
NA,UPDATE_US
NA,SET DATA FRAME
NA,PAS.CLOSEFILE
NA,PAS.CDSCONFLICT
NA,PAS.NONCDS
END

282

For step one, the four underlined NA directives (SET_DATA_FRAME,
PAS.CLOSEFILE, PAS.CDSCONFLICT, AND PAS.NONCDS) appearing in all paths in the
listing above are moved to the root node. The program is reloaded and the
load map is stored on a disc file. The resulting load map is listed below.
Usually, but not always, there is at least one routine (of the same name as
in the NA directive) appearing in the load map for every NA directive in the
loader input file. For example, the NA directive NA,SET_DATA_FRAME results
in the loading of routine SET_DATA_FRAME as shown in the second line of node
o below. As an exception, the two NA directives NA,CDSCONFLICT AND NA,NONCDS
result in just the one line PAS.NONCDSLIB in node 0 below.

M
NODE 0

KTRP 2012 7252 Monitor Response Handler
SET_DATA_FRAKE 7253 7354 TRAKCON Library, Ver. DEV
PAS.KEKDATA2 7355 7423 92833-16119 REV.2440 841008
PAS. INITIALIZE 7424 7522 92833-16119 REV.2440 841008
PAS.BITKASK 7523 7564 92833-16119 REV.2440 841008
PAS.CLOSEFILE 7565 10222 92833-16108 ,REV. 2440,850215
PAS.NONCDSLIB 10223 10222 92833-16119 REV.2440 841008
PAS.DCBADDRESS1 10223 10255 92833-16119 REV.2440 841008
PAS.FILEERROR 10256 10310 92833-16112,REV. 2440, 850215
PAS.UPSHIFTALPHA 10311 10352 92833-16118,REV.2440,850215
PAS.WRITELINE 10353 10524 92833-16108,REV.2440,850215
PAS.ERRORCATCHER 10525 10610 92833-16112 ,REV. 2440, 850215
PAS. IOERROR 10611 10643 92833-16112,REV. 2440, 850215
PAS.ERRORPRINTER 10644 13674 92833-16112,REV. 2440, 850215
PAS. TRACEBACK 13675 13701 92833-16119 REV.2440 841008
PAS.BOUNDINTEGER 13702 13733 92833-16119 REV.2440 841008
PAS.DOUBLE2ASCII 13734 14133 92833-16118,REV.2440,850215
PAS.STRINGADDRS 14134 14141 92833-16119 REV.2440 841008

890420.1020
890328.0916

850215.1702

850215.1659
850215.1648
850215.1702
850215.1659
850215.1659
850215.1659

850215.1648

EKA
LOC
RKPAR

RfW$
.OFLG
RWND$
.DBTS
.BFSZ
SWP
L$PTE
VKAST
.RRGR
OVRD.
CLOSE
LOCF
RWNDF
READF
LOGLU
PRTN

14142 14301 92084-lX085 REV.2440 <841114.1544>
14302 14353 92084-lX415 REV.2121 810723
14354 14404 92084-lX069 REV.2121 811001
14405 14522 92077-1X532 REV.2340 830217
14523 14525 92084-1Y010 REV.2340 830628
14526 14660 92077-lX534 REV.2326 <830217.1306>
14661 14664 92084-1Y010 REV.2340 830628
14665 14761 92077-lX658 REV.2340 830226
14762 15151 92084-lX086 REV.2440 <841114.1528>
15152 15172 92084-lX099 REV.2121 801204
15173 15241 92084-lX101 REV.2121 810513
15242 15276 92084-lX419 REV.2121 810723
15277 15277 92077-lX482 REV.2340 830218
15300 15530 92077-lX536 REV.2340 830819
15531 16046 92077-lX539 REV.2326 <830217.1307>
16047 16137 92077-lX529 REV.2326 <830217.1306>
16140 17531 92077-lX528 REV.2440 <840730.0942>
17532 17607 92084-lX027 REV.2121 790228
17610 17722 92084-lX007 REV.2121 771005

283

nEIO
SYSRQ
RW$UB

M.1
NODE 1

17723 20073 92084-lX923 REV.2440 840228
20074 20167 92084-lX002 REV.2121 810831
20170 20562 92077-lX533 REV.2326 <830217.1306>

GET ANSWER 22011 24661 TRAMCON MPLIB, Ver. DEV
PAS.INITFILE 24662 24726 92833-16119 REV.2440 841008
PAS.INITMEMINF02 24727 25006 92833-16119 REV.2440 841008
PAS.TRACEDUMMY 25007 25011 92833-16119 REV.2440 841008
UPDATE CURSOR 25012 26323 TRAMCON MPLIB, Ver. DEV
UPDATE DISPLAYS 26324 31556 TRAMCON MPLIB, Ver. DEV

ELAPSEDTIME 31557 31733 TRAMCON Library. Ver. DEV
PAS.BLANKFILL 31734 32032 92833-16119 REV.2440 841008
PAS.REWRITE FILE 32033 32147 92833-16118.REV.2440,850215
PAS.WRITECHAR 32150 32232 92833-16118,REV.2440.850215

PAS.WRITEENUM 32233 32522 92833-16118,REV.2440,850215
PAS.WRITEINTEGER 32523 32552 92833-16118.REV.2440.850215
PAS.WRITESTRING 32553 32776 92833-16118.REV. 2440. 850215

PRINT RESPONSE 32777 37374 TRAMCON MPLIB, Ver. DEV
PAS.INITMEMINF01 37375 37437 92833-16119 REV.2440 841008

PAS.RUNTIMEERROR 37440 37461 92833-16112.REV.2440.850215
CLEAR CHARS 37462 40016 TRAMCON MPLIB, Ver. DEV

DISABLE KEYBOARD 40017 40214 TRAMCON Library. Ver. DEV
KEYPRESS 40215 41664 TRAMCON Library. Ver. DEV

ARCHIVE_IT 41665 43004 TRAMCON MPLIB, Ver. DEV
GET_SITE STATUS 43005 43773 TRAMCON Library, Ver. DEV
JTIME 43774 44257 TRAMCON Library, Ver. DEV
READ_DICT 44260 44426 TRAMCON Library, Ver. DEV
RING_AUDIBLE 44427 44610 TRAMCON Library, Ver. DEV
UPDATE_AL 44611 47147 TRAMCON MPLIB, Ver. DEV
UPDATE_CN 47150 50140 TRAMCON MPLIB, Ver. DEV
UPDATE_PA 50141 50662 TRAMCON MPLIB, Ver. DEV
UPDATE_PC 50663 51447 TRAMCON MPLIB, Ver. DEV
UPDATE_SS 51450 53246 TRAMCON MPLIB, Ver. DEV
PAS.SETUPFILE 53247 55673 92833-16108,REV. 2440, 850215

