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A METHOD OF BIVARIATE INTERPOLATION AND 

SMOOTH SURFACE FITTING FOR VALUES GIVEN 

AT IRREGULARLY DISTRIBUTED POINTS 

Hiroshi Akima * 

Abstract - A method of bivariate interpolation and 

smooth surface fitting is developed for z values given at points 

irregularly distributed in the x-y plane. The interpolating func

tion is a fifth-degree polynomial in x and y defined in each trian

gular cell which has projections of three data point's in the x-y 

plane as its vertexes. Each polynomial is determined by the 

given values of z and estimated values of partial derivatives at 

the vertexes of the triangle. Procedures for dividing the x-y 

plane into a number of triangles, for estimating partial deriva

tives at each data point, and for determining the polynomial in 

each triangle are described. A simple example of the application 

of the proposed method is shown. User information and Fortran 

listings are given on a computer subprogram package that imple

ments the proposed method. 

Key Words and Phrases - Bivariate interpolation, interpolation, 

partial derivative, polynomial, smooth surface fitting. 

*The author is with the Institute for Telecommunication Sciences, 
Office of Telecommunications, U.S. Department of Commerce, 
Boulder, Colorado 80302. 



1. IN TRODUC TION 

In a previous study (Akima, 1974 a, b), we developed a method of 

bivariate interpolation and smooth surface fitting. The method was de

signed in such a way that the resulting surface would pass through all 

the given data points. Adopting local procedures, it successfully sup

pressed undulations in the resulting surface which are very likely to 

appear in _surfaces fitted by other methods. Like many other methods, 

however, this method also has a serious drawback. Applicability is 

restricted to cases where the values of the function are given at rec

tangular grid points in a plane; i. e., the values of z = z(x, y) must be 

given as z . . = z(x.,y.) in the x-y plane, where i = 1 ,  2 , • • •  , Ilx and lJ l J 
j = 1 ,  2 ,  • • •  , ny" This restriction prevents application to cases where 

collection of data at rectangular grid points is impossible or otherwise 

impractical. 

The subject of the present study is bivariate interpolation and 

smooth surface fitting in the general case where the values of the func

tion are given at irregularly distributed points in a plane; i. e. , the 

case where the z values are given as zi = z(xi' yi), where i = 1 ,  2 , • • •  , 

n. Despite potentially wide applicability of a method of bivariate inter

polation and smooth surface fitting for irregularly distributed points, 

studies for developing such a method have not been active in the past. 

Two types of approaches are possible; one using a single global 

function, and the other based on a collection of local functions. In the 

former approach, the procedure ofter: becomes too complicated to 

manage as the number of given data points increases. Moreover, the 

resulting surface from the former sometimes exhibits excessive un

dulations. For these reasons, only the latter approach is considered 

in the present study. 
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Bengtsson and Nordbeck (1964) suggested a method based on par

titioning the x-y plane into a number of triangles (each triangle having 

projections of three data points in the x -y plane as its vertexes) and on 

fitting a plane to the surface in each triangle. Obviously, the resulting 

surface is not smooth on the sides of the triangles although it is con

tinuous. In addition, their suggestion for partitioning so that the sum 

of the lengths of the sides of these triangles be minimized is too com

plicated to implement. 

Shepard (1968) suggested a method based on weighted averages 

of the given z values. The basic weighting function is the square of the 

reciprocal of the distance between the projection of each data point and 

that of the point at which interpolation is to pe performed. The actual 

weighting function is an improvement of this basic weighting function in 

that-the actual function corresponding to a distant data point vanishes. 

Through this improvement the originally global procedures in this 

method became local. This method has several desirable properties. 

It takes into account the "shadowing" of the influence of a data point by 

a nearer one in the same direction. It yields reasonable slopes at the 

given data points. However, it fails to produce a plane when all the 

given data points lie in a slanted plane; this property is considered to 

be a serious drawback. 

In conjunction with variational problems containing second -order 

derivatives, Zlamal (1968) discussed an approximation procedure using 

fifth-degree polynomials in x and y over triangular regions in the x -y 

plane. To determine the coefficients of the polynomial for each tri

angle, he uses, in addition to the z values and the first and second 

partial derivatives (i. e. , z , z , z , z , and z ) at the three ver-x y xx xy yy 
texes of the triangle, three partial derivatives, each differentiated in 

the direction normal to one of the three sides of the triangle at the 
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midpoint of the side in question. The theory was generalized to 

(4m+ l)st-degree polynomials for functions m-times continuously dif

ferentiable on a closed triangular domain by Zenisek (19 70). Although 

a comprehensive interpolation method is not suggested in their papers, 

their papers were instrumental in stimulating portions of the ideas 

developed here. 

In the present study, we develop and propose a method of bivari

ate interpolation and smooth surface fitting that is applicable to z 

values giveu at irregularly distributed points in the x-y plane. As in 

the method for rectangular grid points developed in the previous study 

(Akima, 197 4  a, b), the interpolating function used in the method pro

posed in the present study is also a smooth function; i.e., the inter

polating function and its first-order partial derivatives are continuous. 

The proposed method is also based on local procedures. The surface 

resulting from the proposed method will pass through all the given 

data points. 

In this report, the proposed method is outlined in section 2, 
with some mathematical details in Appendix A. A simple example 

that illustrates the application of the proposed method is shown in 

section 3. Some pertinent remarks are addressed in section 4. In 
Appendix B, user information and Fortran listings are given on the 

ID BVIP/IDSFFT subprogram package that implements the proposed 

method. 
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2. DESCRIPTION OF THE METHOD 

In this method the x-y plane is divided into a number of triangu

lar cells; each having projections of three data points in the plane as 

-its vertexes, and a bivaricite fifth-degree polynomial in x and y is ap

plied to· each triangular cell. 

For a unique partitioning of the plane, the x -y plane is divided 

into triangles by the following steps. First, determine the nearest 

pair of data points and draw a line segment between the points. Next, 

find the nearest pair of data points among the remaining pairs and draw 

a line segment between these points if the line segment to be drawn 

does not cross any other line segment already drawn. Repeat the 

second step until all possible pairs are exhausted. 

The z value in a triangle is interpolated with a bivariate fifth.

degree polynomial in x and y, i. e. , 

z(x, y) ( 1) 

The coefficients of the polynomial are determined by the given z values 

at the three vertexes of the triangle and the estimated values of partial 

derivatives zx' zy, zxx' zxy' and z at the vertexes, t.ogether with the 
. yy 

imposed condition that the partial derivative of z by the variable meas -

ured in the direction perpendicular to each side of the triangle be a 

polynomial of degree three; at most, in the variable measured along 

the side. The procedure for interpolation in a triangle including de

termination of the coefficients of the polynomial is described in detail 

in Appendix A. Smoothness of the interpolated yalues and therefore 

s_moothness of the resulting surface �long each si4e of the triangle is 

proved also in the Append�. 
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Procedui.;es for estimating the five partial derivatives locally at 

each data point are not unique. The derivatives could be determined 

as partial derivatives of a second-degree polynomial in x and y that 

coincides with the given z values at six data points consisting of five 

data points th� projections �f which are nearest t
1
0 th� projection of the 

data point in question and the data point itself. This procedure is a 

bivariate extension of the one used in the univariate osculatory inter

polation (Ackland, 1915). Adoption of this procedure·has an advantage 

that, when z is a second-degree polynomial in x and y, the method 

yields exact results. As will be shown in section 3, however, this 

procedure sometimes yields very unreasonable results. 

We will take a different approach and estimate the partial deriv

atives in two steps; i.e., the first-order derivatives in the first step 

and the second-order derivatives in the second step. To estimate the 

first-order partial derivatives at data point P0 we use several addi

tional data points Pi (i = I, 2 , • • •  , �) the projections of which are 

nearest to the projection of P 0 selected from all data points other than 

P 0• We take two data points Pi and Pj out of the � points and con

struct the vector product of P0Pi and P0P.; i. e., a vector that is 
- - J 

perpendicular to both P 0Pi and P 0P
j 

with the right-hand rule and has 

a magnitude equal to the area of the parallelogram formed by P0P
i 

and P 0Pj . We take Pi and Pj in such a way that the resulting vector 

product always points upward (i.e. , the z component of the vector 

product is always positive). We construct vector products for all 

possible combinations of P 0Pi and P 0P
j {i /. j) and take a vector sum 

of all the vector products thus constructed. Then, we assume that the 

first-order partial derivatives z and z at P are estimated as those x y 0 
of a plane that is normal to the resultant vector sum thus composed. 

Note that, when nn = 2 ,  the estimated zx and zy are equal to the partial 
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derivatives of a plane that passes through P 0, P 1, and P 2• Also note 

that, when � = 3 and the projection of P0 in the x -y plane lies inside 

the triangle formed by the projections of P1, P2, and P3, the esti

mated z and z are equal to the partial derivatives of a plane that x y 
passes through P1, P2, and P3• 

In the second step, we apply the procedure of "partial differen

tiation" described in the preceding paragraph to the estimated zx 

values at Pi (i = O, 1, 

and zxy = (zx>y at po· 

2, .•• , �) and obtain estimates of zxx = (zx>x 
We repeat the same procedure for the esti -

mated zy values and obtain estimates of zx = (z ) and z = (z ) • y y x  yy y y  
We adopt a simple arithmetic mean of two zxy values thus estimated 

as our estimate for zxy at P0• 

The selection of nn is again not unique. Obviously, nn cannot 

be less than 2. Also, it must be less than the total number of data 

points. Other than those, there seems to exist no theory that dic

tates a definite value for nn. The best we can say is that, based on 

the example to be shown in section 3 and on some others, we recom

mend a number between 3 and 5 (inclusive) for nn. 

7 
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3. APPLICATIONS 

Using a simple example taken from the previous study (Akima, 

197 4 a, b), we illustrate the application of the proposed method. We 

take a quarter of the surface shown in the example in the previous 

study and sample 50 data points from the surface randomly. The 

coordinate values of the sampled data points are shown in table I. 

Knowing from the physical nature of the phenomenon that z(x, y) is a 

single-valued smooth function of x and y, we try to interpolate the z 

values and to fit a smooth surface to the given data points. 

Figure I depicts contour maps of the surfaces resulting from the 

30 data points with asterisks in table I, while figure 2, from all the 50 
data points in the table. In these contour maps, projections of the 

data points are marked with encircled points. In each figure, the ori

ginal surface from which the data points were sampled is shown in (a ). 
The surface fitted with piecewise planes (i. e. , the surface consisting 

of a number of pieces of planes, each applicable to one triangle) is 

shown in (b}. Of course, such a surface is continuous but not smooth. 

The surface fitted by the method that estimates the partial derivatives 

with a second-degree polynomial is shown in (c}. The surfaces fitted 

by the proposed method using three, four, and five additional data 

points for estimation of partial derivatives at each data point are shown 

in (d), (e}, and (f), respectively. In drawing these contour maps, the 

z values were interpolated by their respective methods at the nodes of 

a grid consisting of 100 by 80 squares; in each square, the z values 

were interpolated linearly. 

Figures 1 and 2 indicate that the proposed method yields reason

able results although these results might not necessarily be satisfac

tory for some applications. In these figures very little difference is 
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Table I. An example set of data points. 

( Thirty points with asterisks are used in figure I, 
while all 50 points are· used in figure 2.) 

i X· l Yi z. l i X· l Yi z .  l 

I ... 1 1. 1 6  I. 24 22.I5 26 3.22 1 6.78 39.93 •r 

2 ... 24.20 1 6. 23 2.83 27 ... o.oo o.oo 58.20 ... ... 

3 1 2.8 5 3.0 6 22. 1 1  28 ... 9.66 20.00 4.73 ... 

4 ... I9. 85 I0.7 2 7.97 29 2.5 6 3.0 2 50.55 ... 

5 ... I O. 35 4. 1 1  22.33 30 .,,_ 5.22 I4.66 40. 36 •r ... 

6 24. 67 2.40 I0.25 3I ... II. 7 7  10.47 13. 62 ... 

7 ... 1 9.7 2 1.39 1 6. 83 32 1 7.25 I9. 57 6. 43 . ,. 

8 I5.9I 7.74 I5.30 33 * I5.I O I1. I9 I2.57 
9 ... o.oo 20.00 34.60 34 ... 25.00 3.87 8.74 •r •r 

10 ... 20.87 20.00 5.74 35 I2. 13 I0.7 9 13. 7 1  •r 

1 1  6. 7 I 6. 26 30.97 36 ... 25.00 o.oo I2.00 •r 

I2 3.45 I2. 78 4I. 24 37 22.33 6. 2I I0.25 
13 ... 1 9.99 4.62 I4.72 38 II.52 8.53 I5.74 •r 

I4 I4.26 I7.87 I0.74 39 ... I4.59 8. 7 1  I4.8I . ..  

I5 ... 10.28 1 5. I6 2 1. 59 40 ... I5.20 o.oo 2I. 60 •r •r 

I6 ... 4.5I 20.00 1 5. 6I 4 1  7.54 I0.69 I9.31 ... 

17 I7.43 3.46 I8.60 4 2  ... 5. 23 I O. 7 2  26.50 ... 

I8 22.80 1 2.39 5.47 43 1 7 .  32 I3.78 I2. 1 1  
I9 ... o.oo 4.48 6I. 77  44 ... 2.I4 I5.03 53.I O •r ... 

20 7.58 I.98 29.87 45 ... 0.5I 8.37 49.43 •r 

2I * I6.70 1 9. 65 6. 3I 4 6  22. 69 I9. 63 3.25 
22 * 6. 08 4.58 35. 74 47 ... 25.00 20.00 o. 60 ... 

23 I.99 5.60 5I.8I 48 5.47 I7. 1 3  28. 63 
24 .... 25.00 Il. 87 4.40 49  .... 2 1 .67 1 4. 36 5.5 2 ... ... 

25 . ..  I4.90 3.I2 2I.70 50 * 3.3I o. 13 44.08 . ..  
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(a ) Orig inal Surface 

• 

• 

( c ) 2nd - degree - polynomial Method 

( e )  Proposed Method (4 points) 

10 • 

• 

( b) Linear Interpolation 

• 

( d) Proposed Method ( 3 points) 

( f ) P roposed Method ( 5 points ) 

5 

Figure I. Contour maps for the surfaces fitted to 30 data points 
given with asterisks in table I. 
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( a )  Origina l Surface 

(c ) 2nd-degree-polynomial Method 

( e ) Proposed Method ( 4 points) 

• 

• 

( b) Linear Interpolation 

10 • 

• 

• 

( d )  Propose d Method ( 3 points) 

( f ) Proposed Method ( 5 points) 

5 • 

Figure 2. Contour maps for the surfaces fitted to 50 data points 
given in table 1. 
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exhibited in the resulting surfaces due to the difference in the number 

of data points used for the estimation of partial derivatives in the pro

posed method. Figures l(c) and 2(c) demonstrate a peculiar idiosyn

cracy of the method based on second -degree polynomials; more data 

points yield a much worse result in this example. 

Decision as to whether or not the proposed method is applicable 

to a particular problem rests on each prospective user of the method. 

The examples given here are expected to aid one in making such a 

decision. Comparison of (d), (e), or (f) fitted by the proposed method 

with (a) the original surface or (b) the piecewise-plane surface in each 

figure should be helpful for such a decision. Also, comparison of 

figures 1 and 2 gives one some idea on the dependence of the resulting 

surfaces upon the total number of data points and the complexity of 

original surfaces. 
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4. CONCLUDING REMARKS 

We have described a method of bivariate interpolation and smooth 

surface fitting that is applicable when z values are given at points irre

gularly distributed in an x -y plane. For proper application of the 

method, the following remarks seem pertinent: 

(i) The method does not smooth the data. In other words, the 

resulting surface passes through all the given points if the 

method is applied to smooth surface fitting. Therefore, the 

method is applicable only when the precise z values are 

given or when the errors are negligible. 

(ii) As is true for any method of interpolation, the accuracy of 

interpolation cannot be guaranteed, unless the .,method in 

question has been checked in advance against precise values 

or a functional form. 

(iii) The result of the method is invariant under a rotation of the 

x -y coordinate system. 

(iv) The method is linear. In other words, if z(x., y·) = l l 

az'(xi, yi) + bz"(xi'yi) for all i, the interpolated values 

satisfy z(x,y) = az'(x,y) + bz"(x,y), where a and b are 

arbitrary real constants. 

(v) The method gives exact results when z(x, y) represents a 

plane; i. e. ,  z(x, y) = a00 + a 10x + a0 1  y, where a00, a 10, 

and a0 1  are arbitrary real constants. 

(vi) The method requires only straightforward procedures. No 

problem concerning computational stability or convergence 

exists in the application of the method. 

A computer subprogram package that implements the proposed 

method is described in Appendix B. 
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APPENDIX A 

INTERPOLA TION IN A TRIANGLE 

Assuming that the plane is divided into a nuO?-ber of triangles, we 

describe a procedure for interpolating values of a function in each tri

angle. The primary emphasis is on the smoothness of the interpolated 

values not only inside of the triangle but also on the side of it; i. e. , 

the interpolated values in a triangle must smoothly connect with those 

values in an adjacent triangle on the common side of two triangles. 

Basic Assumptions. 

Using a two-dimensional Cartesian coordinate system with x and 

y axes, we describe the basic assumptions as follows: 

(i) The value of the function at point (x, y) in a triangle is inter

polated by a bivariate fifth -degree polynomial in x and y; i. e., 

Note that there are 2 1  coefficients to be determined. 

