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Video Quality Assessment: Subjective testing of entertainment scenes 

Margaret H. Pinson, Lucjan Janowski, and Zdzisław Papir 

This article describes how to perform a video quality subjective test. For companies, these tests 

can greatly facilitate video product development; for universities, removing perceived barriers 

to conducting such tests allows expanded research opportunities. This tutorial assumes no prior 

knowledge and focuses on proven techniques. (Certain commercial equipment, materials, 

and/or programs are identified in this article to adequately specify the experimental procedure. 

In no case does such identification imply recommendation or endorsement by the National 

Telecommunications and Information Administration, nor does it imply that the program or 

equipment identified is necessarily the best available for this application.) 

Video is a booming industry: content is embedded on many Web sites, delivered over the 

Internet, and streamed to mobile devices. Cisco statistics indicate that video exceeded 50% of 

total mobile traffic for the first time in 2012, and predicts that two-thirds of the world’s mobile 

data traffic will be video by 2017 [1]. Each company must make a strategic decision on the 

correct balance between delivery cost and user experience. This decision can be made by the 

engineers designing the service or, for increased accuracy, by consulting users [2]. 

Video quality assessment requires a combined approach that includes objective metrics, 

subjective testing, and live video monitoring. Subjective testing is a critical step to ensuring 

success in operational management and new product development. Carefully conducted video 

quality subjective tests are extremely reliable and repeatable, as is shown in Section 8 of [3]. 

This article provides an approachable tutorial on how to conduct a subjective video quality 

experiment. Our goal is to encourage more companies and universities to perform subjective 

tests.  

A subjective video quality test uses a small set of short video sequences (e.g., 8-20 seconds) to 

measure people’s opinions of the quality of different video processing options. These tests focus 

on people’s current opinion, as opposed for example to opinions of an entire movie. Subjective 

tests use a small set of video sequences to compare different video processing options. The goal 

is to make an impartial judgment about opinion trends. Example applications include choosing 

between different coding algorithms, comparing one coder at different bitrates, comparing two 

implementations of the same algorithm, optimizing coder parameters, improving an error 

concealment algorithm, or selecting a maximum packet loss rate for a service. Video quality 

subjective tests isolate one factor: video quality. Issues that might confound the experiment 

data should be excluded (e.g., audio, scene composition, esthetics, display, environment, device 

interface, two-way communication, and quality of experience (QoE)). 

ITU Recommendations 

The International Telecommunications Union (ITU) recommendations most directly applicable to 

this tutorial are ITU-R Rec. BT.500 (2012), Methodology for the Subjective Assessment of the 
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Quality of Television Pictures; ITU-T Rec. P.910 (2008), Subjective Video Quality Assessment 

Methods for Multimedia Applications; and ITU-R Rec. BT.1788 (2007), Subjective Assessment of 

Multiple Video Quality (SAMVIQ). ITU-R Rec. BT.500 focuses on video quality and image quality 

in a home television environment; ITU-T Rec. P.910 focuses on video quality, videotelephony, 

videoconferencing, and storage/retrieval applications; and ITU-R Rec. BT.1788 identifies one 

particular rating method. The current version of each Recommendation is distributed freely on 

the ITU website (http://www.itu.int/). These procedures remove all distractions from the 

environment in order to eliminate variables that might bias the test. The environment is 

basically an idealized living room: quiet and devoted to this one task. These ITU Recs assume the 

reader has some prior knowledge.  

The scope of ITU-R Rec. BT.500 is broadcast television, and therefore entertainment video in 

either standard definition or high definition format. BT.500 specifies highly controlled monitor 

calibration and lighting conditions (e.g., the ratio of luminance of inactive screen to peak 

luminance should be ≤ 0.02). The monitor calibration techniques focus on the needs of 

broadcasters, so an amateur may have difficulty calibrating consumer grade equipment.  

ITU-T Rec. P.910 was designed for video systems at lower bitrates and quality than broadcast 

television. The wording of P.910’s focus may look odd today, because terminology has changed. 

P.910 is appropriate for high definition television (HDTV) through QCIF resolution (176 × 144). 

P.910 specifies exact lighting conditions, but they are easier to recreate than BT.500’s lighting 

conditions. The monitor is not calibrated, which is more appropriate for computers, mobile 

devices, and consumer grade televisions. ITU-R Rec. BS.1788 is commonly referred to by the 

acronym of its title: SAMVIQ. This Recommendation defines a particular rating scale and 

method.  

Work is underway in the ITU to develop recommendations better suited to new technologies. 

One example is the newly approved ITU-T Rec. 913 (2014) Methods for the subjective 

assessment of video quality, audio quality and audiovisual quality of Internet video and 

distribution quality television in any environment. This recommendation describes techniques 

for situations not covered by BT.500 and P.910, including the use of natural lighting or a 

distracting environment (e.g., a cafeteria or bus). Published at the end of 2014, [51] contains a 

summary of the differences between the traditional techniques found in this article and P.913. 

Experiment Design 

Terms and Definitions  

 Source Sequence (SRC) is the unimpaired video sequence (i.e., the content). 

 Original refers to the original version of each SRC (e.g., broadcast quality).  

 Processed Video Sequence (PVS) is the impaired version of a video sequence.  

 Clip refers to any video sequence, SRC or PVS. 

http://www.itu.int/
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 Hypothetical Reference Circuit (HRC) is a fixed combination of a video encoder 

operating at a given bitrate, network condition, and video decoder. The abbreviation 

HRC is preferred when vendor names should not be identified. 

 Full Matrix design consists of n SRCs and m HRCs. All combinations of SRCs and HRCs are 

included in the experiment, for a total of (n x m) PVSs.  