PAS.IOWARNING 55674 55726 92833-16112.REV. 2440. 850215
PAS.PUT 55727 56235 92833-16108.REV. 2440. 850215
PAS.MOVEBYTES 56236 56265 92833-16119 REV.2440 841008
PAS.SPLITMOVE 56266 56514 92833-16118.REV.2440.850215
PAS.WRITEDOUBLE 56515 56676 92833-16118.REV.2440.850215

PAS.WRITEREAL 56677 56747 92833-16118,REV.2440,850215
REVERSE BITS 56750 57064 TRAMCON MPLIB. Ver. DEV

PAS.MEMDATA1 57065 57122 92833-16119 REV.2440 841008
CRT STATUS CHECK 57123 57175 TRAMCON Library. Ver. DEV
PAS. PROMPT 57176 57304 92833-16108.REV.2440.850215

PAS.BITOPERATOR2 57305 57765 92833-16119 REV.2440 841008
PAS.OPEN·FILE 57766 60044 92833-16118.REV.2440.850215

PAS.SEEKFILE 60045 60145 92833-16118,REV.2440,850215
PAS.WRITENONTEXT 60146 60220 92833-16118,REV.2440,850215
PRINT VAL 60221 61155 TRAMCON MPLIB, Ver. DEV

284

890421.1125

890421.1125
890421.1125

890328.0916

850215.1648
850215.1648

850215.1648
850215.1648
850215.1648

890421.1125

850215.1659
890421.1125

890328.0916
890328.0916

890421.1125
890328.0916
890328.0916
890328.0916
890328.0916
890421.1125
890421.1125
890421.1125
890421.1125
890421.1125
850215.1702

850215.1659
850215.1702

850215.1648
850215.1648

850215.1648
890421.1125

890328.0916
850215.1702

850215.1648
850215.1648
850215.1648
890421.1125

PAS.CLOSEPURGE 61156 61174 92833-16118.REV.2440,850215
PAS.INLINEERROR 61175 61206 92833-16119 REV.2440 841008
PAS.SINGLEMOD 61207 61242 92833-16119 REV.2440 841008

PAS.WRITEANYRKAL 61243 6144492833-16118,REV.2440,850215
DOWN CRT 61445 61740 TRAMCON Library, Ver. DEV

PARM_DEF 61741 62074 TRAMCON MPLIB, Ver, DEV
PRINT_PARM 62075 62175 TRAMCON MPLIB, Ver. DEV
PAS.REAL2ASCII 62176 63404 92833-16118,REV. 2440, 850215
PAS.MAX 63405 63442 92833-16118,REV.2440,850215
PAS,MIN 63443 63500 92833-16118,REV.2440,850215
PAS,REALOPERATOR 63501 64703 92833-16119 REV.2440 841008
PAS,LOADRHEAP2 64704 64703 92833-16117 REV.2401 840322

850215.1648

850215.1648
890328.0916

890421.1125
890421,1125
850215.1648
850215.1648
850215,1648

ABREG
lAND

LlMEM
CNUMD
KCVT

CREAT
NAMR
OPENF
POST
.DMOD
MESSS

, LVAS
COR.A
$CVT3

$OPEN
NAM, ,
OPEN
IFTTY
$ESTB
CAPCK
IDGET
VSCBA
$SMVE
SESSN

M,2
NODE 2

64704 64725 92084-lX059 REV.2121 750701
64716 64735 24998-lX102 REV.2001 750701

64736 64777 92084-lX050 REV.2121 810717
65000 65017 92084-lX015 REV.2121 770621
65020 65033 92084-lX011 REV.2121 770621

65034 65420 92077-lX379 REV.2326 <830218.1103>
65421 65720 92084-lX066 REV.2226 820225
65721 66227 92077-lX541 REV.2440 841012
66230 66257 92077-lX527 REV,2326 <830217,1319>
66260 66277 24998-lX269 REV.2101 800303
66300 66640 92084-1X458 REV.2440 <841005.1346>

66641 66641 92084-lX411 REV.2121 810717
66642 66662 92084-lX009 REV,2121 770621
66663 66750 92084-lX018 REV.2121 770621

66751 67201 92077-lX544 REV.2326830905
67202 67276 92077-lX530 REV.2340 830217
67277 67710 92077-lX088 REV,2440 841011
67711 70000 92084-lX025 REV.2301 820916
70001 70015 92084-1X048 REV.2121 790202
70016 70366 92084-lX028 REV,2121 810126
70367 70451 92084-lX029 REV.2121 790314
70452 70521. 92084-lX461 REV.2121 810201
70522 70614 92084-lX046 REV,2121 800129
70615 70632 92084-lX256 REV.2121 780413

PM_INIT 22011 22670 Monitor Response Handler
PROCESS RESPONSE 22671 31507 TRAMCON MPLIB, Ver, DEV
UPDATE US 31510 33160 TRAMCON MPLIB, Ver, DEV
ALLOCATE EMA 33161 34015 TRAMCON Library, Ver, DEV
PAS,BITOPERATOR2 34016 34476 92833-16119 REV,2440 841008

PAS.OPEN FILE 34477 34555 92833-16118,REV.2440,850215
ELAPSEDTIME 34556 34732 TRAMCON Library, Ver. DEV

EVALUATE NODE 34733 35266 TRAMCON MPLIB, Ver, DEV
PARM DEF 35267 35422 TRAMCON MPLIB, Ver, DEV
PAS,REALROUND 35423 35475 92833-16118,REV.2440,850215
PAS.SETDIFFER 35476 35527 92833-16119 REV.2440 841008

285

890420.1020
890421,1125
890421,1125
890328.0916

850215.1648
890328.0916

890421.1125
890421.1125
850215,1648

PAS.SETINIT 35530 35661 92833-16119 REV.2440 841008
PAS.WRITEINTEGER 35662 35711 92833-16118.REV.2440,850215
PAS.WRITESTRING 35712 36135 92833-16118.REV.2440.850215
UNPACK~RESPONSE3613640011 TRAMCON MPLIB, Ver. DEV