(ii) The values of the function and its first-order and second

order partial derivatives (i. e. , z, zx, zy, zxx' zxy' and 

zyy) are given at each vertex of the triangle. This assump

tion yields 18 independent conditions. 

(iii) The partial derivative of the function differentiated in the 

direction perpendicular to each side of the triangle is a 

polynomial of degree three, at most, in the variable meas

ured in the direction of the side of the triangle. In other 

words, when the coordinate system is transformed to another 

Cartesian system, which we call the s -t system, in such a 
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way that the s axis is parallel to each of the side of the 

triangle, the bivariate polynomial in s and t representing 

the z values must satisfy 

z = 0 .  
tssss 

Since a triangle has three sides, this assumption yields 

three additional conditions. 

(A-2) 

The purpose of the third assumption is two-fold. This assumption adds 

three independent conditions to the 18 conditions dictated by the second 

assumption and, thus, enables one to determine the 21 coefficients of 

the polynomial. It also assures smoothness of interpolated values as 

described in the following paragraph. 

We will prove smoothness of the interpolated values and therefore 

smoothness of the resulting surface along the side of the triangle. Since 

the coordinate transformation between the x-y system and the s-t sys

te.m is linear, the values of zx' zy, zxx, zxy' and zyy at each vertex 

uniquely determine the values of zs' zt, zss' zst' and ztt at the same 

vertex, each of the latter as a linear combination of the former. Then, 

the z, zs, and zss values at two vertexes uniquely determine a fifth

degree polynomial in s for z on the side between these vertexes. Since 

two fifth degree polynomials in x and y representing z values in two 

triangles that share the common side are reduced to fifth-degree poly

nomials in s on the side, these two polynomials in x and y coincide with 

each other on the common side. This proves continuity of the interpo

lated z values along a side of a triangle. Similarly, the values of zt 
and zst = (zt )s at two vertexes uniquely determine a third-degree poly

nomial in s for zt on the side. Since the polyn�mial representing zt is 

assumed to be third degree at most with respect to s, two polynomials 

representing zt in two triangles that share the common side also 
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coincide with each other on the side. This proves continuity of zt and 

thus smoothne.� s of z along the side of the triangle. 

··; 

Coordinate ·sy�te
.
m Associated With the Triangle. 

We denote the vertexes of the triangle by· V 1 , V 2, and V 3 in a 

counter -clockwise order, and their respecttve· C�?rdinates in the x-y 
. .  ,. 

Cartesian coordinate syste� by (x 1,y 1
), (x2,y2.), and (x3,y3), as 

shown in figure A-l(a). We introduce a new coordinate system a:sso

ciated with the triangle, where the vertexes are represented by (0, 0 ), 

( 1, 0), and (0, 1 ) as shown in figure A- l(b). We call this new system 

the u -v system. 

The coordinate transformation between the x -y system and the 

u-v system is represented by 

where 

x = a u+ b v  + x0 

y = c u+dv+y0 , 

· :a = x - x 2 1 

Yo = Y1 •. 

The inverse relation is 

u = [ d(x-x0) - b(y-y0)] /(ad - be), 
v = [-e(x-x0) + a(y-y0)] /(ad - be). 

17 
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y 

p1 
(0,0) 

y 

------------ x 

(a) x-y system. (b) u-v system. 

s 

(c) s-t system-1. (d) s-t system-2. 

s 

(e) s-t system-3. 
Figure A-1. Various coordinate systems. 
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The partial derivatives in the x -y system are transformed to the 

u-v system by 

zv = b zx + d zy , 

z = a 2 z + 2 a c z + c2 z uu xx xy 
yy' 

zuv = a b zxx +(a d+ b c)zxy + c d zyy , 

2 2 zvv = b zxx + 2 b d zxy + d z yy • 

(A-6) 

Since this coordinate transformation is linear, the interpolating 

polynomial (A - 1) is transformed to 

(A-7) 

Since it is the p coefficients that are determined directly, as shown 

later, and are used for interpolating z values, it is unnecessary to re

late the p coefficients to the q coefficients used in (A - 1  ) . 

by 

The partial derivatives of z(u, v) in the u-v system are expressed 

s s-· 
zu(u, v) = 2: f j p.k u

j- 1 vk ' 
j= l k= O J 

4 s-· 

L f k p.k u
j vk- 1 ' 

j=O k=l J 

s s-· 
L: f j (j- 1) p.k u

j-2 �, 
j=2 k = O  J 

4 s - · 
" � "k j- 1 k-1 
.£J L J P .k 

u v , 
j=l k=l  J 

19 
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3 5-J· . 
. k 2 zvv(u,v) = � � k (k-l) p.k uJ v -

. 

j=O � J 

We denote the lengths of the unit vectors in the u-v system (i. e. , 

the lengths of sides V 1 V 2 and V 1 V3) by Lu and Lv• respectively, and 

the angle between the u and v axes by Ouv' They are given by 

Lu = a2 + c2 • 

L = b2 + d2 , v 

(} u v = tan - l ( d I b) - tan - l ( c I a) , 

where a, b, c, and d are constants given in (A-4). 

Implementation of the Third Assumption. 

(A-9) 

We represent the third assumption (A-2) in the u-v system and 

derive useful equations for determining the coefficients of the polyno

mial. We do this for three cases corresponding to the three sides of 

the triangle. 

First, we consider the case where the s axis is parallel to side 

V 1 V
2

, as shown in figure A-l(c). · The coordina;t:e transformation 

between the u-v system and the s-t system is expressed by 

where Lu, Lv, and 9uv are constants given in (A-9). Partial deriva

tives with respect to s and t are expressed by 

d l d 
ds =Lu dU ' 

cos Ouv 1 
· 

�t
= - 2-.:+ d 

a � sin Ouv du Lv sin Ouv dv ' 

20 
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respectively. From (A-:-2),-(A - 7  ), ·and· (A - ll'), we .obtain 

(A -12) 

I . .  

Next, we con�ider the cal!Je whei:e the s axis is pa
_
rallel to si

.
�e 

V 1 v3, as shown in figure A - l (d). The coordinate transformation is 

expressed by 

u = - (t - to) I (Lu sin euv> 
' 

v = [(sin ouv> (s - so>+ (cos Ouv> (t - to)] I (Lv sin 9uv> • 

Partial derivatives are expre s sed by 

d 1 (\ 
ds 

= Lv ov ' 

g__ - -
1 o . 

. cos Buv o 
dt - Lu s in Buv ou + Lv sin Buv ov • 

Then, from (A-2), (A -7), and (A -14), we obtain 

(A-13) 

(A -14) 

(A-15) 

'.Next , we cons ide r the thhd case where the· s · axis
' 
is  parallel to 

s ide v2 v3, as shown in
.
figll.re A- l(e). The coord_inate transform.ation 

is  expre s sed by 

where 

u = A (s - s0) + B (t - t0) , 

v = C (s - s0) + D (t - t0) ,  

A = sin( Ouv - Bus> I (Lu sin Buv> , 

B = - cos( Buv - Bus> I (Lu sin Buv> , 

21 
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-�.---":':-

(J = tan-1 [(d - c) /(b - a) ] - tan-1
(c / a) . u s 

The (Jus constant is  the angle between the s and the u axes. The a, b, 

c, a�d d constants are
. 
given in {A -4), and Lu, Lv' �d 8uv are given 

in (A-9). Partiai derivatives with respect to s and t are expres sed by 

(A -18) 

From (A -2), (A -7), and (A -18), we pbtain 

SA4 B p50 +A3 (4 B C+A D) p
41 +A2 C (3 B C+2A D) p

32 

+A C2 (2 B C+3 A D) p
23 + c

3 (B C+4 A D) p14 + 5 C4 D p05 = 0 

(A -19) 

Equations {A-12), (A-15), and (A -19) are the results of imple

mentation of the third as sumption { A- 2) in the u-v coordinate system. 

They are used for determining the coefficients of the polynomial (A -7). 

Determination of the Coefficients of the Polynomial. 

Obviously, we can determine the coefficients of the lower-power 

terms by letting u = 0 and v= 0 and by inserting the values of z, zu, 

zv' zuu' zuv' and zvv at v1 (i. e. , u = 0 and v = 0) in (A -7) and (A -8). 

The re suits are 

Poo = z(O, O) ' 

Pio = zu(O, 0) ' 

Pol = zv(O, 0) ' 

p
20 = z co, o) I 2 , uu . ' 

22 
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Next, letting u = 1 and v = 0 and inserting the values of z, zu, 

and zuu at V 
2 

(i . e . ,  u = 1 and v = 0) in (A-7) and the first and the third 

e quations in (A-8) , we obtain the following three e quations: 

P50 = z(l ,  O) - Poo - P10 - Pzo ' 

3P30+ 4P40+ 5P5o=zu( l , O) - p
10-2P20 ' 

6 P30 + 12 P40 + 20 P50 = zuu(l , 0) - 2 P20 • 

Solving the se e quations with re spect  to p30 , p40 , and p50 , we obtain 

p30 = (20z( l , O) - 8zu(l , O) + zuu(l , O) - 20 p00 -12 p
10- 6 p

20]/2 ,  

p40 = - l5z( l , O) + 7 zu(l , O) - zuu(l , O) + 15 p00 + 8 p10 + 3 p
20 , 

p50 = [12z(l , O) - 6zu(l , O) + zuu(l , O) - 12 p00 -
6 p

10 - 2 p
20]/2 .  

(A-21) 

Since p00 , p
10, and p

20 are already determined by (A-20) ,  we can cal

culate p
30 , p40 , and p50 from.(A-21). 

Similarly , using the value s of z, zv' arid zvv at V 3 .(i . e . , u = 0 

and v = 1) and working with (A-7) and the se cond and the last  equations 

in (A-8) , we obtain 

p03 = [20z(O , l)  - 8zv(O , l ) + zvv(O , l ) - 20 p00 - 12 p01
- 6 p02

]/2,  

p04 = - 15z(O , 1) + 7 zv(O ,  1) - zvv(O , 1)  + 15 Poo + 8 Po l+ 3 p02
, 

p05 = [12z(O , l) - 6zv( O , l) + zvv( O , l )  - I2· p00 - 6 p01 - 2 p02
]/2 .  

(A-22) 
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With p
50 and p05 

determined ,  we can determine p41 and p14 
from (A -12) and (A-15) , re spe ctively. The re sults are 

(A-23) 

Next , we use  the value s  of zv and zuv at V 
2 

(i.e .  , u = 1 and 

v = 0) with the second and the fourth equations in (A -8) and obtain 

P21 + P31 = zv(l , O) - Po l - P11 - P41 ' 

2P21 + 3 P31 = zuv(l , O) - P11 - 4P41 • 

Solving the se equations , we obtain 

P21 
= 3zv(l , O) - zuv(l , O) - 3 p01 - 2 p l l  + P41 

P31 = - 2zv(l , O) + zuv(l , O) + 2 p01 + P11 - 2 p41 

(A -24) 

Similarly, using the value s  of zu and zuv at v
3 

(i.e. ,  u = 0 and 

v = 1) with the first and the fourth equations in (A-8) , we obtain 

whe re 

Equation (A -19) is rewritten as 

g I = A 2 C (3 BC + 2 A D) , 

2 
g

2
=AC (2 BC+3 A D) , 

24 
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4 3 
h1 = - 5 A B p

50 - A (4 BC +A D) p 41 

3 4 - C  (BC+ 4 A D) p14
- 5C D p05

, 

with A, B, C, and D defined by (A-17). From the value of zvv at V 
2 

and the last equation in (A-8), we obtain 

(A -28) 

where 

(A-29) 

Similarly, from the value of Zuu at V 
3 

and the third equation in (A-8}, 

we obtain 

(A-30) 

where 

(A -31) 

Solving (A-26), (A-28), and (A-30) with re spe ct to p
22

, p
32

, and p
23

, 

we obtain 

P32 = 
h

2 - Pzz ' 

Pz3 
= h

3 - P22 ' 

(A -32) 

with g
1

, g
2

, h
1

, h
2

, and h
3 

given by (A-27), (A-29), and (A -31). 

Step-by-Step De s cription of the Procedure . 

In summary, the coefficients of the polynomial are determined 

by the following steps: 

(i) Dete rmine a, b, c, and d (coefficients for coordinate trans

formation) from (A -4).  
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(ii} Calculate partial de rivative s  zu, zv, zuu' zuv' and zvv from 

(A - 6) .  

(iii) Calculate L11 , Lv, and 6uv (cons tants associated with the u-v 

coordinate system) from (A -9). 

(iv) Calculate A, B, C, and D (coe fficients for anothe r coordinate 

transformation) from (A-17 ). 

(v) Dete rmine 18 coefficients of the polynomial from (A-20), 
(A-21) , (A-22) ,  (A-23) ,  (A-24) , and (A-25) - - in this orde r.  

(vi) Cal culate g1, g2, h
1

, h
2

, and h3 from (A-27), (A-29) , and 

(A-31). 

(vii) Determine the remaining three coefficients from (A-3 2). 

For a given point (x, y) in the triangle , one can inte rpolate the � 

value by the following steps: 

(i) Transform x and y to u and v by (A-5) with nece ssary coeffi

cients given by (A-4). 

(ii) Evaluate the polynomial for z(u: v) given in (A -7). 

Although some equations look cor:nplicated � the procedure de

sc:ribe<l here is straightforward. It can easily be irnpler:nented as a 

comp111.er subroutine . 

2 6  



APPENDIX B 

COMPUTER SU BPROGRAM PACKAGE 

User information and Fortran listings of the ID BVIP /IDSFFT 

subprogram package are given in this appendix. This package imple -

ments the method of bivariate interpolation and smooth surface fitting 

for irre gularly distributed data points J de scribed in section 2 of this 

report. It is writte n in ANSJ" Standard Fortran (ANSI, 1966). 

The package consistr: :.:•i a block-data subprogram and the follow

ing six subroutine s;  i.e., ·:DBVJF. J.TlGEOM, IDLCTN, IDPDRV, 

IDPTIP, and IDSFFT. Two su!:·.�·outine s, IDBVIP and IDSFFT, are the 

master subroutines of the package , and each interface .s with the use:i:-. 

The remaining four subroutines are common supporting subroutine s 

called by IDBVIP and IDSFFT. The ID BVIP subroutine performs bi

variate interpolation for irregularly distributed data-points ; it e stimate s 

the z value s  at the spe cified points in the x-y plane. The IDSFFT sub

routine performs smooth surface fitting; it. estimate s the z value s at the 

specified rectangular
. 
grid poh1ts in the x-y plane .:lnd generates a 

doubly-dimensione
.
d array contaj.ning the se e stimated value s .  

The package include s three common blocks ; i. e., IDGM, IDNN, 

and IDPI. Including the se corn.m.on areas: the package occupie s approx

imately 3200 locations on the CDC-6600 computer. 

When the user wishe s to call e ithe r  IDBVIP or IDSFFT subroutine 

repeatedly with identical data as parts of input data in two consecutive 

calls, he can save computation time s c onsiderably by specifying an ap

propriate mode of computation. (This mode is specified with the MD 

parameter in the call statements to be described later.) 
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User information on IDBVIP and that of IDSFFT will follow. This 

information is  followed by Fortran listings of the seven subprograms -

six subroutine s listed in alphabetical order, followed by the block-data 

subprogram. 

The IDBVIP Subroutine. 

Thi s  subroutine performs bivariate interpolation when the pro

je ctions of the data points in the x-y plane are irre gularly distributed 

in the plane. 

This subroutine is called by the following statement: 

CALL IDB VIP ( MD, NDP,XD, YD, ZD, WK, NIP,XI, YI, ZI ) 

In this call statement, the input paramete r s  are 

MD = mode of computation (must be 1, 2, or 3 ), 

= l for new XD-YD, 

= 2 for old XD-YD, new XI-YI, 

= 3 for old XD-YD, old XI-YI, 

NDP =numbe r  of data points ·(must be 4 or greater), 

XD = array of dimension NDP containing the x coordinate s 

of the data points, 

YD =array of dimension NDP containing the y coordinate s 

of the data points, 

ZD =array of dimension NDP containing the z coordinate s 

of the data points, 

WK =
·
array of dimension (2*NDP+NNP+5)*NDP+NIP 

· to be used internally as a work area, 

NIP =number of points to be interpolated at (must be 1 or

greate r ), 
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XI = array of dimension NIP containing the x coordinate s 

of the points to be interpolated at, 

YI · = array of dimension NIP containing the y coordinate s 

of the points to be interpolated at, 

where NNP is the number of additional data points use d  for e stimating 

partial derivative s  at each data point. The output paramete r is 

ZI = array of dimension NIP, where the z coordinate s 

of the interpolated points will be stored.  

The LUN constant in the data initialization statement is  the logical 

unit numbe r of the standard output unit and is,  therefore, system de

pendent. The user  must enter an appropriate number into LUN before 

compiling this subroutine . 

The value of NNP must be given through the IDNN common block. 

NNP must be 2 or greater, but smaller than NDP. In the subprogram 

package listed below, it is  set to 4. The user can change it by de claring 

COMMON /IDNN /NNP 

in his calling program and by as signing a number of his choice to NNP 

with an arithmetic a s signment statement before the call to ID BVIP. 

The call to this  subroutine with MD = 2 must be pre ce ded by an

other call to this subroutine with the same NDP value and with the same 

contents of the XD and YD arrays .  The call with MD = 3 must be pre -

ceded by another call with the same NDP and NIP value s and with the 

same contents of the XD, YD, XI, and YI arrays . Between the call 

with MD = 2 or 3 and its preceding call, the WK array should not be 

disturbed.  