DISABLE KEYBOARD 40012 40207 TRAMCON Library, Ver. DEV
KEYPRESS 40210 41657 TRAMCON Library, Ver. DEV
PAS.SINGLEMOD 41660 41713 92833-16119 REV.2440 841008
PAS.WRITECHAR 41714 41776 92833-16118.REV.2440.850215
PAS.WRITEDOUBLE 41777 42160 92833-16118,REV.2440,850215
PAS.REWRITE FILE 42161 42275 92833-16118.REV.2440,850215

PAS.SETSHARED 42276 42444 92833-16118,REV.2440,850215
PAS.SETUPFlLE 42445 45071 92833-16108,REV.2440,850215
PAS.ENTRYEXIT2 45072 45646 92833-16119 REV.2440 841008

PAS.RUNTIMEERROR 45647 45670 92833-16112.REV.2440,850215
PAS.MOVEBYTES 45671 45720 92833-16119 REV.2440 841008
PAS.PUT 45721 46227 92833-16108.REV.2440,850215
PAS.SPLITMOVE 46230 46456 92833-16118.REV.2440.850215
REVERSE BITS 46457 46573 TRAMCON MPLIB, Ver. DEV

TRANSFORM_ORDINA 46574 50266 TRAMCON MPLIB, Ver. DEV
PAS.BLANKFILL 50267 50365 92833-16119 REV.2440 841008
CRT STATUS CHECK 50366 50440 TRAMCON Library, Ver. DEV
PAS.PROMPT 50441 50547 92833-16108,REV.2440,850215
PAS. IOWARNING 50550 50602 92833-16112.REV.2440,850215

PAS.SHAREDSIZE 50603 50707 92833-16118,REV.2440,850215
PAS.CLOSEPURGE 50710 50726 92833-16118,REV.2440,850215
PAS.INLINEERROR 50727 50740 92833-16119 REV.2440 841008

PAS.CHECKSTAKSZ2 50741 50770 92833-16119 REV.2440 841008
DOWN CRT 50771 51264 TRAMCON Library, Ver. DEV

850215.1648
850215.1648

890421.1125
890328.0916
890328.0916

850215.1648
850215.1648
850215.1648

850215.1648
850215.1702

850215.1659

850215.1702
850215.1648
890421.1125

890421.1125

890328.0916
850215.1702
850215.1659

850215.1648
850215.1648

890328.0916

.DMOD
lAND
ABREG
CREAT
NAMR
OPENF
POST

IXGET
MESSS
$OPEN
NAM ••
OPEN
IFTTY
$ESTB
CAPCK
IDGET
VSCBA
$SMVE
SESSN

51265 51304 24998-1X269 REV.2101 800303
51305 51314 24998-lX102 REV.2001 750701
51315 51336 92084-1X059 REV.2121 750701
51337 51723 92077-lX379 REV.2326 <830218.1103>
51724 52223 92084-lX066 REV.2226 820225
52224 52532 92077-1X541 REV.2440 841012
52533 52562 92077-lX527 REV.2326 <830217.1319>

52563 52572 92084-lX030 REV.2121 780731
52573 53133 92084-1X458 REV.2440 <841005.1346>
53134 53364 92077-lX544 REV.2326 830905
53365 53461 92077-1X530 REV.2340 830217
53462 54073 92077-1X088 REV.2440 841011
54074 54163 92084-1X025 REV.2301 820916
54164 54200 92084-1X048 REV.2121 790202
54201 54551 92084-1X028 REV.2121 810126
54552 54634 92084-lX029 REV.2121 790314
54635 54704 92084-1X461 REV.2121 810201
54705 54777 92084-lX046 REV.2121 800129
55000 55015 92084-lX256 REV.2121 780413

29 PAGE LONGEST PATH
45 PAGE PARTITION REQUIRED

286

Already, the partition size has been reduced from 49 pages to 45 pages. This
frees four pages that can be used to increase the size of another program
partition or to increase the size of the shared memory EMA partition. Also,
the type 6 disc file has been reduced from 385 blocks to 353 blocks. Step
two identifies all the modules (underlined in the listing above) that are
still loaded into every path (the example has two paths - Ml and M2). These
modules are moved to the root node resulting in the loader directive file
listed below. Notice that not all underlined routines are explicitly
specified with NA or SY directives in the new loader directive file. For
example, most of the system library routines, such as $OPEN and SESSN, do not
have a corresponding SY directive. These routines do not require explicit
specification because they are loaded in the proper node automatically by the
loader which loads all modules referenced by the explicitly specified
modules. That is, when loading the module PAS.OPENFILE, the loader realizes
that it must also load the module $OPEN since it is called by the module
PAS.OPENFILE. To keep the loader directive file manageable, care should be
taken to explicitly specify only those modules that need to be specified.
This list of necessary modules can be determined by trial and error.
Explicitly mention those modules that you think need to be mentioned and
attempt to load the program. If the loader pauses looking for undefined
externals, then those modules must also be mentioned in an NA or SY
directive.

* RU,SGMTR,@MTRP,#XX::10,28,MTRP,M * 2:55 PM MON., 22 FEB., 1988
SH,SHAR1
SZ,30
LI,@MTRP
LI,$PLDH2
OP,EM
OP,BP
* *TOTAL PROGRAM SIZE IN DECIMAL 34322 *SGMTR: 3 NODES CREATED
M
NA,MTRP
NA,SET_DATA_FRAME
NA ,KEYPRESS
NA,DISABLE_KEYBOARD
NA,EIAPSEDTIME
NA,REVERSE_BITS
NA,PAS.1
NA,PAS.2
NA, PAS. STOP
NA,PAS.CURRMARC2
NA,PAS.GETMEMINF02
NA,PAS.HIWATERHEAP2
NA,PAS.HIWATERMARK2
NA, PAS. LOWATERHEAP2
NA, PAS. LOWATERMARK2
NA,PAS.PREVFREE2
NA,PAS.SETMEMINF02
NA,PAS.TOPOFHEAP2
NA,PAS.TOPOFSTACK2
NA,PAS.GETNEWPARMS

287

NA,PAS.INITIALIZE
NA,PAS.NUMERICPARMS
NA, PAS. RUNSTRINGLEN
NA,PAS.RUNSTRINGPTR
NA,PAS.STRENDS
NA,PAS.BITMASKO
NA,PAS.BITMASKl
NA,PAS.CLOSEFILE
NA,PAS.CDSCONFLICT
NA,PAS.NONCDS
NA,PAS.OPEN_FILE
NA,PAS.YRITEINTEGER
NA,PAS.YRITESTRING
NA,PAS.SINGLEMOD
NA,PAS.SETUPFILE
NA, PAS. RUNTIMEERROR
NA,PAS.YRITEDOUBLE
NA,PAS.MOVEBYTES
NA,PAS.PUT
NA,PAS.SPLITMOVE
NA,PAS.CLOSEPURGE
NA,PAS.INLINEERROR
NA,PAS.IOWARNING
SY,RMPAR
SY,D$XFR
SY,D.R
SY,Rj\l$
SY, .OFLG
SY,RFLG$
SY,RWND$
SY,WFLG$
SY, .DBTS
SY, .BFSZ
SY,EMA
SY,SWP
SY,L$PTE
SY,S$PTE
SY,VMAST
SY,LOC
SY,LOD
SY, .RRGR
SY, .SVRG
SY,OVRD.
SY, .DMOD
M.l
NA,UPDATE_CURSOR
NA,GET_ANSWER
NA ,UPDATE_DISPLAYS
NA,PAS.TRACEBEGIN
NA,PAS.TRACECLOSE
NA,PAS.TRACEEND
NA,PAS.TRACEINIT

288

NA,PAS.INITMEMINF02
NA,PAS.INITFlLE
K.2
NA,PK_INIT
NA,PROCESS_RESPONSE
NA,UPDATE_US
END

Again, the program is reloaded and the resulting load map is listed below.

K
NODE 0

MTRP 2012 7252 Konitor Response Handler
SET DATA FRAME 7253 7354 TRAMCON Library, Ver. DEV
KEYPRESS 7355 11024 TRAMCON Library, Ver. DEV
DISABLE KEYBOARD 11025 11222 TRAMCON Library, Ver. DEV
ELAPSEDTlME 11223 11377 TRAMCON Library, Ver. DEV
REVERSE BITS 11400 11514 TRAMCON MPLIB, Ver. DEV
PAS.MEKDATA2 11515 11563 92833-16119 REV.2440 841008
PAS.INITIALIZE 11564 11662 92833-16119 REV.2440 841008
PAS.BITMASK 11663 11724 92833-16119 REV.2440 841008
PAS.CLOSEFlLE 11725 12362 92833-16108 ,REV. 2440 , 850215
PAS.NONCDSLIB 12363 12362 92833-16119 REV.2440 841008
PAS.OPEN FILE 12363 12441 92833-16118,REV.2440,850215
PAS.WRITEINTEGER 12442 12471 92833-16118,REV.2440,850215
PAS.WRITESTRING 12472 12715 92833-16118,REV.2440,850215
PAS.SINGLEKOD 12716 12751 92833-16119 REV.2440 841008
PAS.SETUPFlLE 12752 15376 92833-16108,REV.2440, 850215
PAS.RUNTlMEERROR 15377 15420 92833-16112,REV.2440,850215
PAS.WRITEDOUBLE 15421 15602 92833-16118,REV.2440,850215
PAS.KOVEBYTES 15603 15632 92833-16119 REV.2440 841008
PAS.PUT 15633 16141 92833-16108,REV.2440,850215
PAS.SPLITKOVE 16142 16370 92833-16118,REV.2440,850215
PAS.CLOSEPURGE 16371 16407 92833-16118,REV.2440,850215
PAS.INLINEERROR 16410 16421 92833-16119 REV.2440 841008
PAS. IOWARNING 16422 16454 92833-16112,REV. 2440, 850215
CRT_STATUS_CHECK 16455 16527 TRAMCON Library, Ver. DEV
PAS.BLANKFILL 16530 16626 92833-16119 REV.2440 841008
PAS. PROMPT 16627 16735 92833-16108 ,REV. 2440, 850215
PAS.WRITECHAR 16736 17020 92833-16118 ,REV. 2440,850215
PAS.REWRITE FILE 17021 17135 92833-16118,REV.2440,850215
PAS.DCBADDRESS1 17136 17170 92833-16119 REV.2440 841008
PAS.FlLEERROR 17171 17223 92833-16112,REV.2440,850215
PAS.UPSHIFTALPHA 17224 17265 92833-16118,REV.2440,850215
PAS.WRITELINE 17266 17437 92833-16108,REV. 2440, 850215
PAS. IOERROR 17440 17472 92833-16112 ,REV. 2440,850215
PAS.ERRORCATCHER 17473 17556 92833-16112,REV.2440,850215
PAS.DOUBLE2ASCII 17557 17756 92833-16118,REV.2440,850215
DOWN CRT 17757 20252 TRAMCON Library, Ver. DEV
PAS.ERRORPRINTER 20253 23303 92833-16112,REV.2440,850215
PAS. TRACEBACK 23304 23310 92833-16119 REV.2440 841008

289

890420.1020
890328.0916
890328.0916
890328.0916
890328.0916
890421.1125

850215.1702

850215.1648
850215.1648
850215.1648

850215.1702
850215.1659
850215.1648

850215.1702
850215.1648
850215.1648

850215.1659
890328.0916

850215.1702
850215.1648
850215.1648

850215.1659
850215.1648
850215.1702
850215.1659
850215.1659
850215.1648
890328.0916
850215.1659

PAS.BOUNDlNTEGER 23311 23342 92833-16119 REV.2440 841008
PAS.STRlNGADDRS 23343 23350 92833-16119 REV.2440 841008

EMA
LOC
RMPAR
RjY$
.OFLG
RWND$
.DBTS
.BFSZ
SWP
L$PTE
VMAST
.RRGR
OVRD.
.DMOD
ABREG
lAND
SYSRQ
XRElO
CLOSE
LOCF
RWNDF
CREAT
READF
LOGLU
NAMR
OPENF
POST
PRTN
MESSS
$OPEN
NAM ••
RW$UB
OPEN
lFTTY
$ESTB
CAPCK
lDGET
VSCBA
$SMVE
SESSN