Table B -1 (p. 32) shows the approximate computation time s re

quired on the CDC-6 600 computer .  
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The IDSFFT Subroutine . 

This subroutine pe rforms smooth surface fitting when the pro

je ctions of the data points in the x-y plane are irregularly distributed 

in the plane . 

This subroutine is  called by the following s tatement: 

CALL IDSFF T ( MD ,  NDP, XD,  YD , ZD: WK, NXI , NYI, XI , YI , ZI ) 

In this call statement, the input parameter s  are 

MD = mode of computation (must be 1, 2, or 3 ) , 

= 1 for new XD-YD, 

= 2 for old XD-YD, new XI-YI, 

= 3 for old XD -YD, old XI-YI, 

NDP =number of data points (must be 4 or greater) ,  

XD = array of dimension NDP containing the x coordinate s 

of the data points , 

YD = array of dimension NDP containing the y coordinate s 

of the data points, 

ZD = array of dimension NDP containing th� z coordiµa_t�� 

of the data points, 

WK =array of dimension (z�:<NDP+NNP+5)�:'NDP+ NXI�:'NYI 

to be used internally as a work are a ,  

NXI = number of output grid points in the x coordinate 

(must be 1 or greater), 

NY! = numbe r of output grid points in the y coordinate 

(must be 1 or greater), 

X I  = array of dimension NXI containing th e  x coordinate s 

of the output grid points, 

YI = array of dimension NY! containing the y coordinate s 

of the output grid points , 
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where NNP is the number of additional data points use d  for e stimating 

partial derivative s  at e ach data point . . The output parameter is 

ZI = doubly-dimensioned array of dimension (�XI, NYI), 

whe r� the interpolat�d z value s at the output grid 

points will be stored. 

The LUN const.ant in the data initialization statement is  the logical 

unit number of the standard output unit and is,  therefore , system de

pendent. The user  must enter an appropriate numbe r into LUN before 

compiling this subro11tine. 

The value of NNP must be. given -through the_ IDN:� c_ommon block. 

NNP must be 2 or greater ,  but smaller than NDP. In the subprogram 

package listed  below, it is  set to 4. The us er  can change it by declaring 

COMMON /IDNN /NNP 

in his calling program and by as signing a number of his choice to NNP 

with an arithmetic a s signment statement before the call to this sub

routine. 

The call to this  subroutine with MD = 2 must be pre ceded by an

othe r call to this subroutine with the same NDP value and with the s ame 

contents of the XD and YD arrays .  The call with MD = 3 must be pre

ceded by another call with the same NDP, NXI, and NYI value s and 

with the s ame contents of the XD, YD, XI, and YI arrays.  Between 

the call with MD = 2 or 3 and its preceding call, the WK array should 

not be disturbed. 

Table B-2 (p. 32) shows the approximate computation time s re

quired on the CDC-6600 compute r .  
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Table B-1. Approximate computation _time s required for the 
ID B VIP ·subr ·outine oh the· ·cDG-'6600· coropute·r ·. 

NDP 

' '  

20 

. ' 

30 

50 

" 

' 

:NiP 

10 -
100 

lo·oh · 

. .  

10 
100 

1000 
. ' 

10 
100 

1000 

' 

Time (seconds) - .-- ·. _J 

MD=l -MD=2 I 

0.40 0.03 
0.50 o. 12 
1. 4 1. 0 

1. 3 0.04 
1. 5 0.16 
.z,. 7 1. 4 

6. 6: 0. 05 . 

6. 8 0.24 
8. 8 2. 2 

-MD=3 

0. 02 : 

0 •. 06 
o.· 35 

0.03 
o.oi 
o. 50. 

0.04 
o. 10 
o. 70 · . , 

Table B-2. Approximate comp-iitation times required for the 
IDSFFT subroutine on the CDC-6600 computer. 

Time (se conds) 
NDP NXI�!< NYI 

MD=, l MD.=2 MD =.3 

11�:.11 0.50 0.12 0.07 
20 �3 *33 1. 1 0.70 0�40 

101�:.101 5. 8 5.4 3. 4 

11*11 1. 5 0.16 0.08 
30 33 *33 2. 1 0.85 0.41 

101*101 7.3 6.0 3.5 

11*11 6. 8 0. 22 0. 11 
50 33 *33 7.8 1. 2 0.50 

101*101 14.0 7. 3 3.7 
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SUBROU T I N E  I DBV I P I M D • NDP t X D t Y D t Z O t W K t N ! P t X ! t Y ! t Z l l  
C TH I S  SUBROUT I NE P E R FORMS B I VAR I AT E  I N T E R PO L A T I ON WHEN THF. PRO
C JEC T I ON S  OF THE D A T A  PO I N T S  IN THE X-Y P L ANE ARE I R REGULARL Y 
C D I S T R I BU T E D  I N  THE P L AN E .  
C THE I NPUT PARAM E T E RS A R E  
C �D = MODE OF COMPU T A T I ON I MUS T AE l •  2 •  OR � I • 
c ; 1 FOR N E W  xn- Y D t 
C 2 FnR O L D  X D- Y D t NEW X I - Y I ,  
C 3 FOR O L D  XD-YD t OLD X I -Y I ,  
C NOP NU� A E R  OF D A T A  PO I N T S  I MU S T  B F. 4 OR G R F. A T E R I ,  
C XD A R R A Y  OF D I ME N S I ON NDP S T OR I NG THE X C OOR D I N A T E S  
C OF T H E  DATA PO I N T S • 
C Y D  ARRAY OF D I M E N S I ON NOP S T OR I N� T H E  Y C OOR D I N A T E S  
C nF T H E  D A TA PO I N T S • 
C Z D  A R R A Y  O F  D I ME N S I ON N D P  S TOR I NG THE Z COOR D I N A TES 
C OF T HE D A T A  PO I N T S •  
C WK ARRAY OF D I M E N S I ON 1 2 *NDP+NNP+ 5 1 * N DP+N I P 
C TO B E  USED AS A WORK A R E A t 
C N I P  NU�B E R  OF I N T E RPOL A T E D  PO I N T S  
C I MUST B E  1 OR GR E A T E R > •  
C X I  A R R A Y  OF D I M E NS I ON 'N I P  S TOR ! N� T H E  X COOR D I N A T F. S  
C OF T H E  I N TE R P OL A T E D  P O I N T S ,  
C Y I  AR R A Y  OF D I ME N S I ON N I P  S TOR I NG T H E  Y COOR D I N A T E S  
C OF T H E  I N TE R POL A T E D  PO I N T S ,  
C WHE RE N NP I S  T H E  NUMBER OF A DD I T I ON A L  DA T A  PO I N T S  USED FOR 
C ES T I MA T I NG P AR T I A L DER I VA T I V ES AT E AC H  D A T A  P 0 1 N T .  T HF. VALUE 
C OF N N P  MUS T BE G I VEN THROUGH T HE I DNN CO MMON . N N P  MUST A E  2 
C OR G R E A T E R • B U T  S MA L L E R  THAN NDP o 
C THE OUTPUT PARAM E T E R  J S  
C Z I  = A R R A Y  OF D I M E N S I ON N I P •  W H E R F  T H E  Z COORD I N A TE S  
C OF T HE I N TE RPOLA T ED P O I N T S  A R E  TO B E  D I S P L A Y E D .  
C T H E  L UN CON S T AN T I N  T H E  D A T A  I N I T I AL I ZA T I ON S T A T EM E N T  I S  T H E  
c LOG I CAL UN I T  NUMB E R  O F  T H E  S TA N D A R D  OU T P U T  UN I T  A ND r s .  
C THE R E FO R E • S Y S T E M D E P E N D EN T .  
C D E C L A RA T I ON S T A T E M E N T S  

D I M ENS I ON x o 1 1 0 1 . Y o 1 1 0 1 , z o 1 1 0 1 . wK 1 1 noo 1 . 
1 X l l l O l t Y l l l O l t Z l l l O I  

COMMON / I DN N / N NP 
COM�ON / I DGM / N DPC t N N P C t N T t NL 
COMMON / I D P l / N CF t l C F  
EQU I VA LE N C E  I F N.DPO , NDPO I •  I F N D P PV • NDP PV I •  

1 I FNNPO t NN P O ) t l FN N P PV t N N P PV l t  
2 I FN I PO t N I P O l t l FN I PP V t N I P PV l t  
1 I FN T t N T l t l FNL t N L I 

D A T A  LUN / 6 /  
C SE T T I NG O F  SOME I NPUT P A R AM E T E R S  TO LOCA L V A R I AB L E S .  I ALL MD I 

1 0  MDO=flAD 
NDPO=NDP 
NDPC=NDPO 
N I P O= lll J P  
N N P O = N N P  
N NPC=NNPO 

C E R RO R  CHE C r . I A L L  MD I 
2 0 I F I MO O o L T o l • OR . MOO . GT . 3 1 GO T O  9 0  

I F I NDPO o LT o 4 1  GO T O  9 0  
I F I N I PO e L T o l l  GO TO 90 
I F I NNPO . L T . 2 . 0R . N N P O . G E . NDPO I GO T O  90 
I F I MDO o NE o l l GO TO 2 2  

2 1  WK l l l = FNDPO 
WK l 2 1 = FNNPO 
GO TO 24 

2 2 FNDPPV =WK l l l 
FNNPPV=WK l 2 1 
I F I NDP O o N E o NDPPV I GO JO 90 
I F I NNPO . N E . NNPPV I GO T 0 · 90 

33 . 

I A !  0 0 1  

I A  I 0 0 ?  
I B I  0 0 3 

I B I  0 0 4  
I P. I  n o c;  
I B  I 0 0 6  
I A I l"l f\ 7  
I A  I" O O f>  
I A  I 0 0 9  
I A  1· 0 1 0  
I A I  0 1 1  
I A !  0 1 2  
I A !  0 1 3  
I B I  0 1 4  
I A I  0 1 5  
I P.  I n 1  I'. 
! B l  0 1 7  
I B I  0 1 R  
I A !  0 1 9  
! A I  0 2 0  
! A I  0 2 1  
! B l  0 2 2  
! B l  0 2 3  
I B  I 0 2 4  
! A l  0 2 5  
I B I  0 2 6 
I B  I 0 2 7 
! B l  0 2 8  
I A  I 0 2 9  
I B  I 0 3 0  
I B I  0 3 1  
I B I  0 3 2  
I B I  0 3 3  
! B l  0 3 4  
! A l  n 1 i;  
! B I 0 3 6  
I B  I 0 � 7  
I R I  n � a  
J A i  0 1 9 
I A  I 0 4 0  
I B I  0 4 1 
! A I  04 2 
I B  I 0 4 3  
I A  I 0 4 4  
! B I  0 4 5  
I A  I 0 4 6  
J A i  0 4 7  
I B  I 0 4 8  
! B l  0 4 9  
I A  I 0 5 0  
I A  I 0 5 1  
T A I O 'i ?  
I P. I  O 'i 1  
I B  I 0 5 4  
I B I  0 5 5  
I B I 0 5 6  
I B I · 0 5 7  
I B  I 0 58 
I A  I 0 59 
I B  I 0 60 
I B I  0 6 1  
I B I  062 
I B J . 0 6 3  
I B  I 0 64 
I A  I 0 6 5  



I F I MOn . NF . 3 1 
2 3 FN I PP V =Wf( l 3 1 

I F I N I PO . M E • N I PPV I 
GO TO 30 

;> 4 WK l 3 1 = F"l l PO 

GO T O 74 

GO TO qo 

C A L LOCA T I ON OF STORAGE A R E A S  IN T H F  �K A R R A Y .  I A L L  MD I 
3'1 "IDNDM l =NOPO * I NDP0- 1 1 

I W I P T : 7 
I W I Pl. = I W I P T + N DN D� l 
I W I P�= I � J PL +NDND� l 
I WPD = I W I PN+NDP O*NNP O 
! W I T = I WPO +NDP0 * 5  

C D I V I DES T H E  X-Y PLANE I N TO A NUM B E R  O F  T R I AN G L E S  A N D  
C D E T E RM I NES NNP PO I N TS N E A R E S T  EACH D A T A  PO I N T , I MD= l l 

40 I F I MD . GT e l l  GO TO 4 2  
4 1  C A L L  I DGFOM I X D t YD , WK I I W I P T l , WK l l W ! PL l • WK I I W I PN l l 

WK l 5 1 = F N T  
WK l 6 1 = F N L  
lt O  T O  5 0  

42 FNT =WK l 5 1  
FNL =WK C Fi I 

C E S T I MA T ES PAR T I AL DER I VA T I V E S  A T  A L L  OA T A  PO I N T S .  I AL L  MD I 
� O  C A L L  I DPORV I X D , YD t ZD t WK l l W I PN l t WK l l W PD l l 

C L OC A T E S  AL L I N T E RPOLAT E D  PO I NT S .  I MO= l � ? I 

6 n I F I MDo . EQ . � I GO TO 70 
JW I T= I W I T - 1  
DO 6 1  l l P= l • N I PO 

JW I T =JW ! T+ l  
CALL I O L C T N I X D t YD t WK l l W I P T l t WK l l W I PL l t  

1 X l l I I P l t Y i l l I P l t WK I JW I T l l 
Fi l  CON T I NUE 

C I N TERPOL A T I ON OF T H E  Z I VALUE S .  I AL L  M D I 
70 NCF=O 

I CF =O 
J W I T = I W I T- 1 
DO 7 1  I I P= l • N I PO 

JW I T =JW I T+ l  
CALL I DPT I P I X D t YD t ZD , WK I I W I P T J • WK I I W I PL l t WK l ! WPD I • 

1 WK I JW I T l • X l l I I P l t Y I I I I P l • Z l l I I P l l 
7 1  CON T I NU E  

C NORMAL EX I T 
8 0  R ET U R N  

C E R ROR E X  I T  
90 WR I T E  I LUN • 2 090 l MDO • NDPO t N I PO t NN PO 

R E T URN 
C FORM A T  STA T EMEN T FOR F RROR M ESSAr.F 

2 090 FORMAT l 1 X /4 1H *** I MPROPER I NP U T P A RAME T E R  VALUE I S I . / 
1 7H MD = • l 4 t lO X , 5HNDP = • l 6 • 1 0 X o 5 HN I P  = • 1 6 •  
2 1 0 X o 5HNNP = • 1 6 /  
3 3 5 H  E RROR DETEC T E D  I N  ROUT I N E  

END 
I DB V I P / l 

SUBROU T I N E  I DGEOM I XD t YD t l P T t l PL o l PN J  
C T H I S SUBROU T I NE D I V I DE S  THE X-Y P L A N E  I N TO A NUMBER OF 
C T R I ANGULAR AREAS ACCORD I NG TO G I V EN DA T A  PO I N TS I N TH E  PLANE • 
C DE T E R M I NES L I NE S EGME N T S  T H A T  FORM T HE B O R D E R  OF DATA AR EA • 
C DE TERM I NES T H E  T R I ANGLE NUM B E R S  C O R R E S PO ND I NG TO THE BORDER 
C L I NE SEGMENTS • AND S E L E C T S  S EVERAL DA T A  PO I N T S  THA T ARE 
C NEA R E ST T O  EAC� OF THE DATA PO I N T S .  
C A T  COMPL ET I ON •  PO I N T  NUM B E R S  OF THE VER T FX ES O F  EACH T R I ANGL E 
C A R E  L I S T E D  COUN T E R-CLOCK W I SE •  PO I N T  NUMBE R S  OF T H E  END PO I N TS 
C OF EACH BORDER L I NE SE GM E N T  A R E  L I S TED COUN T E R-CLOCKW I SE •  
C L I S T I NG ORDER OF T H E  L I N E  SEGM E N T S  B E I NG COU N T ER-CLOCKW I SE .  
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I A  I A (, (., 
I R  I 0 (., 7  
! B l  '1 6 8  
I R  I 0 6 9  
I R I  '1 7 0  
I A  I 0 7 1  
I A  I n 7 2  
I R  I o n  
I A !  0 7 4 

I P  I 0 7 ")  
! R I  0 7 �  
I R  I 0 7 7  
I B I  0 7 8  
I B  I 0 7 9  
! B l 0 80 
! B l  08 1 
! B l  0 8 2  
I R I  0 8 3  
l l H  0 8 4 
! R I 0 8 �  
! R I  0 8 (.,  
! B I  0 8 7  
I B I  0 8 8  
I B  I o s q  
! B l  Q q O  
! B l  o n 
I B I  0 9 2  
I B I 0 9 3  
! B l  094 
I A I  oq5 
I B I  o q6 
IA I Q q 7  
I fl I Qqfl 
I R I  o q 9  
I B I  1 00 
I B I  1 0 1 
I B I  1 0 2 
! B l  1 0 3  
I B I  1 04 
I B I  1 0 5  
I B  I 1 06 
I A !  1 0 7 
I B I  1 08 
I B I  1 09 
I B I  1 1 0 
I A !  1 1 1  
I B  I 1 1 2  
I B I  1 1 3  
I B I  1 1 4 
I B I  1 1 5  
I B I 1 1 6  

I GM 0 0 1  
I GM 0 0 2  
I GM 0 0 3  
! GM 004 
I GM 0 0 5  
I GM 0 06 
I GM 0 0 7  
I GM 0 0 8  
I GM 009 
I G M  0 1 0  
I GM 0 1 1  



C THE I NPUT PARAM E T E� S  A R E 
C X D t YO = A R R A Y S  STOR I NG T HE X A N D Y C OORD I NA T E S • R E SP • •  
C O F  DA T A  PO I N T S .  
C THE OUTPUT P A RAME T E R S  A R E  
C ! P T  = A R R AY OF D I ME NS I ON 3 *N T t WH F R F  THf PO I N T  NUM A E R S  
C OF THE VE R T E X ES OF T HE I I T I TH T R I A NGLF A R F  TO R E  
C D I SP L A Y E D  A S  THE 1 3* I T-2 1 ND •  1 3 * 1 T - 1 1 S T • AND 
C 1 3 * I T I T H E L E M EN T S ,  I T= l • 2 • • • • • N T • 
C I PL A R R A Y  OF D I ME N S I ON 3 *NL • WHE R E  THE PO I N T  NUM R F. R S  
c 
c 
c 
c 
c 
c 

OF THE E N D  PO I N T S  OF T H F  I J L I T H  R O R nFR L I N E  
SEGM E N T  A N D  I T S R E SP E C T I V E  T R I ANGL E NUMBER A R E 
TO BE D I S P L A Y E D  AS T H E  1 3 * I L- 2 1 N D •  1 3 * I L- 1 1 S T •  
AND 1 3 * 1 L I T H E LE M E N T S •  I L = l • 2 • • • • •  N L • 

I PN = AR R A Y  OF D I ME NS I ON NDP*N N P • W H E R E  THE PO I N T  
NUMB E R S  O F  N N P  D A T A  PO I N T S  N F A P E S T  T O  EACH OF 

( THE � A T A  PO I N T S  A R E  TO RE D I S P L A Yf D • 
c WHE RE NOP I S  THE TOTAL NUMB E R  OF DA T A  PO I N T S . NNP r s  T H E  
C NUM B E R  O F  D AT A  PO I N T S  N EA R E S T  TO E AC H  D A T A  PO I N T • N L  I S  
C TH£ NUMB £R OF BORDE R L I NE SEGME N T S . A N D  N T  I S  THE NUMB E R  
C O F  TR I A NGL E S .  N O P  AND N N P  A R E  G I VEN TO T H I S  SUBROU T I N E  
C T HROUGH THE I DGM COMMON . N L  AND N T  A R E  CALCULAT ED B Y  TH I S  
C SUti ROUT I N E AND A R E  L E F T  I N  T HE I DGM COMMON A T  COMPL E T I O N .  
C D E C L A RA T I ON S T A T E M E N T �  

D I MENS I ON X D l 1 0 ) t YO l 1 0 1 • I P T l 1 00 ) t [ PL l 1 0 0 ) t [ PN l 5 0 1 
COMMON / I DGM / NOP , NN P , N T , NL 
EQU I VA LE N C E  I OSQ l t I OS Q l ) • I DSQ2 • I O SQ 2 ) • < 0SQM • ! OSQM ) 

C PR E L I M I NA R Y  PROCESS I NG 
l n  NDPO=NDP 

NOP M l =NOPn- 1 
N N P O = N N P  
N N P M l = N N P 0 - 1  

C D E T E R M I N ES T HE N E A R E ST N N P  POI N T S . 
2 n  DO 2 9  I P l = l t N OPO 

X l = X O I  I Pl I 
Y l = Y D I  I P l l  
J l M X = I P l • N N P O  
J l MN = J l M X-NNP M l  
DO 2 8  J l z J l MN t J l M X  

J2 M X = J l - l  
I DM N = O  
DO 2 7  I P 2 • l • ND P O  

I F l l P 2 o EQ. I P l l GO TO 2 7  
I F I J l o G T . J l MN I GO T O  2 ?.  

2 1 D S Q 1 = 1 X D I I P2 1 -X l l ** 2 + 1 YO l l P2 1 - Y l l ** 2  
I PT I I P2 hd DS Q l  

2 2 
2 3 

2 4 

7 5  
2 6 

GO TO 2 3  
I DS Q l = I P T I I P 2 l 
I F (  I D MN o EQ o O  I 
I F I DSQl o G E o DSOMN I 
I F I J l MN o G T o J 2 M X I 
DO 2 5  J 2 = J l M N t J 2MX 

I F l l P 2 o EQ . I PN I J2 1 1  
CON T I NU E  
DSQMN= D S O l  
I DMN= I P2 

CON T I NU E  
I PN I J l l = I DPAN 

78 CONT I NUF 
2 9 CON T I NU E  

GO T O  24 
GO T n  2 7  
GO T O  2 6  

GO T n  2 7  

C L I S T S . A L L  THE POS S I B L E  L I N E  SEGM E N T S  I N  T H E  I P L ARRA Y ,  
C CALCU L A T ES T H E  SQUARE S O F  T H E  L I N E  SEGM E N T  L ENGTHS • AND STORE 
C THE M IN T H E  J P T A R R AY .  

3 0  IL = O  
DO 3 2  I P l = l • ND P M l  . 

X l = X D I  ! P l I 
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I GM fl ! ?  
I GM O J  3 
I GM 0 1 4  
I G "4  0 1 5  
I GM 0 1 6  
I GM 0 1 7  
I GM 0 1 11  
! GM O l q  
! GM 0 2 0  
I GM 0 2 1  
I GM 0 2 7  
I GM 0 2 3  
[ GM 0 2 4  
! GM 0 2 <;  
I CiM 0 2 6  
I GM 0 2 7  
[ r;M 0 2 8  
I GM 0 2 Q 
I GM 03 0 
I GM 0 3 1  
I GM 0 3 2  
I GM 0 3 3  
! GM 0 3 4  
I GM 0 3 5  
I GM 0 3 6  
I GM 0 3 7  
! GM 0 3 8  
! GM 0 3 Q  
!(i M  0 4 n 
I GM 0 4 1  
! GM 0 4 2  
I GM 04 3 
I G M  0 4 4  
I GM 0 4 5  
I GM 0 4 6  
I GM 0 4 7  
! GM 0 4 8  
I GM 049 
I GM 0 5 0  
I GM 0 5 1  
I GM 0 5 2  
I GM 0 5 3  
I GM 0 5 4  
I GM 0 5 5  
! GM 0 5 6  
I GM 0 5 7  
I GM 0 5 8  
I GM 0 5 9 
I GM 060 
I GM 0 6 1  
I GM 0 6 2  
I GM 0 63 
I CiM Ofi4 
I GM 0 6 5  
I GM 066 
IGM 0 6 7  
I GM n 68 
I GM 0 6 9  
I GM 0 7 0  
I GM 0 7 1  
I GM 0 7 2  
! GM 0 7 3  
I G M  0 7 4  
! GM 0 7 5  
I GM 0 76 



Y l = Y O I  I Pl I 
I P J P 1 = I P 1 + 1 
DO 3 1  I P 2 = 1 P l P l t N DPO 

I L = I L + l  
I L  T 2 =  I L + I L  

I P L I I L T 2 - l l = I P 1  

I P L I I L T 2 1 = I P 2 
D S Q l = I X D I  I P ? l - X l  1 * * 2 + 1 Y D I  I·P..2 1 - Y l  1 * * 2  

I P T I  T L l = I D S 0 1  

3 1  CONT ! N l l F  
1 2  CON T I N U f  

NL O = I L  
C SOR T S  T H E  I P L AND I P T  A R R A Y S  I N  A S � E N O I N G  OR D E R · O F  T HE L I N E  

C SfGME N T  L E N G T H  I D I S TA N C F I .  

"1 5  N L M l = N L f'l - 1 

DO 3 7 I L l  = 1 • "l L M l  
I DSQ l = I P T I  I l l  I 
I L M =  I l l  
O S QM = D SQ l  
l l 2 M N= l l l + l  
D O  3 6  I L 2 = 1 L 2 MN t N L O  

I D SO ? = J P T I J L2 1 
I F I D SO? • G E . D SOM I Gn Tn 3 6  

I L M= J L ?. 
DS OM= D502 

3 6  C ON T I NU E  
J P T  I I LJ-1 ) =  I DSOl 
I P T I  I l l  > = I DSQM 
J L 1T 2= J L 1  + I L I  
I L M T 2 = I LM+ I LM 
I T S= I PL l l L 1 T 2 - l l 
I PL I J L J T 2 - l l = I P L I J LM T 2 - l l 
I PL C J L M T ? - 1  I = I T S  
I T S= I PL ( I l l  T 2  I 
I PL l l L 1 T 2 1 = I P L I J LM T 2 1 
I PL I  J LM T 2 1 = J T S 

3 7 " C ON T J NUE 

. . .  . � .  

C E L I M J �A T E S  L I N E S EGME N T S  T H A T  CROSS O R  L I E  OVER SHOR T E R  ON E �  
4 0  I LO = l 

DO 46 J L 1 = 2 • N L O  
I L 1 T 2 = I l l + I l l  
I P l = I PL C  I l l T 2 - l l 
I P2= I PL I  I l l  T 2 I 

X l = X O I J P l l 
X 2 = X D I I P2 1 

Y l =Y D I  J Pl I 
Y2=Y D I J P2 1 

DX2 1 = X ;>- X l 
DY2 l = Y2-Yl 
DO 4 5  I L 2 • l • I LO 

I L 2 T2 = I L 2 + 1 L 2 
J P 3= J PL I  I L 2 T 2- l I 
I P4::z J PL I  I L 2 T2 1 
X3 = XO I J P 3 I 
X4zXO I J P4 I 
Y3 =Yn l J P3 I 
Y4 = YD I J P4 1  
DX 43=X4-X3 
OX 42•X4-X2 
OX 4 l • X4-X l 
llX 3 2• X3-X 2 
OX 3 l = X3 - X l  
DY4 3 = Y4-Y3 
OY4 2 • Y4-Y2 
OY4 1 • Y4-Yl 
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I G" fl 7 7  

I Ci �  n 7f� 

! <i M () 7 Q  

I Ci '' o a o  
JCiM () A l 

I G M O A ;>  

! G M 0 8 3  
I C,M O R I• 

T r;  v '"� c, 
I r,M '1 A f,  
I G M  ()fq 
I G '-' O A P.  
! GM U R Q  

I <iM ('IQ() 
I <i M 0 9 1  
I C1M O Q 2 
I G,_. O Q "I  

I Ci "' 0 9 4  

I c;,_. 0 9 'i 
I C,M 0 0 6  
I GM 0 9 7  
I GM 0 9 A 
I GM QQQ 
I GM 1 0 0 
I GM 1 0 1 
! GM 1 0 2 

I f.M 1 0 '.' 
I CiM 1 0 4 
I CiM J O 'i 
I GM 1 0 6 
I GM 1 0 7  
I G M  ·1 0 8 
l f.M 1 0 9 
I GM 1 1 0  
I GM 1 1 1  
J CiM 1 1 2 
J Ci,.. l l "I  
I GM 1 1 4 
I CiM 1 1 5  
I c;,_. l 1 6  
J GM 1 1 7  
J GM 1 1 8  
J GM 1 1 9 
I GM 1 2 0 

J G� 1 2 1  
J (;M l 2i' 
! GM 1 2 3  
J G114 1 2 4 
I GM 1 2 5  
I GM 1 2 6 
I GM 1 2 7  
J GM 1 2 8 
J GM 1 2 9  
I GM 1 3 0 

I GM 1 3 1  
I GM 1 3 2  
I GM 1 33 
I GM 1 3"4 
I GM . 1 35 
J <;M 1 3 6  
J(; M  t :. 7  
I GIW 1 38 
IGM 1 3 9  
I GM 1 40 
I GM 1 4 1  



rW 3 2 = Y3 - Y 2  
DY 3 l = Y3 - Y l  
I F I I P 3 . NE . I P 1 1 GO TO 4 1  
I F I DY4 l *DX 2 1 -D X 4 l *D Y2 1 . N E . o . n > G O  T O  4 5  
J F I DX 4 l * DX ? l +DY4 l *DY2 1 1 4 5 t 45 t 4 6 

1• 1 I F I I P4 e NE . I P 1 . I  GO TO 42 
I F I D Y 3 l * DX 2 1 -D X 3 l * DY 2 1 . N E . o . o >  G O  To 4 5  
I F I DX 3 l*D X 2 1 +n v � 1 •n v 2 1 1 4 'i t 4 "i t 46 

4 2  I F I J P 3 . N E o I P2 1 G O  T O  4 3 
I F I D Y 4 2 *D X 2 1 -D X 4 2 * D Y2 1 . N E . n . o > G O  To 4 5  
I F I D X 4 2 * DX 2 l + D Y 4 2 • D Y 2 1 1  4 6 t 4 5 t 4 5 

4 3  I F I I P4 o N E o l P 2 1  GO T O  4 4  
I F I D Y 3 2 * D X 2 1 - D X 3 2*DY 2 1 . N E . O . O I G O  T O  4 5  
I F I D X 3 2 * D X 2 l +D Y 3 2 *DY2 1 1  4 6 • 4 'i • 4 5  

4 4  I F l l n Y3 l *DX 2 1 - D X 3 l *D Y2 l l * I D Y4 l *D X 2 1 - D X 4 l *DY 2 1 1 . C.F. . O . O I 
l G O  TO 4 'i  

I F I  I D Y3 l * D X 4 3 - D X 3 1 * D Y 4 3 1 * 1 D Y 3 2 * 0 X 4 3 - D X 3 2 * D Y 4 3 1 . L T . O . O I 
l G O  To 46 

4 5 CONT I NUF. 
I L O = I LO +l 
I L O T 2 = I LO + I L O 
I PL I I L O T 2 - l  I. =  I P l  
I PL I I L O T 2 1 = I P ? 

46 CON T I N UE 
N L O = I L O  

C RE- SOR T S  T HE I P L A R RA Y I N  A SCEND I NG O R D E R  O F  I T S E L EMEN T S .  
"i O  N L T 2 = N L l'l + N L O  

NLIVl 1 T 2 = NL T 2 - 2  
DO 5 4  I L 1 T 2 = 2 o NL M l T 2 t 2  

I LM T 2 = I L l T 2 
I PM l = I PL l l L M T ? - l l 
I PM2 = I PL I  I L M T 2 1 
I L 2T 2M= I L 1 T 2 + 2  
D O  5 3  I L 2 T 2 = I L 2 T 2 M • NL T 2 t 2  

I P 2 l = I PL I I L 2 T 2- l l 
I P 2 2 =  I PL I  I L 2 T 2  I 
I F I I PM 1- I P2 1 1 5 3 t 5 l t 5 2 

5 1  I F I I PM 2- I P 2 2 1  5 3 , 5 3 , 5 2 
5 2 I L M T 2 =  I L 2 T2 

I P M l = I P 2 1  
I P IVl2 = I P 2 2  

'i 3  . CONT I M U F  
I PL I I LM T 2 - l l = I PL l l L 1 T 2 - l l 
I P L I  I LM T 2 1 = I P L  l l L l T 2 I 
I PL I  I L 1 T 2 - l  l = I PM 1 
I PL I I L l T 2 1 = I PM 2  

54 . CON T I NUE 
C DE TE RM I N E S  T R I ANGL E S .  

6 n  I T = O  
N LM l = N L n - 1 
NLM2 = N L fl - 2  
DO 6 7 1 L l = l • NL M 2  

I L l T ? = l l l + I L l 
I P l = I PL I I L 1 T 2 - l l 
I P2 = I PL l l L 1 T 2 1 
I L l P l = I L l + l 
DO 6 6  I L 2 = 1 L 1 P l t NLM l 

I L 2 T 2 = I L2 + I L 2 
J F l l PL l l L 2 T 2 - l l . NE . I P 1 1 GO T O  6 7  
I P 3 = I PL I I L ? T 2 1 
I L 2 P l = I L 2 + 1  
D O  6 2  I L 3 = I L 2 P l • N L 0  

I L 3 T2 = I L 3 + I L 3  
I F I I PL I  I L 3 T 2 - l l - I P2 1  6 2 t 6 l t 6 6 

6 1 I F I I PL I I L 3 T2 1 - I P 3 1  6 2 t 6 3 t 6 6 

3 7  

I G"" 1 4 ?  
[ GM 1 4 3  
I G�' 1 4 4 
' ""' l 4 "i  
I G "'  1 46 
[ r;  ... 1 4 7  
[ GM l 4 A 
f(ilVI l 4Q 
I GM 1 r:; O  
I GM 1 'i l 
I GM 1 5 2 
I GM l 'i 3 
I GM 1 5 4 
I GM l 'i "i  
I GM 1 56 
I G'-' 1 5 7  
I liM 1 5 A 
[ GM 1 5 9 
I GIVI 1 6 0  
I G "'  1 6 1  
I GM 1 6 2  
J GM 1 6 3 
! GM 1 6 4 
I GM 1 6 'i  
I G"' 1 66 
I GM l o 7 
I GIVI 1 6 8 
[ (,!VI 1 6 Q 
I GIVI 1 7 0 
[ GM 1 7 1  
I G"" 1 7 ? 
I G"" 1 7 � 
I GM 1 74 
I GM 1 7 5 
I GM 1 76 
I GM 1 7 7 
I GM 1 7 8 
I GM 1 79 
I GM 1 8 0  
I <W 1 8 1  
I GM 1 R 2  
I GM 1 8 3  
I GM l R 4 
I GM 1 8 5  
I GM 1 8 6 
I GM 1 8 7 
I GM 1 8 8  
I GM 1 A 9  
I GM 1 9 0 
I liM 1 9 1  
I GM l q ?  
I GM 1 Q 3  
I GM 1 Q4 
I GM 1 9 5  
I GM l q6 
I G M  1 q 7 
I GM 1 9 8  
I G M  1 9 9  
I GM 2 00 
I GM 2 0 1  
I GM 2 0 2  
I GM 2 0 3  
I GM 2 0 4  
I GM 2 0 5  
I GM 2 0 6  



f.. 2 CON T I NU E  
G O  To 66 

6 3 I P T l = I P l 
I P T 2 = I P 2 
I P T "l = I P3 
I F I C YD I I P  T 3 I - YD C I P  T l  I I *  C X f) C I P T  2 )- X D C  I P  T l  I I -