M.1
NODE 1

23351 23510 92084-lX085 REV.2440 <841114.1544>
23511 23562 92084-lX415 REV.2121 810723
23563 23613 92084-lX069 REV.2121 811001
23614 23731 92077-lX532 REV.2340 830217
23732 23734 92084-1Y010 REV.2340 830628
23735 24067 92077-lX534 REV.2326 <830217.1306>
24070 24073 92084-1Y010 REV.2340 830628
24074 24170 92077-lX658 REV.2340 830226
24171 24360 92084-lX086 REV.2440 <841114.1528>
24361 24401 92084-lX099 REV.2121 801204
24402 24450 92084-lX101 REV.2121 810513
24451 24505 92084-lX419 REV.2121 810723
24506 24506 92077-lX482 REV.2340 830218
24507 24526 24998-lX269 REV.2101 800303
24527 24550 92084-lX059 REV.2121 750701
24551 24560 24998-lX102 REV.2001 750701
24561 24654 92084-lX002 REV.2121 810831
24655 25025 92084-lX923 REV.2440 840228
25026 25256 92077-lX536 REV.2340 830819
25257 25574 92077-lX539 REV.2326 <830217.1307>
25575 25665 92077-lX529 REV.2326 <830217.1306>
25666 26252 92077-lX379 REV.2326 <830218.1103>
26253 27644 92077-lX528 REV.2440 <840730.0942>
27645 27722 92084-lX027 REV.2121 790228
27723 30222 92084-lX066 REV.2226 820225
30223 30531 92077-lX541 REV.2440 841012
30532 30561 92077-lX527 REV.2326 <830217.1319>
30562 30674 92084-lX007 REV.2121 771005
30675 31235 92084-lX458 REV.2440 <841005.1346>
31236 31466 92077-1X544 REV.2326 830905
31467 31563 92077-lX530 REV.2340 830217
31564 32156 92077-1X533 REV.2326 <830217.1306>
32157 32570 92077-lX088 REV.2440 841011
32571 32660 92084-lX025 REV.2301 820916
32661 32675 92084-lX048 REV.2121 790202
32676 33246 92084-lX028 REV.2121 810126
33247 33331 92084-1X029 REV.2121 790314
33332 33401 92084-1X461 REV.2121 810201
33402 33474 92084-lX046 REV.2121 800129
33475 33512 92084-1X256 REV.2121 780413

GET ANSWER
PAS.lNlTFlLE
PAS.lNlTMEMlNF02
PAS. TRACEDUMMY
UPDATE CURSOR

34011 36661
36662 36726
36727 37006
37007 37011
37012 40323

TRAMCON MPLlB, Ver. DEV
92833-16119 REV.2440 841008
92833-16119 REV.2440 841008
92833-16119 REV.2440 841008
TRAMCON MPLlB, Ver. DEV

290

890421.1125

890421.1125

UPDATE DISPLAYS 40324 43556 TRAMCON MPLIB, Ver. DEV
PAS.Y.RITEENUM 43557 44046 92833-16118,REV.2440,850215
PRINT RESPONSE 44047 50444 TRAMCON MPLIB, Ver. DEV
PAS.INITMEMINF01 50445 50507 92833-16119 REV.2440 841008
CLEAR CHARS 50510 51044 TRAMCON MPLIB, Ver. DEV
ARCHIVE IT 51045 52164 TRAMCON MPLIB, Ver. DEV
GET SITE STATUS 52165 53153 TRAMCON Library, Ver. DEV
JTIME 53154 53437 TRAMCON Library, Ver. DEV
READ DICT 53440 53606 TRAMCON Library, Ver. DEV
RING AUDIBLE 53607 53770 TRAMCON Library, Ver. DEV
UPDATE AL 53771 56327 TRAMCON MPLIB, Ver. DEV
UPDATE CN 56330 57320 TRAMCON MPLIB, Ver. DEV
UPDATE PA 57321 60042 TRAMCON MPLIB, Ver. DEV
UPDATE PC 60043 60627 TRAMCON MPLIB, Ver. DEV
UPDATE SS 60630 62426 TRAMCON MPLIB, Ver. DEV
PAS.Y.RITEREAL 62427 62477 92833-16118,REV.2440, 850215
PAS.MEMDATA1 62500 62535 92833-16119 REV.2440 841008
PAS.BITOPERATOR2 62536 63216 92833-16119 REV.2440 841008
PAS.SEEKFILE 63217 63317 92833-16118,REV.2440,850215
PAS.Y.RITENONTEXT 63320 63372 92833-16118 ,REV. 2440, 850215
PRINT VAL 63373 64327 TRAMCON MPLIB, Ver. DEV
PAS.Y.RITEANYREAL 64330 64531 92833-16118,REV. 2440, 850215
PARM DEF 64532 64665 TRAMCON MPLIB, Ver. DEV
PRINT PARM 64666 64766 TRAMCON MPLIB, Ver. DEV
PAS.REAL2ASCII 64767 66175 92833-16118,REV.2440, 850215
PAS.MAX 66176 66233 92833-16118,REV.2440,850215
PAS.MIN 66234 66271 92833-16118 ,REV. 2440,850215
PAS.REALOPERATOR 66272 67474 92833-16119 REV.2440 841008
PAS.LOADRHEAP2 67475 67474 92833-16117 REV.2401 840322

890421.1125
850215.1648
890421.1125

890421.1125
890421.1125
890328.0916
890328.0916
890328.0916
890328.0916
890421.1125
890421.1125
890421.1125
890421.1125
890421.1125
850215.1648

850215.1648
850215.1648
890421.1125
850215.1648
890421.1125
890421.1125
850215.1648
850215.1648
850215.1648

LIMEM
CNUMD
KCVT
. LYAS

.COR.A
$CVT3

M.2
NODE 2

67475 67536 92084-lX050 REV.2121 810717
67537 67556 92084-lX015 REV.2121 770621
67557 67572 92084-lX011 REV.2121 770621
67573 67573 92084-lX411 REV.2121 810717
67574 67614 92084-1X009 REV.2121 770621
67615 67702 92084-lX018 REV.2121 770621

PM INIT 34011 34670 Monitor Response Handler
PROCESS RESPONSE 34671 43507 TRAMCON MPLIB, Ver. DEV
UPDATE US 43510 45160 TRAMCON MPLIB, Ver. DEV
ALLOCATE EMA 45161 46015 TRAMCON Library, Ver. DEV
PAS.BITOPERATOR2 46016 46476 92833-16119 REV.2440 841008
EVALUATE NODE 46477 47032 TRAMCON MPLIB, Ver. DEV
PARM DEF 47033 47166 TRAMCON MPLIB, Ver. DEV
PAS.REALROUND 47167 47241 92833-16118,REV.2440,850215
PAS.SETDIFFER 47242 47273 92833-16119 REV.2440 841008
PAS.SETINIT 47274 47425 92833-16119 REV.2440 841008
UNPACK RESPONSE 47426 51301 TRAMCON MPLIB, Ver. DEV
PAS.SETSHARED 51302 51450 92833-16118,REV.2440,850215

291

890420.1020
890421.1125
890421.1125
890328.0916

890421.1125
890421.1125
850215.1648

890421.1125
850215.1648

PAS.ENTRYEXIT2 51451 52225
TRANSFORM ORDINA 52226 53720
PAS.SHAREDSIZE 53721 54025
PAS.CHECKSTAKSZ2 54026 54055

92833-16119 REV.2440 841008
TRAMCON MPLIB, Ver. DEV
92833-16118 ,REV. 2440, 850215
92833-16119 REV.2440 841008

890421.1125
850215.1648

IXGET 54056 54065 92084-lX030 REV.2121 780731

28 PAGE LONGEST PATH
40 PAGE PARTITION REQUIRED

These two simple optimization steps have reduced program MTRPs' dedicated
partition requirements from 49 pages to 40 pages and reduced the type 6 file
size from 385 disc blocks to 305 blocks. This same process could be applied
to program PLRP resulting in a total memory savings of 18 pages and disc
space savings of 160 blocks.

292

INDEX

Page

[RECR2 19, 20
[RECR3 102, 121
$MPLIB routines

archive it 71
clear chars 74
evaluate node 71
get~answer 78
parm_def 71
pm_Initialize 69
print_parm 73
print_response 77
print_val 76
process_response 73
reverse bits 70
transform ordinal 70
unpack_response 70
update_a1 76
update_cn 75
update_cursor 74
update_displays 79
update_pa 77
update_pc 76
update_ss 75
update_us 75

$PASCAL 95
$SHSLB 53, 237
$TRLIB routines

allocate EMA 66
capitalize 59
check more 63
clone and run 65
crt status check 61
Day_Time 60
deallocate EMA 67
disable_keyboard 62
disp1ay_current_msg 65
down crt 61
E1apsedTime 59
get_entry_address 59
get site status 60.- -
init_printer 68
jtim~ 64
keypress 63
off_prog 59
poll remote 60
print_display 68
print_done 68

293

printer_status
read dict ..
ring_audible
run_prog
save cursor .
set data frame- -
time date .
TimeNow .
wait_for_big_softkey

%PRERS
A.85 .
AID
a2d amber
a2d bottom
a2d card select- -
a2d nbr values
a2d ordinal
a2d red
a2d_top
a2ds_array .
access restricted

restricted cmds
toggling

a1 a1fa
alarm name
alarm set
alarm_type
alarms_acknowledged
alarms_array . .
alarms inhibited .
a1fa int record- -
alternate masters
analog_start . .
any_just_c1eared
any_new
arch file name
Archive

archive file description
file index
POST .
record definition
record number computation

archive a1fa
archive file . . .
archive idx
archive idx record
archive record
atoi result
audible 1u
AUTOR

INDEX (cont.)

294

67
62
62
65
62
58
65
60
64

53, 81
x, 7, 113

73, 78, 124
161
161
124
124
136
161
161
146

168, 209
211
210
123
151
160
151
166
146
166
141
158
130
185
185
123

200
149, 168, 217

187
148
218
123
185
168
148
148
138
122
144

installation
b r
BACI

cabling
terminal interface

bad id
bad_response
bell
Bootup
byte
cal curves
cat status
cat_status_ptr
category

definition
category_ordinal
CHGREC
Class number declarations
Class numbers

plrp_class, mtrp_class
cleared_gone
clk
CLNUP, closing files left open
Clock

hardware
response time - clk
software

clone bit
CLONING programs
cmd alfasl
cmd alfas2
cmd buffer
cmd_byte
cmd str
cmds
CMMD

allocate class numbers
entering passwords
scheduling programs
set access restricted

cmmd class
cn alfa
cn record
colon
color crt
colored
combo record
combo start
combos
comm_equipment

INDEX (cont.)

295

119
162

37
104
103
185
162
133

15
134
161
162
178

177, 178
xi

136
197
165
166
190
185
185

18

18
187

18
121

23
134
134
185
144
135
135

13
166
210

21
169
165
123
161
133
166
178
153
130
153
159

7, 36, 38, 39~ 70, 73, 77, 78, 124, 144,

INDEX (cont.)

comm info record . .- -
Command line
Command restrictions

poller_only .
restricted cmds
sys_console_only

Commands
parsing
Pascal definition
two-character mnemonics
usage statistics
valid ...

confi version
Configuration data base

installation
security code

Configurator
create)DINIT

cos .
Counted two-states
counted_array
country
counts_array
CPCI ..
crt buff
crt down
crt idx
crt 10 len
crt_msg_len
crt_msg_ordinal
crt_msg_record
crt record
crt rn .
crt_type .
crtord . .
current 2states
current a2ds . .
current_alarm_ptr
current crt
current_digitals .
current_display
current link status record- -
currently_polled
data char
data_char_type . .
data control block- -
data_set_NOT_ready
DATALOKIO

l2-point encoder
lD Alarm/Status Assignments .

296

6, 128,

157
167

30
30
30

25
135
134
208

· 31
158

228
196

129, 132
· 18
185
201
161
151
161

1
178
166
159
178
124
136
145
157
166
178
178
160
161
161
166
161
166
160
162
146
146
138
141

156, 185
· 34
278

INDEX (cont.)

1D Analog Parameter Assignments .
1D Digital Parameter Assignments
1D Switch Assignments
1E Alarm/Status Assignments . . .
1E Analog Parameter Assignments .
1E Digital Parameter Assignments
1E Switch Assignments
a2d card select- -
a2d nbr values
communication character formats
model 1D response format
model 1E response format
poll message format
response format

Date file
date file name .
date record
default_display
delete ...
device down
di_segrem
diag
diag_a1fa
Diagnostics

diag flag definition
resp_stats definition

dictionary
definition
maximum size
word definition
word size ...

dictionary_ptr
dictionary_record_ptr
dictionary_size
dictionary_word
dictionary_word_size
digita1_otrdina1
digital_start
digita1s_array .
DINIT

scheduling
type 6 file

DIRECT
Disc

change record sizes
configuration data base file naming conventions
file naming conventions
generation file naming conventions
INCLUDE file naming conventions
indexer file naming conventions

297

279
280
280
275
276
277
277

· 35
· 35
274
269
260

34, 37
· 34
203
123
142
166
133
141
166
168
123
208
168
169

150, 164
150
132
150
133
149
150
132
150
133
136
130
146

22, 149
· 18
192

· 98

196
198

47, 51, 95, 114
114
177

· 53

logical unit assignment
PUSHBUTTON save/restore
repacking - PAKLU

disc addr rec
disc block buff
DRREL .
DRRPL .

installation
DS

INDEX. (cont.)