1 I X D l l P T 3 > -X D C I P T l l l * I Y D ( I P T 2 l - Y D C I P T l l l o G E . O . O l 
2 Gn TO 64 

I T S = I PT 2  
! P l ? = ! P T ':\  
I P T 3 = I T S 

f..4 X l = XD C I P T I I 

6 5 

66 

X 2 = Xf) I I P T 2 1  
X 3 = XD l l f> T 3  l 
Yl =YD I I P T I  l 
Y2 = Y n l  J P T 2  I 
Y 3 = Yn l I P T 3 1 
DX 3 2 = X 3 - X 2  
DX 2 l = X 2 - X l 
DX l '.'l = X l - X 3  
D Y 3 2 = Y3- Y 2  
DY 2 1 = Y2 - Y l  
DY 1 3 = Yl -Y 3  
DO 6 5  I PO= l • N D P O  

I F l l PO o EO o l P T l o OR . I PO o f O . I PT ? . �P · I PO o EO o l P T 3 l 
GO TO 6 5  

X n = XD I ! P O I 
Y o = YD I I P O I 
I F l l Y0- Y i l *D X 2 1 - I XO-X l l *D Y2 l • L T . 0 . 0 ) 
I F l l YO-Y2 l *D X 3 2- I XO-X2 l *DY 3 2 . L T . O . O I 
I F l l YO - Y 3 l *D X 1 3- I XO- X 3 l *D Y 1 3 . G E o 0 o 0 l  

CON T I NU E  
I T = I T + l 
I T T 3 = I T* 3  
I P T I  I T T 3 - 2 1 = 1 P T l  
I P T l l T T 3 - I l = I P T 7  
I P T I I T T 3 1 = I P T 3  

CON T I NU E  

GO T O  6 5  
G O  T O  6 5  
G O  T O  6 6  

6 7  CON T I NUE 
N TO= I T  
N T = N T O  

C S E L E C T S  A N D  SOR T S  L I N E  S EG M E N T S  T H A T  F O R M  T HE BOR DER . 
70 I L O"'O 

71 
72 

1 
7 3 

DO 75 I L I = l • N LO 
I L I T 2 = 1 L l + l l l 
1 P l = I PL l l L 1 T 2 - l l 
I P 2 = I PL ( I L I  T 7. I 
X l = X D C  I PI I 
Y l = Y D I  I P I I 
X 2 = X D I I P2 l 
Y 2 = Y D I I P2 1 
D X 2 l = X 2 - x 1 
DY2 l =Y 2 - Y l  
DO 7 1  I PO = l • NDPO 

I F I I Po . EO o I P l . OR . I PO o EO . I P 2 l G O  TO 7 1  
S= I YD I I PO l -Y l l * OX 2 1 - I X D I I P0 l -X l l * DY 2 1  
I F I S . N E a O a O I GO T O  7 2  

CO�IT I N U E  
I POMN= I P n + l  
DO 7 3  I PO = I P OMN t NDPO 

I F C I Pn . EQ . I P l a OR . I P O o E O o l P 2 l  GO T O  7 3  
I F I C C YD I I P O l -Y l l *DX 2 1 - I XD I I PO l -X l l *DY 2 l l •S . LT a O a O I 

GO T O  7 5  
CON T I N U E  

38 

I GM 7 0 7  
I GM 2 0 P.  
I r. "1  7 0 9  
I G"1 2 1 0 
I GI" 7 1 1  
I GM 2 1 2  
! GM 2 1 3 
I GM 2 1 4 
I <;M 2 1 5  
ICiM 7 1 6  
I (",M 7 1 7  
I r. ""  7 1 A 
I G"" 2 1  q 
I GM 7 7 n 
I GY 2 2 1  
H i'-' 7 2 2  
I G ._.  2 7 '1  
I ii'" ? 2 4  
I ii'-' 2 7 c;  
I GM 2 2 6  
I c; M  2 7. 7  
1 c;111 2 2 8  
I<i '-'  2 2 9  
I GM 2 3 0  
I GM 2 3 1  
I GM 2 3 7  
I r.M ?:I '\  
I GM 2 3 4  
I GM 2 3 5  
I GM 2 3 6  
I G M  2 3 7  
I G M  2 3 8  
I GM 2 3 9  
I GM 2 4 0  
l <i 'A 2 4 1  
I <i M  7 4 7.  
I G" 2 4 "1  
I Gl\1 2 4 4  
I GM 2 4 5  
l <iM 2 4 6  
I GM 2 4 7  
I GM 2 4 8  
I GM 249 
I GM 2 5 0 
I Ci M  2 c; 1  
I G M  2 5 7  
I <iM 2 c; '\  
I GM 2 c; 4  
I CiM 7 c; c;  
I GM 2 5 6  
l <i M  7 c; 7  
I GM 2 5 8  
I GM 2 5 9 
l <iM 260 
J GM 2 6 1  
I GM 2 6 2  
l (iM 2 6 3  
I GM 2 64 
J GM 2 6 "i  
I GM 2 6 6  
I GM 2 6 7  
I GM 2 6 8  
I GM 2 6 9  
! GM 2 70 



I L O = I L O + l  
I L OT 2 = I L O + I L O  
I F I S . L T . n . 0 1  r,o T o  74 
I Pl.  I I L O T 2 - l I =  I P l 
I PL l l L O T 2 1 = I P 2  

G O  T n  7 5  
7 4  I PL I I L O T 2 - l l = I P 2 

I PL I I L O T 2 1 = I P l  
7 5  CON T I N UE 

N L O = I L O  
N L M l =NL0 - 1 
DO 79 I L 1 = 2 • N L � l  

I L l  T 2 =  I L l +  I L I  
I P 2 = I P L  I I L I  T ? - 2 I 
I F I I PL I I L l T 2 - l l o E O a I P ? I  GO T O  79 
I L 1 P l = t l 1 + 1  
D O  7 1  I L 2 = I L 1 P l • NLO 

I l. 2 T 2 =  I L 2 + I L 2 
I F I I PL I I L 2 T 2 - 1 1 . EQ . I P 2 1 GO TO 7 8  

7 7  CON T I N U E  
7 8  I P l = l PL I I L J T ? - 1 1 

I P2 = 1 PL I  I l l  T 2 I 
I PL I I L 1 T 2 - l l = I PL ( J L 2 T ? - l l 
I PL I I L 1 T 2 I = I PL I I L 7 T 2 I 
I Pt . 1 I L 2 T 2 - l l = I P 1  
I PL I I L ? T 2 1 = I P 2  

79 CON T I N UE 
N L z N L O  

C F I NDS OUT T R I ANGL ES COR R E S POND I NG TO T H f  B O R D E R  L I N E  
C S F.GMEN T S .  

8 n NLP l = M L n + l  
0 0  8 3  l LR = l t NL O  

I L = N L P J - I L R 
I L T 2 = 1 L + I L  
I L T 3 = I L  T ? + I L  
I PL I = I PL (  I L T 2 - l l 
I PL 2 = 1 PL I I L  T2 I 
D0 8 1  I T = l • N T O  

J T T 3 = I T * 3  
I P T I = J P T < I T T 3 - 2 1 
I P T ?. =  I PT I I T T 3 - l  I 
I P T 3 = I P T <  I T T '.'1 1 
I F I J PL l · NE . t P T l . AN D . I P L l o NE o I PT 2 . A ND o l PL l o NE . t P T 3 1 

1 GO TO 8 1  
I F I I PL 2 • E O . J P T l o OR . J PL 2 · EO o l P T 2 o 0R a I P L� · EO . I PT 3 1 

1 GO TO 8 2  
8 1  CONT I N U F  
8 2 I PL < I L T 3 -2 l = I P L 1  

I PL (  I L  T 3 - l l = I PL 2  
I PL < H T 3 1  = I T  

8 3  CONT I NUE 
R E T UR N  
E N D  

SUBROU T I N E I DL C T N I X D • YD • I PT • I PL • X I I • Y I I • I T I I 
C T H I S  SUBROU T I NE LOC A T E S  A PO I N T •  I . E . 1 D E T ER� I NES WHAT 
C T R I A N G L E  A G I VE N P O I N T I X I I • Y I J I  A E LONGS TO. WHEN T H E  G I VE N 

C PO I N T  DOES NOT L I E  I N S i nE T H E  DATA A R E A • T H I S  SUBROU T I NE 
C DE TE R M I N ES T HE BORDER L I N E S EGM E N T  I N  T H E  A R E A  ABOVE WH I CH TH E  
C PO I N T  L I ES •  OR TWO BORDER L I NE SEC.M EN T S  R E T W E E N  T W O  A R F A S  
C ABOVE WH I C H  T H f  P O T N T  L I ES .  
C T H E  I NP U T  PARAM E T ER S  A R E  

39 

I G"' 2 7 1  
J !, M 2 7 7  
I G"" 2 7 "'  
I G '-'  7 7 4  
I G I'-' 2 7 'i  
J (; M  7 7 n 
I GM 2 7 7  
I C.I'-' 2 7 1l 
I C.I.• 2 7 9 
I G'-' 2 8 0  
I G '-'  2 A  1 
I G ll.' 2 8 2  
I ll "" 2 8 3  
I C.M 2 8 4  
I G M 2 A 5  
I G l'o'  2 8 6  
I GM 2 8 7  
J (,11.1 2 8 8  
I GI'-' 2 S Q  
I G "'  2 9 0  
I GM 2 9 1  
I G M  2 9 2  
I G M  ? Q "'I  
J G ll.4  ? Q 4  
I Gf\4 2 9 'i  
I G M  2 9 6  
J c;!' �  ? Q 7  
I GM 2 9 A  
I GM 2 9 9  
I C.M 300 
I C."' 3 0 1 
J (, M  '.'l fl ? 
y r;M 'I n "!  
I G"1 3 0 4  
I Glll! 3 0 5  
I C.M 3 0 6  
I GM 3 0 7  
I GM 3 0 8  
I GM 3 0 9  
I Gf\4 3 1 0  
I G"' ? l  1 
I GM 3 1 2  
I GM 3 1 3  
I G M  3 1 4  
I GM 3 1 5  
I GM 3 1 6  
I C.M · n  7 
I GM 3 1 8  
I GI'-' 3 1 9  
I GM 3 2 0  
I Gf\4 3 2 1  
I Gf.1 3 2 2  
I GM 3 n  

I L C 0 01 
I L C 0 0 2  
T L C 0 0 3  
I . L C  004 
I L C 005 
T L C 0 0 6  
I L C nt')7 
I L C  0 0 8 



( 
( 
c 

x o . v n = A R R A Y S  S T O R I NG T H E  x A N D  y C OO R n I N A T F S • R F S P  • •  
fl F  D A T A  PO I N T S , 

! P T = A R R A Y  S TO R I NG THE PO I N T N U� R F R S  OF T Hf VFR T E X E S  
n F  T H E  T P ! ANGL � S , c 

c 
c 
c 
c 

I P L A R R A Y  S TO R I N G T H E  PO I N T N U�B F P S  OF T H E  END 
PO I N T S OF THE BORDER L I �E SFG� F N T S  A N n  T HE I R  
R E S P EC T I V E T R I AN G L E NUMB E R S • 

X l l t Y l l = X A N D Y COORD I NA T E S • R E S P . , O F  
C I N T ER PO L A T E D  PO I N T .  

C THE O U T � IT PARAM E T F R  I S  
C ! T l  = T R I A N G L E  NUMB FR • WHEN T HE PO I N T I S  I N 5 1 Df T HF 

C D A T A  A R E A , O R  
C TWO BOR D E R  L I N E SEGME N T  N UMBE R S • I l l  A N D  I L 2 •  
C CODED TO l l l * I N T + N l l + I L 7. •  W H f N  T H f  P O I N T I S  
C OUT S I D E T HE D A T A  A R EA • W H F R F.  N T  I S  T H E  NUMAF.R OF 
C T R I AN G L E S  A N D  N L • T H A T  OF A O R D E R  L I N F SEGMEN T S .  
C DFC L AR A T I O� 5 T A T F. � F. N T 5  

D l � ENS I ON X O I J O ) t Y D l ] O l • I P T ( J O O l , I P L l l O O l 
CO�MON / I DG� / N D P t N NP , N T t N L  
DA T A  N T P V / O / • NL P V / O /  

C P RE L I M I N A R Y  P R O C E S S I N G  

1 0  N T O = N T  
N L O =NL 
N TL = N T O +NLO 
X O = X  I I 
Yn=Y I I 

C CH E C K  I F  I N  T HF S A � F  
7. 0  I F I N T O . N F . N TP V I  

I F  I NL O • NE e NL P V I 
I T O =  I T  I PV 

T R I ANGL F A S  P R EV l n U 5  
GO T O  3 5  
G O  T O  3 ">  

I F l l T O o GT . N T O I GO T O  7 � 
I T O T'3 =  I T 0 * 3  
I P I = I P T I  I T O T 3 -7. I 
I P 2 = 1 P T I  I T O T 3 - 1  I 
I P 3 = I P T I  I T n T 3  I 
X l = XD I  I P l l 
X 2 = X D I  I P 7 !  
X 3 = XD l l P ' I 
Y l = YD l l P l l 
Y2= YD I I P;> I 
Y 3 = Y D I I P 3 1 
I F l l YO - Y l l * I X 2 -X l l - I X O - X l l * I Y2 - Y l l l  

2 1  I F l l Y O - Y 2 1 * 1 X 3 - X 2 1 - I X O - X 2 1 * 1 Y 3- Y 2 l l  
2 2 I F l l YO - Y 3 1 * 1 X l - X 3 ) - I X O - X 3 l * I Y 1 - Y 3 1 1  

C C H E C K  I F  O N  THE S A� f.  BORDE R L I NE S E GME N T  
2 5 I L I =  I T O / N TL 

I L 2 = 1 T 0- 1 L l * N T L  
l l l T 3 = 1 L l * 3  
I P l = I P L I I l l  T 3 -2 l 
I P2 = 1 P L I I L 1 T 3 - l l 
X l = XD I I P l l 
X 2 = XD l l P ? I 
Y l = YD I  I Pl l 
Y 2 = Y D l l P 2 1  
D X 0 2 = X O- X 2  
DY0 2 • Y O- Y 2  
DX2 l • X 2- X l  
D Y2 l s Y 2-Yl 
CS0 2 2 l = D X 02• DX2 1 +D Y 0 2 * D Y 2 1  
I F I I L 2 o NF. e l l l l G O  T O  ' 0  
I F I C S 0 22 1 l 7. 6 , 2 6 • 5 0 

?6 DXO l = X O- X l  
DYO l = Y O - Y l  
I F I DYn l • D X 2 1 - DX O l *D Y 2 1 1  2 7 • 2 7 , 5 0 

27 I F I DX O l •DX2 l + D Y O l * D Y 2 1 1  so . s o . so 

40 

50 , 2 1 , 2 1  
5 0 , 2 2 . 2 2  
s o . s o . so 

! L C  n r. q  
J l r  Q ] O  
! L C O ] J 
I L <  11 1 ? 
! L C  O i �  
I L C  0 1 4  
I L C  0 1  "> 
I L C  a u ,  
I L < 0 1 7  

I L <"  n u i  
! L C 0 1 9  
I L C  0 2 0  
I L C O ? J  
I L C  o n  
I L C 0 2 '  
I L C  0 2 4  
I L C  n 7 c;  
I L C  n u ,  
I L C  0 2 7 
I L C  0 2 1>.  
I L (  0 2 9  
I L C 0 3 0  
I L C  0 '1 1  
I L C 0 3 2  
I L C  o :n 
I L C  0 '3 4  
I L C  n 3 r;  
I L C 0 3 6  
I L C  0 ' 7  
I L C  0 3 8  
I L C 0 3 9 
I L C 040 
I L C 04 1 
I L C  0 4 2  
I L C 0 4 3  
J L C  0 4 4 
I L C  'l 4 5  
I L C 0 4 6  
I L C  047 
I L C "48 

Ile: 0 4 9  
I L C 0 5 0  
I L C 0 5 1  
I L C 0 5 2  
I L C  0 5 3  
I L C" 0 5 4  
I L C 0 5 5  
I L C  0 5 Fi  
I L C 0 5 7  
I L C 0 5 8  
I L C 0 5 q 
I L C  060 
I L C 0 6 1  
I L C  0 6 7.  
I L C 0 6 3  
I L C 0 6 4  
I L C  0 6 5  
I L C 0 6 6  
I L C  0 6 7  
I L C  """ 
I L C  0 69 
I L C 0 7 0  
I L C  0 7 1 
I L C  0 7 2  
I L C  0 7 3  



C CHECK I F  B E T W E E N  T H E  SAME T WO BORnE R L I N E  S F � ME N T S  
3 0 I F I CS 0 2 2 1 1 5 0 1 3 1 1 3 1  
3 1  I L 2 T 3 =  I L 2 • 3  

I P 3 = 1 P L < I L 2 T 3 - 1  l 
X 3 = X D I I P� )  
Y 3 = YDi 1 1' '.'I )  
D X 3 2 = X 3 -X 2 
D Y3 2 = Y 3 -Y? 
I F I DX 0 2 *D X3 2 +D Y 0 2 *D Y 3 2 l 8 0 1 8 0 1 5 0 