'.

191
225

· 17
145
145

86
86
87

installation
module list .
node numbers

DS node
DT .

diagnostics .
global var definition [DTVAR
indexing
indexing and segmenting
loading
password
segmentation path limit
using "segnames" and "nremotes"

DVA76
on-line replacement

EDIT, editing segmentation
EFAS
eight_bits .
eight_chars
EMA

directive files

118
191
149
149

51, 53, 60, 64, 117, 138
220
184

52
· 54
· 84

209, 210
.. 86

143
36, 38
86, 88

56
5

136
135

allocation
maximum size
partition assignment
pointers
storage requirements

EMA end
EMA_required
EMA start
ENK-ACK
entry_point_record
eqt4_word
eqt5_word
equip_a2d
equip_digital
equipment types
equipment_record
esc .
exp_tree_node
expression_ordinal
expression_size
expression_tree

298

165
122

· 14
170

167, 224
167
167
167
103
144
141
141
153
153

2, 154
153
133
153
136
132
153

INDEX (cont.)

extended,
extent of
FC
fiber_optics
five bits
five chars
FMGR ...
form feed
forty_chars
four bits
four chars .
fourteen chars
Frame Error Counter
FUNCTION keys
GENERIC Response

DATALOK10 lD and lE response formats
record definition

get_parms
Global VARs
Graphics TEXT mode
half x
hardware clock, set
HEAP.

accessing . .
allocation.
allocation and initialization
first word address (FWA)
maximum size
remote status record- -

HEAP - STACK COLLISION
heap_class_no
heap_ptr .
heap_ptrs
HEAPPARMS
hist a2d .
hist_array
hist_digital
Histogram file
I/O slot . . .
ID segment . .
illegal_interrupt
INCLUDE

[DTVAR
[MPVAR

Indentation
INDXR
INIT

allocate HEAP pointer
indexing and segmenting
initialize dictionary .

299

162
162
194
124
136
135

7
133
135
136
135
135

· 35
125

260
146

23, 66
177

· 74
166

· 18
53, 178
... 23
66, 162
... 19

20, 66, 169
122
162

· 86
142
169
163

· 95
161
138
161
204

8
· 21
185

· 96
184
185
101

51, 53, 118

163
· 54
150

INDEX (cant.)

initialize map info
loading
scheduling
set max crt and max_segment

insert cmd line
INT
just_cleared . .
keypress

operator input
kybrd_class
latching
latitude
latlons
If ...
19off_class
LIBRARY
line_of_sight
LINK
link 2state ordinal- -
link_def_p tr
link id
LINKEND

definition
linkend info .
linkend record
linkord
links
links record
linksptr .
LOADR
local end
Logical unit

definition
polling channels

logoff_class_no
logon_class
long_segment_name
longitude
LUPRN
main_resp
MAJOR
map_alfa .
master . .
master crt ordinal
master_flag
master record
master_segment_ordinal
masterord
max_2states_per_link
max_a2ds_per_link

300

164
· 84
· 19
165
166
134
160

183
166, 183

124
151
166
133
166

· 97
124

· 80
136
159

155, 159, 160

· xi
155
155

177, 178
164
159

58, 183
116

58, 181
8
x

159
142
165
157
151

· 88
162
126
123
164
136
151
158
136
177
129
131

max archive record . .- -
max_chars_per_cmd
max_chars_per_response
max_combos_per_1ink
max_counts_per_1ink
max crt
max_crt_msg
max_crts_per_master
max_digita1s_per_1ink
max_equipments_per_master
max_his tos_per_1 ink
max_1inkends_per_remote
max_1inks_per_net
max_1inks_per_segment
max_masters_per_net
max_mas ters_per_s egment
max_pf_rec
max_re1ays_per_1ink
max_remotes_per_master .
max_remotes_per_segment
max_segment
max_segments_per_master
max_segments_per_net
max_sites_per_net
max_sites_per_trunk
max_specific_names .
max_trunks_per_segment
max words
Memory

allocation
EMA ...•
lock
optimization
partition lock
partitioning
resident
shared

minor
MLLDR
momentary
monitor
msg_c1ass
msg_record
msg_status
MTRP .

compiling
current alarm data
get answer
HEAP - STACK COLLISION
indexing and segmenting

INDEX. (cont.)

301

127
124
123
132
132
165
124
127
131
133
131
129
127
133
127
129
122
131
133
128
165
127
127
127
129
132
128
133

10
10, 14

ix
15

86, 281
215

14
14, 15

· 12
126

· 57
124
124
165
144
139

13, 21, 38, 51, 60
· 48
165

78
86
54

INDEX (cont.)

loading
memory requirements
mtrp_c1ass
partition assignment
remote unit I/O . . .
sample segmentation directives
Segment NOT responding msg
stack space . . .
statistics
unpacked_response
update_cursor . .
update_displays .
Use $MPLIB routines

mtrp_c1ass
Name list
nbr bins .
nbr remotes
net masters
net_segments
network
network record
new alarm
new_gone ...
next archive record
next extent
next id
nibble ..
niH ...
nine bits
no abort bit
no answer
no wait
nocct1 shared
node idx ...
nodes in trunk
not ans
nremotes
null ..
old_dsp
On-Line
one minute
operator_name
oppo_site
outunit

special $LINESIZE$ for DT
pa_a1fa
PAKLU
param name
param_type
param_units

302

· 84
· 86
144

14
· 37
· 83
146

67, 122
208
188

75
· 79
· 69
165
151
123
162
160
160
164
160
160
185
162
162
165
134
123
136
121
162
121
122
185
156
162
142
123
166

6
121
166

. 58
178, 184

184
123

. 17
152
152
152

INDEX. (cont.)