C WH E N  CA L L E D W I T H A N E W  S E T  nF N T A N D  N L  
3 5  N T P V = N T O  

N L P V= N t n  
I T I P V = O  

C L n C A T I O N  I N S I D E T H F  D A T A  A R E A 

'i n I TO T 3 = 0 

5 1  
5 2  
5 3  
5 4  
5 5 

DO 6 9  I TO= l 1 N T O  
I T O T 3 =  I T O T 3 + 3  
I F l l To . E Q • I T I PV l  GO TO 6 9  
I P l = l l' T I  I T O T 3.-2 l 
I P 2 =  I P T <  I T O T 3 - l  l 
I P3 = I P T I I T O T 3 l 
X l = X D ( J P l l 
X 2 = X D I J P2 l 
X 3 = X D l l P 3 1 
I F I X O-X l l 
I F I X O- X 2 1 
I F I X O- X 3 l 
I F I X O- X 2 1 
I F I X O - X 3 l 
Y l = Y D I  I P l  l 
Y 2 = Y D I I P 2 l 

Y 3 = Y O I  I P"I I 

5 3 1 5 5 1 5 1  
5 5 t 5 5 1 5 2  
5 5 1 5 5 1 6 9  
5 4 1 5 5 1 5 5  
6 9 1 5 5 1 5 5  

I F I Y O- Y l l "> A 1 6 l'l 1 5 6  
5 6  I F I YO-Y2 l 60 1 6 0 1 5 7 
<; 1  I F I Y O - Y 3 l 6 0 1 6 0 1 6 Q  
5 8  I F I Y O- Y2 l 5 9 , 60 1 6 0  
5 9  I F I Y O - Y 3 1 6 9 1 6 0 t 60 
6 0  I F < < vn - v 1 > • 1 x 2- x 1 1 - 1 x o - x 1 > • 1 v 2 - v 1 1 1  
6 1 I F l l YO - Y 2 l * I X 3 - X 2 l - ( X O- X 2 l * I Y 3 - Y 2 1 l 
6 2 l f ( ( YO - Y 3 l * I X l - X 3 ) - f X O - X 3 1 * 1 Y l - Y 3 1 I 
69 CON T I NUE 

C L OC A T I O N  OU T S I D E T H E  DATA A R E A  
7 0  N L O T 3 = N L 0 *"1 

I P l = I P L (  N L O T 3-2 I 
I P 2 = I P L < N L O T 3 - l  l 
X l = XO (  I P I I 
Y l = Y D <  I P l  I 
X 2 = XD < I P2 I 
Y 2 = YI H I P 2 l 
o x o 2 -= x o- x 2  
D Y0 2 = Y O - Y 2 
DX2 l = X 2 -X l 
D Y2 l = Y 2-Y l 
C S02 2 l =D X 0 2 * D X 2 l +DY 0 2 *DY 2 1  
D O  7 4  I L O• l 1 NL O  

X l z X 2  
Y l =Y 2  
D X 0 1 = 0 X 0 2 
DY0 1 = rwn2 
I P 2 = 1 PL < 3 * I L O- l l 
X 2 = X D (  I P2 I 
Y 2 = Y D I I P 2 1 
D X 0 2 = XO-X 2 
DY02 = Y O - Y 2  

4 1  

6 9 1 6 1 1 6 1  
6 9 1 6 2 1 6 2  
� 9 1 80 1 8 0  

! L C 0 7 4  
I L C  0 7 c;  
r L r f1 7 fi  
I L I  " 7 "'  
! L C  '1 7 �  
1 1. r 0 70 
I L C O A O  
I L ( f1 A l 
I L C  0 A ? 
I L C 0 A '3  
I L C 0 A 4 
I L C  l) fl <;  
I L C  f'I A fi  
I L C  O fl 7  
I L C fl A A  
I L C 0 8 9  
I L  C 0 9 0  
I L C  0 9 l  
! L C  0 9 2  
I L C 0 0 3 
I L C  0 <) 4 
I LC O O "i  

I L C  0 9 6 
I L C n o 7  
I L C 0 9 8  
I L C 0 9 9  
I L C 1 0 0  
I L C  1 0 1 
I L C 1 0 2 
I L C 1 0 3 
I L C 1 0 4 
I L C 1 0 5 
I L C  1 0 6 
I L C 1 0 7 
I L C  l O A 
I L C  1 0 9  
I L C 1 1 0  
I L C 1 1 1  
I L r  1 1 2  
I L C 1 1 3  
I L C  1 1 4 
I L C  1 1 5  
I L C  1 1 6 
I L C 1 1 7  
I L C  1 1 8 
I L C 1 1 9  
I L C  1 2 0  
I L C  1 2 1  
I L C  1 2 2 
I L C I n  
I L C  1 2 4 
I L C  1 2 5  
I L C  1 2 6  
I L C  1 2 7  
I L C  1 2 8 
I L C 1 2 9 
I L C  1 3 0 
I L C 1 3 1  
I L C 1 3 2  
I L C  1 3 3  
I L C 1 3 4  
I LC 1 3 5  
I L C  1 3 6  
I L C l '.'17 

··--.;;�� 



D X 2 l = X ? - X l  
D Y 2 1  = Y 2 - Y l  
CSPV=CS0 2 2 1  
CS02 7 1 = D X 0 2 * D X 2 1 + DY 0 2 *DY 7 1  
I F I C Sn ? 2 1  I 7 l t 7 l t 7 4 

7 1  I F I DX O l *D X 2 1 + DY0 l *DY7. l l  7 3 • 7 2 • 72 

72 I F I DYo l *DX 2 1 - oxo 1 • DY 2 1 1 7 6 • 7 6 t 74 

7 3  ! F l r S P V I 74 , 7 4 , 7 5  

74 C ON T J MUE 
I L O = l  

7 5  I T O= I L 0- 1  
I F I I T o . E n . o > I T O = N L O  
GO TO 7 7  

' 

76 I TO = I L O  
7 7 I T O = I T O * N T L + I L O  

C NOR,..A L  EX I T  
R n  I T I = I T O  

I T I P V = I T O 
R E T UR N  
END 

SUBROU T I N E I DP DRV I X O t Y D • Z D • I PN • PD I 
C TH I S  SUBRO UT I N E E S T I MA T ES P A R T I A L DER I VA T I VES OF THE F I R S T  
C SECOND ORDER AT T H E D A T A  P O I N T S .  
C THE I NPUT P A R AM E T ER S  A R E  
C X O t Y O t Z D = A R R AYS STOR I Nl> THE X •  y ,  A N D  Z COORD I NA T ES • 
C R E S P . ,  OF DATA PO I N T S , 
C J PN = A R R A Y  S TO R I NG T H f.  PO I N T N UM R ER S OF NNP D A T A  
C PO I N T S  NEARE S T  TO EACH nF T HE D A T A  PO I N T S •  
C WHE RE NNP I S  T HE NUMBE R  OF DAT A P O I NT S  U SED FOR F. S T I M AT I ON 
C OF P A R T I AL DER I VA T I VES AT EACH D A T A  PO I N T .  NNP I S  G I VE N  
C THROUGH THE I DGM CO�MON . 
c THE OUTPUT P A R A� F. T F. R  r s  
C PD = A R R A Y  OF O l � E N S I ON 5*NDP t W HER E T H E  E S T I MA T E D 
C Z X t  z y , Z X X , Z X Y t AND Z Y Y  V A L U E S  AT T H F.  D A T A  
C PO I NT S  A R E  T O BE D I S P L AY E D ,  

. 

C WHE RE NOP I S  THE TOTAL NUMB E R  OF D A T A  PO I N T S .  NOP I S  G I VE N  
C THROUGH T H E  J OGM COMMON . 
C D F C L AR A T I ON S T A T E M E N l S  

D I M ENS I ON X O l 1 0 1 t Y O l 1 0 1 t Z D l 1 0 1 t J PN 1 1 0 0 1 t Pn ( 5 0 1  
COMMON / I DGM / NDP t NNP t N T t NL 
R E A L  NMX t N M Y t NM Z t NMX X t NM X Y t N � Y X t N� Y Y  

C P RE L I M I N A R Y  PROCE SS ! Nr. 
l n  NDPO=NDP 

NNPO=NNP 
NNPM l = NNP0- 1 

C E S T I MA T I ON OF ZX A N D  Z Y  
2 0  JPD0=- 5  

J I PNO=-NNPO 
D O  2 4  I P O= l • NDP O 

JPDO=JPD0+5 
X O = X D l l PO I 
Y O=Y D I  I Po l 
Z O = Z D l l PO I 
NMXz:o . o  
N M Y1: 0 . o  
NMZ = o . n  
J J PN O • J I PN O+NNPO 
DO 2 3  J N l = l t NNPM l 

J I PN•J I PNO+ I N J  
I P I 11 ! PN I J I PN I  
DX l = XD I J P J l -X O  

42 

I L C l .. P. 
J l. C 1 " 9  
I L C 1 4 0 
J L C  1 4 1  
J L C 1 4 2 
I L C  1 4 "! 
I L C 1 4 4  

I L C l 4 'i  

I L C  ] 4 ,.,  
J L C 1 4 7 

I L C l 4 A 
I L C  l 4 9  

I L C 1 5 0 
I L C 1 o; 1  
I L C  1 5 2 
I L C 1 5 3  
I L C  l <; 4  

I L C  l " "  
I L ( 1 5 1'. 
T L C  ] 0: 7 

J P D 0 0 1  
A ND J P D 0 0 2  

J P D 0 0 "!  
I P D 0 0 4 
I P D  0 0 5 
J P D 0 0 6 
J P D 0 0 7  

I P D O O A  
I P D  O O Q 
I P D 0 1 0  
I P D 0 1 1 
I P I) C'l 1 7  
J P D  0 1  "! 
I PD 0 1 4  
I P D 0 1 5  
I P D 0 1 6  
I PD 0 1 7  
I P D  O l R  
I P D  O l q  
I P D 0 2 0 
I PD 0 2 1  
I P D  0 2 2  
I P D 0 2 �  
I P D  0 2 4  
I P D 0 2 5  
J P D  0 2 6  
I P D 0 2 7  
I P D  0 2 8  
I P D 0 2 9  
I PD 0 3 0  
I P D n 3 1  
J PD 0 3 2  
I PD 0 3 3  
I PD 0 34 
J P D  0 3 5  
J PD 0 3 6 
J PD 0 3 7  
J P D  0 3 8  
I PD 0 3 9  
J PD 0 4 0  
J P D  0 4 1  



DY l = Y D C  I P I  I -YO 
DZ l = Z D C I P I 1 -ZO 

I N 2MN= I N 1 + 1  

on 2 2  l N 2 = I N 2MN t NN DO 
J I  P N = J I P�tn+ I N ? 
I P I = I PN C J I P N I 
DX ? = X D I  I P I  1 - X n  
D Y 7 = YD l l P l l -Y O  
D Z 7. = Z D I I P I  I -Z n  
DNMX= DY 1 • 0 Z 2 -oz 1 • DY 2 
DNM Y=DZ l *DX2-D X l *DZ2 

DNMZ= D X l • DY2-DY l * DX 2 

I F I ONMZ . <;E . o . n l 
o�,,� x=- nNa.A X 
DN"'Y=-DNMY 
DNM Z=-DNMZ 

7 1  NMX=NMX+0 111'4 X  

Nllll Y=NMY+DW-1Y 

N M Z = NMZ+DNM7 
2 2 C O N T I NU E 
? 3  CONT I NU E  

P O C J P DO + l l = -N� X / N "' Z  
P O I  J P D0 +2 I =- �WY /N>.1Z 

? 4  CON T I N UE 

GO T n  2 1  

C ES T I MA T I ON OF Z X X • Z X Y •  AND Z Y Y  
�n JP00=-5 

J I P fllO=- lll"J Pn 
DO 3 4 J P n = l t NDPO 

JPDO=JPD0 + 5  

X O= X D C J PO I  
YO=Y O I  J P O  I 
Z XO = P D I JPDO + l l 
Z YOo:PO C JPD0 +2 1 

NMXX = o . o  
NMXY = o . o  

NMYX = n . o  
lllMYY = n . o  
NMZ =o . o  
J I PNO a J J PNo+NNPO 
DO 33 I N l o: l t NNPM l 

J I PN c J I PN O + l·N l 
I P l = I PN C J I P N I  
OX l = X D C  I P I  I -X O  

DY l = YO C  I P I  I -YO 

JPO:ss;• I I P  1 - 1 1 

DZX l = PD C J P D + l l - Z X O  
OZ Y l •PD I JPD+2 1 - Z Y O  
I N 2MN = I N 1 + 1  

DO 3 2  I N 2 = 1 N 2MN t N NPO 
J I P N = J I PNO+ I N ?  

I P I = I P N C J I PN I 
DXZ•XD I J P J  I - X O  
D Y Z = YD C I P I  I -Y O  

JPD•5* C I P I - 1 1 
DZX ?. s P D C JPD+ l l -Z X O  
D ZY 2 = P D C JPD+2 1 -Z Y O  

DNMX X = D Y l *DZ X 2 -D Z X l *DY2 
ONM X Y = DZ X l * D X 2 -DX l *D Z X 2  
DNMYX = DY l *DZYz -D Z Y l *DYZ 

DNM Y Y• D Z Y l *D X 2 - D X l *DZY2 

DNMZ = D X l •DYZ -DYl*DXZ 

I F C DNM Z . G E . o . o l  GO TO 3 1  
DNM X X = -ONl\ll X X  
DNllll XY= -ON"'IXY 
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I P n 0 4 ?  
I P D 0 4 '1  

I P D 0 4 4  
I P D 0 4 c; 
I PD f'41. 
I P n ro 4 7  
I P D n 4 P 
I P D 04Q 
I P D 050 
I P D  0 5 1  
I P D 0 5 2  

I PD n �n 

J P n  n r:; 4 
J PO (l 'i <;  
I P l"I  n r:; f,  
J P n  n c; 7  
I P D  0 5 R  
I PD o c; q  
J P fl 0 6 0  
I PD 0 6 1  

I P D 0 6 2 
I P D 0 Fi 'I  
I PD 0 6 4  

I P D 0 6 5 
J P D  O M  
I P D  Of. 7  
J P n  n 1. A  
J P O 0 (, Q  
I P D 0 7 0  

I P D  0 7 1  
I PD 0 7 2  

I PD n n 
J P D  0 7 4  

I P D 0 7 5  
I P!) 0 76 
I P D 0 7 7  

I PO 0 7 8  
I PD 0 79 
J P D  0 9 0  
I P D 08 1 
I P D  O A ?  
I P D C\ 1! '1  
I PD 0 8 4  

I PD 0 8 5  

I PD 0 R 6  
I PD 0 8 7  
I P D 0 8 8  
I PD 0 8 9  
I PD OQO 
t Pn O Q 1  
J P D 0 <>2  
I PD O q 'I  
I PD Qq4 

I P O  oq r; 
I PD 0 %  
I PD 0 9 7  
I PD 0 9 8  
I P D 099 

IPD 1 00 
I PD 1 0 1 
I PD 1 0 2 
I PD 1 0 '3  
I P D 1 04 
I PD 1 0 5 



DN .. Y X = - DN M Y X  
(')Nl" Y Y = - l'> N "°Y Y 
DNl'Al = - DN l-AZ 

"1 1  N M X X= N M X X +DNM X X  
NM X Y= N M X Y+DNMXY 
N M Y X = N M Y X + D N "I Y X  
NMYY=NM YY+D"JMYY 
N"4Z = N ll.1 Z +l'>�WZ 

'1 2  CONT J ll•UE 
"1 3  CONT I N UE 

P (') I J P l'>n +"l l : - N M X X / �M Z  
P (')  I JP1'>0 +4 l = - I N�1 X Y  +N•A Y X  l I I 2 • O * N M Z  l 
P D I J P D0 + 5 l = - N MY Y / NMZ 

"14 C ON T I MUF' 
R E T URN 
E N D  

SUBROUT I N E  I D P T J P I X D t Y D t Z (') t I P T t J PL t P Dl'> • I T i t X J J • Y I I • Z I I l  
C TH I S  SUBROUT I NE P E R FORMS PUNCTUAL I N T F R P OL A T I C N OR E X T R APO
C L A T I ON •  l o E o t D E T E R l-' J N E S  T H E  z V A L U E  AT A PO I N T .  
C THE I N PUT PARAM E T E P S  A R F  
C X D t Y D t Z D = A R R A Y S  S T O R I NG THE X t  y ,  A N n  Z COORr> I N A T E S t 
C R E S P o t  OF D A T A  P O I N T S ,  
C I P T AR R A Y  S T OR I N G THE P O I � T  N UM R E R S  OF THE VE R T E X E S  
C OF T H E T R I A NG L E S • 
C I P L A R R A Y  S T O R I N G T H E  PO I N T  N UM R F R S  OF T HE ENn 
C PO I N T �  OF THE BOR D E R  L I N E  SEGM E N T S  A N D  THE I R  
C RE S PE C T I V E T R I ANGLE �UMA E R S t 
C P OD = A R R A Y  S T O R I N G T H E  P A R T I A L  D E R I V A T I V E S  AT T HE 
C DA T A  PO I N T S ,  
C I T I  = T R I AN GL E NUM B E R  OF T H E T R I A NG L E  I N  W H I CH 
C THE I N T E R P OL A T E D  PO I N T L I E S ,  
C X l l t Y l l = X A N D Y COO R D I NA T E S , R E S P . , O F  
C I N T E PPOL . A T E D  PO l �I T  • 
C THE OIJTPllT PJI R A M C T F R T 5 
C Z l l  = I N T F R P O L A TEr> Z V A L UE .  
C D E C L A R A T I ON S T A T E M E N T S  