Parameter histogram file
Parameter passing

PASCAL
parameter types
parameter_record
parity_err
parityerr
parm_array
parm_data
parm record
parm_status
parms
PARSE ($PARS)
Parsing

command definitions
Pascal

compiler OPTIONS
indexing arrays .
use of RECORD VARIANT

password
Password, Master

access restricted flag definition
command entry
Set at bootup

Passwords
entry

pc a1fa
pcm_counts .
pcm_histogram_array
pcm_histogram_record
pcm_port .
pf_record
pflu
PLRP .

compiling
current alarm data
get answer
HEAP - STACK COLLISION
indexing and segmenting
loading
memory requirements .
partition assignment
poll class
remote unit I/O
stack space
statistics
unpacked_response
update_cursor . .
update_displays .
use $MPLIB routines

303

205

· 58
72, 152

152
162
185
138
162
161
162
178
138

· 25
134

· 95
102
148
142

168
· 27
· 19
209
210
123
162
140
140
151
145
122

13, 21, 51, 60
· 49
165

78
86
55
84
86
14

144
· 37

67, 122
208
188

74
79
69

plrp_class
pointers .
poll_class
poll_monitor
poll_monitor flag
polledord
poller ...
Polling channel

specification in driver
Polling cursor .
Power fail file
previous remotes
print_it ..
Printer

type
printer_type
program scheduling
RANGE
real_kybrd_class
RECURSIVE
refresh
relay_ordinal
relay_record .
relays
rem_status_ptr
Remote unit

limit per segment
remote_equip_type
remote info
remote_polling_id
remote record
remote_status_ptr
remote_status_record
remote_types .
remoteord
remotes_array
remotes_displayed
remptr . .
res len ok
resp_stats
responded
response .

GENERIC format
processing

response status
response_data_types
response_length
response_status
response_str . .
response_timedout

INDEX (cont.)

304

165
170
165

158, 159
159
185
124

38
· 39
· 74
205

162-164
178

126
157

· 22
.96
165

· 96
178
136
152
153
178

128, 162
155
157
155
155
162
162
155

177, 178
157
166
178
185
169
185
185

35, 146, 188
· 73
140
139
185
185
135
185

ret
RMPAR
rnrq_status
RSL
Run-time data base

security code
satellite
sav_dsp
sc indexs record
SEGMENT

limit per master
NOT responding message

segment_1u
segment_record
segment_remote_ordina1
segment_status
segment_status_record
segnames
segord
segptr
service branch
Session Monitor

used by DS
Set cat vars
set of remotes
SETCL

set hardware clock
set software clock

SETeR
SETDT

set configuration_flag
seven bits
seven chars
SGMTR

run-string parameters
short_segment_name
sift1 - soft8
simulating
Site Battery
Site status
site_category
site code
site name
site record
site_record_ptr
siteptr
six bits
six chars
sixteen chars
sixty_chars

INDEX. (cont.)

305

133
23

178
72, 204

196
124
166
140
xii
162
146

158, 159
157
136
164
162
142

177, 178
178
151

119
58

157
18
18
18
18

95
136
135

54
55

24, 157
125
162

73
190
123
151
151
151
151

58, 178
136
135
135
135

slash
SNAP. 6
soft_key
soft_key_labels_type
software clock, set
software version
software date
software version
space_bar
specific_name
specific_name_flag
specific_name_record
ss alarms
ss alfa
Stack
stack alloc
stack alloc size- -
Statistics .

statz file description
statz record definition
statz record
timing

status
status3 word .
statz
statz file name

- -
statz record
SUBPROGRAM • . .
SW

remote unit I/O
sw class

sw_response
SWTCH
tab
ten chars
terminal

color
initialization
message record definition
type

terminal_type
three chars
time alfa
time_array
time it
time_pro
time res
time str
time_string
time val

INDEX (cont.)

306

133
117
178
135

. 18
159
163
163
133

3, 132
151
154
162
123
165
165
122
211
207
168
139
167
126
141
168
123
139

50, 57, 96, 97

37
144
185

114, 116
133
135

125
166
145
125
157
135
178
138
167
162
162
135
135
167

timedout
tout. ,
TRAMCON

definition
TRAMCON Master Terminal (TMT)

definition
transform ordinal
Transmission Parameter

types
troposcatter
trunk
trunk id .
trunk info
trunk node
trunk record
twenty_chars
twenty_int ,
twenty8_chars
Two-state

derived
limit per category

two chars
two state record- -
two states , , .
Type 6 Program ,
unpack_response
unpacked_response
unpacked_response_record
Version number

On-Line software
version date
version nbr
wait ext
WELCOM , , .
whole x
WITH statement

INDEX. (cant.)

307

- - - ----------------------

'.

141
162

x
10
x

36

72, 152
124
129
156
157
156
156
135
138
135

188
130
135
151
153

21, 80
36, 130

185, 188
146

163
142
142
162

16, 17
166
102

FORM NTIA-29 U.S. DEPARTMENT OF COMMERCE
(4-80) NAT"L. TELECOMMUNICATIONS AND INFORMATION ADMINISTRATION

BIBLIOGRAPHIC DATA SHEET

1. PUBLICATION NO. 2. Gov't Accession No. 3. Recipient's Accession No.

4. TITLE AND SUBTITLE 5. Publication Date

Transmission Monitor and Control Software Reference June 1990

Manual 6. Performing Organization Code

NTIA!ITS
7. AUTHOR(S) 9. Project/Task/Work Unit No.

Richard N. Statz
8. PERFORMING ORGANIZATION NAME AND ADDRESS
National Telecommunications & Information Administration
Institute for Telecommunication Sciences 10. Contract/Grant No.
325 Broadway
Boulder, CO 80303
11. Sponsoring Organization Name and Address 12. Type of Report and Period Covered

U.S. Air Force
Electronics Systems Division
Hanscom AFB, MA 01731 13.

14. SUPPLEMENTARY NOTES

15. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature
survey, mention it here.)

This manual describes the functions of the TRAMCON (TRAnsmission Monitor
and CONtrol) On-Line software and the steps necessary to maintain this software.
This document emphasizes the software semantics rather than the syntax. The
structure of the software is described and the design, and development strategies
used in the creation of the software is explained. This manual is intended to
provide assistance to experienced programers who want to change or enhance the
TRAMCON On-Line software.

16. Key Words (Alphabetical order, separated by semicolons)

automated technical control; data archiving; Digital European Backbone;
microwave radio; network management; polling; pulse count; software;
TRAMCON; transmission monitor and control.

17. AVAILABILITY STATEMENT 18. Security Class. (This report) 20 Number of pages

E9 UNLIMITED. Unclassified 307
19 Secur"ity Class. (This page) 21. Price:

D FOR OFFICIAL DISTRIBUTION.

Unclassified

-aU.S. GOVERNMENT PRINTING OFFICE: 19 90 -773 - 003'11056

	XEROX-41103924
	XEROX-41103925
	XEROX-41103926
	XEROX-41103927