D I M ENS I ON X D l l O l t Y D l l O l t Z !'> l l O l t J P T l l OO l t ! P L l l O O l , P DD l 5 0 l  
COMMO N / I DGM / N D� t N N P , N T t N L  
COMMON / I D P l / N C F t l C F 
D I M ENS I ON C FO l 2 7 l 
E QU I VA LE N C E  I XO t C FO I 1 l l , I YO t CF O I 2 l l • I A P t C FO I  3 l l • 

1 I B P t C FO l 4 l l t  I C P t C FO l 'i l  l •  l !'>P t C F 0 1 6 l l • 
2 I P O O • C F O l 7 l l t  I P l O t C F n l B J l •  I P 2 0 t C F0 1 9 l l t  
3 I P 3 0 • C F O l l O l l • I P4 0 t C F O l l l l l • I P 5 0 t C F 0 1 1 2 l l •  
4 I P O l • C F O l 1 3 l l • I P l l t C F O l 1 4 l l t l P 2 l t C F 0 1 1 5 l l ,  
5 I P 3 l t C F O l 1 6 l l t l P4 l t CF O l 1 7 l l t l P0 2 , C F 0 1 1 B l l ,  
6 I P 1 2 • C F O l 1 9 l l t l P2 2 • C F O l 2 0 l l • I P 3 2 t CF 0 1 2 l l l •  
7 I P 0 3 • CF O l 2 2 l l ' I  Pl "I t C FO I 2 3  l l • I  P 2 3  t C F O I 2 4 1 l • 
8 I P 04 • C F 0 1 2 5 l l • I P l 4 • CF O l 2 f.. l l • I P 0 5 t C F0 1 2 7 l l 

D I M EN S I ON C F l 9 8 0 l 
D I M EN S I ON X l 3 l • Y l 3 l • Z l 3 l • P D l 1 5 l t  

1 Z U l 3 l t Z V l 3 l t ZUU l 3 l t Z U V l 3 l • Z VV l 3 l  
E QU I VA L E N C E  I I T O • F L I T O l , I I T J , F L I T J l  
R E A L  L U , LV , L U S N U V • L VSNUV 
EQU I V A L E N C E  ( p 5 , po 5 1  
D A T A  NCFMX / 3 5 /  

C S E T T I NG O F  SOME LOC A L  VA R I A R L E S o  
1 0  I TO = I T  I 

X I O = X I I 
Y I O = Y I I 
N T L =N T +N L 
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J P n  i n � 
I P r>  1 '1 7  
J P D I '1 P 
[ P fl  1 " <"1  
J P I)  1 1 0  
r P n  1 1 1  
I P D 1 1 2 
I P D 1 P 
I PD 1 1 4  
J P D l l 'i  
I P n  1 l f.. 
T P D 1 1 7  
I P D l J  P. 
I P D 1 1 9 
I P D 1 2 0 
I P D 1 2 1  

J P  I 0 0 1  
I P I 0 0 2  
I P I  0 0 3  
I P I  0 0 4  
I P I  0 0 5 
r P r  0 0 6 
I P I  0 0 7  
I P  I n O A  

r P r  0 0 9  
I P I  0 1 0  
I P !  0 1 1 
! P I  0 1 2 
r P r  0 1 "'  
I P I  0 1 4  
I P I  0 1 5  
I P I  O l f.. 
I P T  n 1 1  
I P I  n ] P.  
I P I  0 1 9  
I P I  0 2 0 
I P I 0 2 1  
I P I  0 2 2  
I P  I 0 2 3  
I P I  0 2 4  
I P I 0 2 5 
I P I  0 2 6  
I P I  0 2 7  
I P I  0 2 8  
J P I  0 2 9  
I P  I 0 3 0  
I P  I 0 3 1  
I P I  0 3 2  
I P I  0 3 3  
I P I  0 3 4  
I P I  0 3 5  
I P I  0 3 6  
I P I  0 3 7  
I P I  0 3 8  
I P I  Q 3q 
I P I  0 4 0  
I P I  0 4 1 
I P I  042 
I P I  043 
I P I  044 
I P  I 045 



C DETERM I NES I F  S I MP L E  I N TE R POLA T I ON I S  A P PL I C ABLE . 
? O  I F I I Tn . LF . N TL I GO TO '10 

I L l = I TO /N TL 
I L 2 =  I TO- l l l * N TL 
I L 1 T 'l = l l l *3 
I L  7.T '.\ =  I l. 7*'1 
I To= I°l>U I Ll  T3 I 
I F l l L l • NF e l L ? I GO TO 40 

C CALCULA T I ON OF Z J I B Y  S I MPLE I N TE R POLA T I ON OR E X TRAPOLA T I ON .  
'1 1'1  ASS I G N  3 1  T O  LBL 

GO TO 5n 
3 1 Z I I = Z I O  

R ETURN 
C CALCUL A T I ON OF Z J I  AS A WE I GHTF.D MEAN OF TWO E X T R APOL A TED 
C VALU E S •  

40 ASS I GN 4 1  TO LBL 
c;o To so 

41 Z I J = Z I O 
I TO = I PL I  I L2 T 3 1 
ASS I GN 4 2 TO LBL 
GO TO 50 

4 2  Z I 2 = Z I O  
C CAL CUL A T ES THE W E J �H T J NG COEFF I C I EN TS FOR f X T RA POLATFO VALUES • 

45 1 P l = I PL l l L 1 T 3-2 1 
I P2 = 1 PL I  I l l T 3 - l  1 

I P 3 = I P L I  I L 2 T '3 - l I 
x 1  .. xD < I P 1 1 
Y l • Yf) I  I P l  1 
X 2 = XD I I P 2  I 
Y 2cYD l l P2 1  
X 3 • XD l l P3 1 
Y3=YD I T P3 l 
DXn2•X I n- X 2  
DY0 2 • Y l o-Y2 
D X 3 2 = X 3- X 2  
DY32•Y3- Y2 
OX2 l = X 2-X l  
DY2 l =Y 2-Y 1 
W l • I DX02*DX 3 2 +DY02*DY3 2 1 ** 2 / I DX 32 *DX 3 2 +D Y 3 2*DY3 2 1 
W2• C DX 0 2*DX2 l +DY02*DY2 1 1 ** 2 / I DX2 l *DX 2 l +D Y 2 l *DY2 1 1  

C CALCULAT ES Z I I  AS A WE I GH T ED �EAN . 
46 Z I I • I W l * Z l l+W2•z 1 2 1 1 1 w 1 +w2 1 

RETURN 
C I NTERNAL ROU T I NE FOR PUNCTUAL I NTERPOL A T I ON .  
C CHECKS I F  THE NECESSA�Y C F O  VALUES A R E  S AVED• 

i;n I F C NCF . Eo . o >  GO TO 60 
JCF•-2 7  
DO 5 1  LCF• l • NCF 

JCF-= JCF+2 8  
FL I T  J • C" F I  JCF I 
I F C I T'l e EQ e l TJ l  GO T O  70 

51 CON T I NUE 
C CALCULAT I ON OF N EW CFO. VALUES • 
c DETERM I NES THE COEFF I C I EN T S  FOR THE cooRn I NA T E  SYSTEM TRANS
c FORMAT I ON FROM THE X -Y S Y S T EM TO T HF U-V SYSTFMt AND C ALCU
C LA TES THE COEFF I C I ENTS OF THE POLYNOM I A L  FOR I NT ERPOL A T I ON .  
C LOADS COOR D I NATE AND PAR T I AL DER I VA T I V E  V A LU ES A T  THE 
C VER TEXES. 

60 J I P T• 3 * 1 1 TO- l l 
JPD•O 
DO 62 J c 1 ' 3  

J I P T cJ J PT + l  
J OPc J PT I J I P T I 
X I J l • XF H I DP I 
Y I I l •Y(') ( .J DP I  

4 5  

I P  I 0 4 6  
J P  I n 4  7 
I P  I 04R 
I P I  049 
J P I  n c; n  
I P  I n c; 1  
! P l  " "' 7  
I P  I O c; 'I  

I P I  O 'i 4  
I P I  O 'i 5  
! P l  0 5 6  
! P l  0 5 7  
! P l  O 'i 8  
I P  I o c; q  
I P I n ,.. o 
! P l  O f> l  
! P I  C' Fi ? 

I P I  O f. �  
J P I  O ti 4  
J P I  0 6 'i  
I P I  0 66 
I P  I n 6  7 
J P I  0 6 8  
J P J  0 6 Q 
J P I  1'1 7 0  
J P  I 0 7 1  
I P I  0 7 2  
J P I  0 7 '1 
I P I  0 74 
I P I  0 7 'i  
! P l  0 7 6  
I P  I n 7 7  
T P I  07A 
! P l  079 
! P l  080 
r Pr  0 0 1  
I P J  0 8 2  
J P I  0 8 3  
I P I  0 8 4  
I P I  0 8 5  
I P I  OM 
J P I  0 8 7  
! P l  O A R  
I P I  0 8 9  
I P I  090 
I P I  fl Q l  
I P I  0 9 2  
I P I  093 
I P I  n94 
I P I  095 
I P I  O Q (i  
I P  I O Q 7  
I P I  098 
J P I  099 
I P I 1 00 
I P I  t O l 
I P J  1 0 2  
I P I  1 Q 3  
I P  I 1 04 
IP I 1 0 5  
I P  I 1 0 6  
I P I  1 0 7  
J P I  1 08 
I P  I 1 OQ 
I P I  1 1 0  



Z I I  l = Z D I I DP I  
J PDD = 'i* I I DP- I l 
DO 6 1  K P D= l t 5  

JP D = J PD + l  
JPDD= JP DD+ l 
PD I JPD l = P DD I JPDD l 

6 1  CONT I NU E  
6 2  CON T I NUE 

C D E T ERM I N I NG THE C O E F F I C I EN T S  FOR T H f  COO R D I N A T E  S Y S T EM 
( T R A N SFORMA T I ON FROM THF X - Y  SYS T FM TO T H E  U-V S Y S T FM 
C AND V I C E VFR SA 

6 3 XO= X l l l' 
Yn= Y  1 1 l 
A = X l 2 l -X O  
B = X l 3 > -xo 
C =Y l 2 l -YO 
D= Y l 3 l -YO 
AD=A*O 
BC=B*C 
D L T =AD-BC 
AP= D/Dt T 
B Pc-B / DL T 
C P=-CIDL T 
D P =  A I DL T 

C CONVE R S I O N  OF T H E  PART I AL D ER I VAT I V E S  AT T HE VE R T E XE S  OF T HE 
C T R I ANGLE FOR T HE U-V COORD I NA T E  S Y S T f M  

6 4  A A = A *A 
A C T ? = ?. . n*A*C 
CC=C*C 
A B = A *B 
A DB C = A D+BC 
CD=C*D 
BB•B *B 
B D T 2 = 2 • 0* B *D 
DD=D*D 
DO 6 5  1 = 1 1 3 

J P 0 = 5* 1 
Z U l l l = A *P D I JPD-4 1 +C*PD I JPD- 3 l 
Z V I I l =B *P D I J PD-4 1 +D*PD I JPD- 3 1  
Z UU I I l : A A *P D I JPD-2 l +AC T 2 * PO I JPD- l l +CC*P D I JP D I  
Z UV I I l : A B * P D I JPD-2 l +ADRC * P D I JPO- l l +CD* P D I JP D I  
Z VV I I l = BB * PD I JPD-2 1 +B D T 2 * PD { JPD-l l +DD*PO I JP D I  

6 5  C ON T I N UE 
C C A LCUL A T I ON OF T H E  COE f F I C I EN T S  OF T H E  P OL Y N OM I A L  

66 P OO = Z l l l  
P l O= ZU l l l 
P O l =Z V I  l l  
P 2 0= 0 • 5 * ZUU l 1 1  
P l l =ZUV l l ) 
P02 = 0 . 5*ZVV l l l 
H l =Z l 2 1 -P O O - P l 0-P2 0  
H 2 = Z U l 2 l - P l0-ZUU l 1 l 
H 3 •ZUU l ? l -ZUU l 1 l 
P 3 0 = l O • O * H l - 4 o O * H 2 + 0 e 5*H3 
P40=- 1 5 • 0 * H l+ 7 • 0* H 2  -H3 
P 50 = 6 e O *H l- 3 . 0* H2 +0 • 5 *H3 
H l • Z l 3 l -POO-P0 1-D02 
H 2 = Z V l 3 l -Pn l -ZVV l l l  
H 3=ZVV l 3 J -ZVV ( l  l 
P 0 3 =  l O . O *H l - 4 o O*H2+0 . 'i* H3 
P04 =- 1 5 • 0 *H l + 7 e O * H 2  - H �  
P n 5 =  6 . o• H l - 3 . 0* H 2 +0 . 5 * H 3  
L U • SQR T I  AA+CC I 
LV•SQR T I BR+D D I 
T HX U = A T AN 2 1 C t A l 
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J P I  1 1 1  
I P I  1 1 7  
I P I  1 1  .. 
I P I  1 1 4 
I P I  ] ]'; 
I P I  1 1 6  
I P  I 1 1 7  
J P !  l l A  
I P I  1 1 9 
I P I 1 2 0 
I P  I 1 7 1  
I P I  ] 2 7.  
I P I 1 2 "1 
I P I 1 2 4  
I P I  1 2 5 
I P I  1 2 6 
I P I  1 2 7 
I P I  l 2 P.  
I P I  ] 2 9 
I P I  P O  
I P I  l'.'l l 
I P I  1 3 2 
I P I  1 3 3  
I P I  1 3 4 
I P I 1 3 5  
I P I 1 3 6 
I P I 1 3 7  
I P  I l " A  

I P I  1 3 9  
I P  I 1 4 0 
I P I  1 4 1  . 
I P I  1 4 2  
I P I  1 4 3 
I P I  1 44 
I P I 1 4 5  
I P I  1 46 
I P I  1 4 7  
I P I  l 4 1l  
I P i i 49 

· I P I  1 50 
I P I  1 c; 1 
J P I  1 5 2  
J P I  1 5 3  
I P I  1 54 
I P I  1 c; 5  
I P I  1 56 
I P I 1 5 7  
I P I  1 5 8 
I P I  1 5 9  
I P  I 1 6 0  
I P I  1 6 1  
I P I 1 6 2 
J P J 1 6 "'  
J P J  1 64 

. J P I  1 6 5  
J P J  1 66 
J P  I 1"7 
J P J  1 6 8  
J P I  1 69 
J P J  1 70 
J P J 1 7 1  
J P J 1 72 
J P I  1 73 
J P J  1 74 
J P J  1 7 5  



T HUV= A T AN 2 C D t B l - T H X U  
C SUV=COS I THUV I 
P4 1 = 5 • 0*LV• CSUV / L U * P 5 0  
P l 4 = 5 . 0*LU•CSUV/ L V * P 05 
H l = ZV l 7 1 -P � l -P l 1 - P4 1 
H 2 = Z l lV l ? l -P l l - 4 o O * o 4 1 
P 2 1 = "l o fl * H l -H 2 
P 3 1 =- 2 . n• 1- n + H 2  
H l =ZU C 3 1 - P l 0- P 1 1 -P J 4  
H 2 = Z UV C 3 1 - P l l -4 o O* P l 4  
P 1 2 =  3 • <' * H l - H 2:., 
P l 3 =-2 . n • H l +H2.'' 
THU S = A TAN 2 1 D � ( , �-A l - THXU 
THSV=T HUV-THUS 
SNUV=S I N I T HUV I 
L US NU V = LU * SNUV 
L VSNUV=LV*SNUV 
AA= S I N I T HSV l / L USNUV 
BB=-COS I THSV l / L USNUV 
C C =  S J N I T HlJS l / L VSNUV 
OD= COS I T HU S l / L VSNUV 
AC=AA*CC 
A D = A A • f'lf) 
BC=BB•CC 
G l =A A •AC • l "l o (l •BC+7 o O•AD I 
G2=CC• AC• < • • O* � D+ 7 o O *RC I 
H l =-A A • AA • AA• l 5 o O * A A *BB•P 5 0 + ( 4 o O*RC+ AD l • P 4 1 1 

1 -c c •cc•CC* C 5 o C • C C *DD•Po5 + 1 4 . 0 *AO+ A C l *P l 4 1 
H 2 = 0 o 5* Z VV l 2 1 - P Q 2 - P 1 2  
H 3 = 0 . 5 • Z UU l 3 1 -P 20-P2 1 
P 2 2 = 1 G l • H ?. +G 2 *H3-H1 1 / I GJ +G 2 1 
P 3 2 =H2 - P 2 2  
P 2 3 =H "l - P 7 2  

C SA V E S  T H E  C FO VA L U E S  I N  T H E  C F  A R R A Y .  
67 I F I NCF . L T . NC F M X I N C F= NCF + l  

I CF = I CF + l 
I F I I CF o G T o NC F M X I I C F= l  
JCF = 2 8 * 1 C F - 2 7  
C F  I J C F  I = F L I T o  
DO 6 8  K C F= l t 2 7  

JCF"• JCF+ l  
C F C JC F l = C F O C KCF I 

6 8 C ON T I NU E  
CiO TO en 

C LOADS THE CFO VALUES F R OM T H E  CF A R R A Y .  
7 0  D O  7 1  K C F= l • 2 7 

JCF = J C F + l  
C FO C KC F l = C F C JC F I 

7 1 CON T I NU E  
C TRA N SFORMA T I ON OF T HE COOR D I N A T E  S YS T E M  F ROM X - Y  TO U-V 

80 DX= X I  I -X O  
DY= Y I  I - YO 
U=A P*OX+RP•DY 
Vo:CP•DX+DP•DY 

C FVALUA T J ON OF T HE POLYNOM I AL 
8 5 P O = P O O+U• C P l O+U* I P 2 0+U* C P 3 0+U* C P4 0+ U * P 5 0 1 I l l  

P l =P O l +U* C P l l +U* < P 2 1 +U* C P3 1 +U * P4 1 l l l  
P 2 = P 0 2 +U • I P 1 2 +U * ( P2 2 +1J* P 3 2 l l  
P 3= P0 3 +U• C P 1 3 +U*P2 3 l 
P 4 ., P 0 4 +U • P l 4 
Z J O=PO+V• C P l+ V• < P 2 +V* C P3 +V• C P 4 +V * P5 l ) l l  
GO TO LBL • < 3 1 • 4 1 • 4 2 1 
E N O  
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J P J  1 76 
I P I 1 7 7 
! P l  } 7 P, 

1 0 1  1 7 1"} 
I P  I l P, fl  

J P !  l P l  
1 1"'  I l A 7 
I P !  l P ' 
I P  I 1 !I 1, 

I P I  1 8 5  
! P I  J � f,  
J P J l P. 7  
I P  I P I A 
I P I  1 8 9 

I P  I l 9 0  

I P I  ] Q l 
J P !  1 9 2 
I P  I 1 9 ' 

I P !  1 CJ 4  
I P I  1 '> 5 
I P !  1 0 6 
! P l  1 0 7 
I P I  J '> P. 

! P l  } Q O 

I P I  7 no 
I P I  ?. 0 1  
J P  I 2 0 2  
J P I 2 0 3 
I P J  2 0 4  
I P I  2 0 5  
I P I 7 n F, 
I P I  7 0 7 
! P l  2 0 P.  
J P  J 200 
I P I  2 1 0  
J P I  2 1 1  
I P !  2 1 2  
J P J  2 1 3  
I P I  2 1 4  
T P I  2 1 5  
I P I  2 1 6  
! P I  2 1 7  
J P I  2 1 8  
J P T  2 1 9  
J P J  2 2 0  
I P I  2 2 1  
J P !  2 2 7 
J P J  ? 2 '.'I  
I P J  2 2 4  
I P I  2 2 5  
I P I  2 2 6  
I P !  2 2 7  
J P J  2 2 8  
I P  J 2 2 9  
I P I  2 3 0  
I P J  2 3 1  
! P I  2 3 2  
J P J  2"' '  
I P I  2 3 4  
1 P 1  2 3 5  
J P  J 2 36 
J P J  2 3 7  
J P J  2 3 8  



SUBROU T I N F  I DS FF T l �D • NDP t X D t Y D • ZD t W K • NX l t NY i t X I 1 Y l • Z I I 
C TH I S  SUBROUT I N E P E R FOR�S S�OOT H  SURFACF F I T T I NG WHEN T H F  P R O

C J FC T J ONS OF THf D A T A  PO I N T S  I N  T H F  X-Y P L A NE A RF I R R EGULARLY 

C D I S TR I BU T E D  IN THE PLAN E .  
( THE I NPUT P A R AM F. T E q S A q F'  
C MD = �Of"tF OF C�PlJ T A T I Olll_ ( �U S T  RF l • 2 •  OR � ) , 
c = 1 FnR N EW xn-Y D •  
( : 7 FOR O L D  X�- Y D t  NEW X I - V J ,  
c = 3 FOR O L D  xn- Y D t  OLn X J - Y J , 
C NOP NUMBE�

-
OF D A T A  PO I Nt S  l �UST RE 4 OR riRE A T E R l i  

C X O  A R R A Y  
·
oF D I ME lllS I ON NDP S T OR I NG Hlf X <:OOR D I NA T f S  

C OF THE DATA �0 I N T S 1 
C Y U  = ARRAY OF D I ME NS I ON NOP S T OR I NG THE Y COOR D I N A T E S  
C OF T HE DATA PO I N T S • 
C ZD = AR R AY OF D I ME lll S I ON NOP S T OR I NG THE Z C00RD I N A T ES 
C OF T H E  DATA P O J lll T S 1  
C WK : AR R A Y  OF D l �E NS i nN l 2 * N D P+NNO+ � l * N D P+� X I *N Y I  
C TO B E U S E D  AS A WORK AR E A ,  
( N X l  = NUM A E R  OF OU T PUT GR I D  PO I NT S  I N  T H E  X COOR D I N A T E  
( ( MUST RE 1 OR G R F A T F R l t  
C N Y I  = NUMB E R  OF OU T P U T  GR I D  PO I NT S  I N  T H E  Y COORD I NA T E  
C I MU S T  B E  1 OR G R E A T E R l 1  
C X I  = A R R A Y  OF D I MENS I ON N X I S TOR I NG T H E  X COORD I NA T E S  
C OF T HE OUT PU T  GR I O  PO I N T S , 
C Y I  A R R A Y OF D l �E NS I ON NY I S T OR i lll'1 THF Y C OORD I N A T E S  
C OF T HE OUTPl .IT GR I D  PO I N T S • 
C WHE RE N N P  I S  THE NU�BER OF ADD I T I ON A L  DA T A  P O I N T S  U S E D  FOR 
C E S T I MA T I NG P AR T I A L DER I VAT I VES AT E A C H  D A T A  PO I N T .  T HE VALUE 
C OF N N P  MUS T B f G I VEN THROU GH T H E  I DNN COMMON . N N P  MUST g E  2 
C OR GR E A T ER • 8UT S�A L L E R  THAN NOP . 
C T HE OUTPU T  PARA M E T E R  I S  
C Z I  = DOUBL Y-D I ME N S I ON E D  A R R A Y  OF D I ME N S I ON I NX I 1 N Y i l 1  
C WH E R E  T H E  I N T ERPOLA T ED Z VAL U E S  A T  T H E " OUT P U T  
C GR I D  PO I N T S A R E  TO B E  D I S P L A Y E D .  
c THE L UN CONST AN T  I N  T HE DATA I N I T I A L I Z A T I ON S T A T F M F. N T  r s  T H E  
C L OG I CA L  UN I T N U M B E R  OF T H E  S T A N D A R D  OUT P U T  U N I T  AND I S 1  
C THE R E FOR E •  S Y S T E M  DEPENDE N T .  
C DECLAR A T I ON S T A T E M F. N T S  

D I MENS I ON X D l l O l 1 Y D l l O l 1 ZD l l O l 1 WK l l O OO l 1 
1 X l l l O l 1 Y l l l O l 1 Z l l l O O I  

COMMO N /  J DN N / N N P  
COMMON / I DGM / N DPC 1 NNPC 1 N T t N L  
COM�ON / I D D J / N C F 1 I C F  
EQU I VA L E N C E  I FN DPO , NDP0 ) 1 I FNDPPV , ND P P V I •  

1 I FNNP0 1 NN P O l • I FN N P P V , N N P PV l 1  
2 I FN X l O • NX I O l • I F N X I P V , N X I PV l t  
� < FN Y l 0 1 NY I O l 1 < F NY I PV 1 N Y I PV l t  
4 I FN T t N T l t l FNL • NL I 

D A T A  LUN / 6 /  
C S E T T I NG O F  SOME I NPU T  PARAME T E R S  T O  L OCA L VAR I AB L E S . < A LL MD I 

I n MDO=MD 
NDPO= NDP 
NDPC= NOPO 
N X I O= N X J 
N Y I O = N Y I  
NNPO=NNP 
N NPC=NNPO 

<: E R ROR ,CHEC K .  < A L L  MD I 
2 n  I F < M Dn e L T e l e OR e MDO . GT . 3 1 G O  TO 90 

J F I N DP O e L T e 4 1 GO TO 90 
I F < NX I O e L T e l e OR e NY l O e L T . 1 1  GO TO oo 
I F I NN PO e L T e 2 e 0R o NN P O o GE . NDPO I GO T O  9 0  
I F I MDO • NE . 1 1 GO TO 2 2  

2 1 W K l l l = FNDPO 
WK l 2 l = FlllNPn 
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I S F 0 0 1  
I S F  0 0 2  
J SF 0 0 3  
I SF 0 0 4  

I S F  f') (l c;  
I SF r! O b  
J .<; F '1 0 7  
J S F n O P  
J S F on9 
I S F 0 1 0 
I S F 0 1 1  
I S F 0 1 2  
I SF O p  
I S F  0 1 4  
I S F  0 1 '5  
I S F  " l  A 
I S F' 0 1 7 
I SF O J  !'I 
J S F  0 1 9  
I S F n 7 0  
I S F 0 2 1 
I SF 0 2 2  
I S F 0 2 3 
I S F  0 2 4  
I S F 0 2 '5  
I S F n 2 6  
! S F 0 2 7  
J S F  0 2 8  
J S F  0 2 9  
I S F 0 3 0  
I S F  0 3 1  
I S F  0 3 2  
J S F 0 3 3  
T S F  C1 3 4  
I S F 0 3 5  
J S F 0 3 6  
I S F  0 3 7 
J S F  0 3 8  
J S F  0 3 9  
I S F 0 4 0  
T S F  0 4 1  
T S F  0 4 2  
T S F  0 4 � 
I SF 044 
TSF 04'5 
I S F 0 46 
I SF 0 4 7  
I S F  0 4 8  
T S F  0 4 9  
I S F  0 50 
I S F !'1 5 1  
T S F  f' '5 2  
T S F 0 5 3  
T SF 0 5 4  
I S F 0 5 5  
I S F  0 5 6  
T S F  0 '5 7  
T S F  0 5 1!  
I S F  0 5 9  
I S F  0 6 0  
J S F  0 6 1  
I SF 0 6 2  
I S F  0 6 3  
I S F  0 6 4  
I S F  0 6 5  



GO TO 24 
? ?  F NDPPV=Wl<" ( l l 

FNNPPV=Wl<' l ? I 
I F I NDPO o N E o NDPPV I 
I F I NNPO o N E o NN P PV I 
I F I MDn . N E . 3 1 

2 3  FNX I PV =WK l 3 1  
FNY I P V =Wl<' 1 4 1 
I F I N X I O o N E o N X I PV I  
I F I NY I O o N E o NY I P V I 
<"iO TO 3n 

? 4  WK 1 3 1 = FN X I n 
WK 1 4 1 = FN Y I O  

G0 T O  <W 
GO T O 90 
GO TO ? 4  

G O  TO <J O  
GO TO 9 0  

C ALLOCAT I O N  O F  S TORAGE A R E A S  I N  T H E  W K  A R R A Y .  I AL L  MD I 
� n  NDNDMl =NDPO* I NDP0- 1 1 

I W I P T = 7  
I W I PL = I W I PT + N DN DM l  
I W I PN= I W I PL+NDN DM l 
I WPD = I W I PN + N D P O * N N P O  
I W I T  = I WPD + N D P 0 * 5  

C D I V I DES T H E  X - Y  P L A N E  I N TO A N UM B E R  OF T R I ANG L ES AND 
C DE TE R M I NES N N P  PO I N T S  N f A R F S T  E ACH DATA PO I N T .  I MD= l l  

4 n  I F I MD . G T . 1 1  .GO TO 4 ?  
4 1  C A L L  I DGEOM I X D t YD t WK I I W I PT l t WK I I W I PL l t WK I I W I PN l l 

WK 1 5 1 = FN T 
WK l 6 1 = F N L  
G O  T o  50 

4 2 F N T =WK l 5 1 
F N L =WK I 6 I 

C E S T I MA T ES PAR T I AL DER I V A T I VE S  A T  A L L  D A T A  PO I N T S .  I A L L  MD I 
50 C A L L  I DPDRV I X D t YD t Z D t WK I  I W I PN I  t WK I  I W PD I I 

C LOCA T E S  A L L  I NT E R POLAT E D  P O I N TS . I MD = l t 2 1  
60 I F I MD o . E a . 3 1 GO T O  70 

I X l =O 
JW I T = I W I T- 1  
I NC ,.- 1  
DO 6 2  I Y l = l • N Y I O  

I NC =- T NC 
Y I I .:Y f l  I Y I  I 
D O  6 1  I X I O = l t N X I O  

I X l = I X l + T NC 
JW I T= JW I T+ I NC 
C A L L  J DLC T N I XO t Y O t WK I I W I P T l t WK I I W I PL l t 

1 
6 1 

X I l l X l l t Y l l t WK I JW I T I  I 
C ON T I NU E  
I X J = I X I + I NC 
J W I T =JW I T + I NC+NX t n  

62 CON T I NUE 
C I N TE RPOL A T I ON OF T H E  Z I  VA L U E S . I A L L  �D I 

70 N C F = O  
I CF =O 
JW J T .: I W I T- 1 
I X l =O 
I Z l =O 
I NC =- 1  
DO 7 2  I Y l = l t NY I O  

I NC =- J NC 
Y I  l = Y I  I I Y I  I 
DO 7 1  I X I O • l t N X I O  

JW I T= JW I T+ I  NC 
I X l • I X l + I NC 
I Z l = I Z l + I NC 

C A L L  I DP T I P I XD t YO t ZD t WK I I W I P T l t W K I I W I PL l t WK I I WPD l t  
1 WK I JW I T l t X I I I X l l t Y i l t Z l l I Z i l l  

7 1 CON T I NU E  
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I SF " f.F-1  
I S F 0 f. 7  
T S F n A A  
I S F  O F, Q  
I S F 0 7 0  
I S F  f"l 7 J  
I S F  0 7 2  
I S F  0 7 '3  
I S F  0 74 
I S F  f' 7 'i  
T S F fl 7 6  
I S F  ('1 7 7  
I S F  " 7 P.  
I S F 0 7 9  
I S F O A O  
I S F  0 8 1  
I S F 0 8 2  
I S F  O B �  
I S F 0 8 4  
I S F  O A 'i  
I S F  0 8 6  
I S F  0 8 7  
I S F  0 P. A  
I S F  0 8 9  
I S F  090 
ISF 0 9 1  
I S F  0 9 2  
I S F  0 9 3  
I S F  094 
ISF 095 
I S F  096 
ISF 0 9 7  
I SF OQR 
I S F  09<1 
I S F  1 00 
ISF 1 0 1  
I S F  1 0 2 
I SF 1 M 
I S F  1 04 
I S F  1 ('l e;  
I S F  1 06 
I S F  1 07 
I S F  1 08 
I S F  1 0 9  
I S F  1 1 0 
I S F  1 1 1  
I S F  1 1 ?  
I S F  1 1 3  
I S F  1 1 4  
I S F  1 1 5 
I S F  1 1 6 
I S F  1 1 7  
I S F  1 1 8 
I S F  1 1 9 
I S F  1 2 0  
I S F  1 2 1  
I S F  1 2 2  
I SF 1 2 3  
I S F  1 2 4  
[ SF 1 2 5  
I SF 1 2 6  
I S F  1 2 7  
I S F  1 2 8  
I S F  1 2 9  
I S F 1 30 



J W I T =JW I T + I NC + N x r n  
I X I = I X I + I NC 
I Z I = I Z I + I NC +N X I O  

7 2  CON T I NUE 
C lllORt-'AL fX I T  

A n  R E T URN 
C E R ROR E X I T  

Qo WR I T E I LUN . 2 090 1 �D 0 1 NDPO . N X I O . NY J o , NNPn 
R ETURN 

C FORMAT S T A TEMENT FOR ERROR MESSAGF 
2 090 FORMAT l 1 X /4 1 H *** I M PROPER I NPU T P A R A M E T E R  VALUE I S J . I  

1 7H MD = • I 4 • 1 0 X , 5HNOP = • l 6 • 1 0X . 5 HN X I = • I 6 •  
2 l O X • <; �N Y I  z • i 6 • 1 0 X • 5HNNP = • 1 6 / 
3 3 5 H  E R ROR D E T E C T E D  I N  ROUT I N E I DS F F T / J  

ENl'l 

B LOCK DAT A  
C TH I S  SUBPROGRAM EN T ER S A N UMAF R  I N TO T HE N N P  CON S T A N T  I N T H E  
C I DN N  COMMON • WHER E  N N P  I S  THE NUM B E R  OF ADD I T I ON A L  D A T A  PO I N T S 
C USED FOR E S T i t-'A T I NG PAR T I AL DER I VA T I V ES A T  E � CH D A T A  PO I N T I N  
C T H E  I DB V I P / I DS F F T  SUBPROGRAM PACK A G f .  N N P  I S  S E T  TO 4 
C I N I T I AL L Y  B Y  T H I S  SUB DROGRAM . 

C0'-11'-'0N / l r>N N / NNP 
D A T A  NNP /4 / 
E N ()  
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I S F  l ' H  
! S F l'.'1 2  
! S F 1 3 3  
I S F 1 3 4 
! S F J 3 <;  
I S F  1 3 6 
I S F l "! 7 
I S F l 'Hl 
! S F 1 3 9 
I S F 1 40 
I S F 1 4 1  
! S F 1 4 2  
! S F 1 4 3  
I S F  1 4 4  
I S F 1 4 <; 

I AD '1 n l 
I B D  0 0 2  
I BO 0 0 3  
I B O 004 
I BO 0 0 5  
mo 0 06 
I A D 0 0 7 
I B O 0 0 8  
I B O 00 9 
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