 Partial Matrix design splits the experiment into two or more smaller matrixes. For 

example, a two matrix experiment would have two scene pools (pool A and pool B, with 

nA and nB SRCs respectively) and two HRC pools (pool A and pool B, with mA and mB 

HRCs respectively). All combinations of pool A SRC and HRCs are included, plus all 

combinations of pool B SRC and HRCs, for a total of (nA × mA + nB × mB) PVSs. 

Goal of Experiment and Design Consequences 

The first goal of a video quality subjective test is to answer a specific question about video 

encoding, transmission, or decoding. These questions are typically posed as comparisons 

between one or more variables. The analysis will directly compare pairs of HRCs using identical 

SRCs, typically via a full matrix design. For example, Younkin and Corriveau [4] use a full matrix 

design to analyze the impact of playback error severity on quality perception.  

The full matrix design allows all HRCs to be directly compared and produces improved accuracy 

for some analysis techniques (see the section “Choosing a Subjective Scale”). The disadvantage 

is that less information is obtained about the impact of different source material on the HRCs. 

This is undesirable, because codecs yield very different quality depending on the scene content, 

as can be seen in Figure 1, taken from [5]. The x-axis displays bit-rate and the y-axis displays 

mean opinion score (MOS). The boxes and whiskers in Figure 1 show the distribution of PVSs 

within an HRC. Some of the plotted HRCs span more than half of the absolute category rating 

(ACR) scale. 

 

Figure 1. For coding-only impairments, quality comparison of H.264 (solid blue) and MPEG-2 (dotted 
red). Box-plot identifies minimum, 25%, mean, 75%, and maximum MOS. 
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Twice as many SRCs can be included in a partial matrix design of two matrices, compared to a 

full matrix design. This alleviates the subjects’ boredom. The partial matrix design allows direct 

comparisons only of HRCs within an HRC pool. For example, HRCs from pool A cannot be directly 

compared with HRCs from pool B. Pinson et al. [5] use a partial matrix design to compare the 

quality of the H.264 and MPEG-2 coders, both with and without Packet Loss. 

Both full matrix and partial matrix designs depend upon two variables: SRC and HRC. A third 

variable—the environment—is needed to answer questions about interactions between the 

video signal and the viewing environment. For example, Brunnström et al. [6] explore the 

relationship between video quality and the viewing angle of the subject to the screen. Thus, 

Brunnström’s HRC definitions specified the viewing angle. 

The second video quality subjective test goal is to train a metric or algorithm. For example, an 

objective video quality metric estimates the quality ratings that would result from a subjective 

experiment. The accuracy of the resulting metric depends upon the quantity and variety of 

training data. Thus, the optimal experiment design maximizes the number of SRCs and HRCs for 

the available number of PVSs. Neither the full matrix nor the partial matrix design can 

accomplish this design goal. A random pairing of each SRC and a different HRC will accomplish 

this goal, though most engineers are troubled by the asymmetry. Voran and Wolf [7] provide an 

example of a subjective experiment designed specifically to train a metric. The full matrix and 

partial matrix test designs A full or partial matrix design is advantageous if the experiment is 

intended for two purposes: to answer a question and to train a metric. Huynh-Thu and Ghanbari 

[8] provide an example. 

The third video quality subjective test goal is to analyze the performance of an existing objective 

video quality metric or algorithm. The constraint here is not the design of the test—both the full 

matrix and the partial matrix designs are suitable—but rather the fact that training data cannot 

be used to test the model’s performance. Ideally, this prohibition includes scene content, coder 

implementations, and coder/network settings (e.g., packet loss rate, bitrate). Voran and 

Catellier [9] provide an example of how to design a subjective test to both train and test a 

metric. This paper describes a speech quality experiment, however the experimental design 

issues are the same. 

Video quality subjective tests can be used in combination with other subjective tests  to 

understand larger quality implications. ITU-T Rec. P.1301 [10] demonstrates this idea for 

telemeeting systems, and an applied example can be found in [11].  

SRC, HRC and PVS Selection  

Video quality subjective tests typically use short sequences (e.g., 8-10 sec duration). Pinson et al. 

[12] provide guidance on choosing a balanced and well-designed set of scenes for a subjective 

test. This guidance includes avoiding offensive content, choosing scenes that evenly span a wide 

range of coding difficulty, deciding whether or not scene cuts should be allowed, and selecting 

scenes with unusual properties. It is important to use high quality footage, because otherwise 
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the quality impairments in the SRC can obscure any effects of the HRC in the test results. Niu 

and Liu [13] explain the differences between professional and amateur videography, and 

provide objective criteria for identifying professional video sequences. Amateur footage 

typically contains aesthetic problems that trigger low video quality ratings (e.g., focus control, 

color palette, camera motion, shot length, and visual continuity). The Consumer Digital Video 

Library (www.cdvl.org) provides free downloads of broadcast quality footage for research and 

development purposes. Another Web site that offers free footage is http://www.irccyn.ec-

nantes.fr/spip.php?article541. 

The range of PVS quality should span the scale used to conduct the test (see the section 

“Choosing a Subjective Scale”). Experiments that contain a narrow range of quality will be 

frustrating for the subjects and researcher alike, since the data are unlikely to show any 

significant results. It is better to design experiments that span a wide range of quality—or at 

least a wide enough range that meaningful results can be found. 

The goal of many subjective experiments is to compare and contrast the quality of various video 

impairments. This analysis is only possible when HRC creation is limited by two constraints: (1) 

the definition of each HRC is constant throughout the experiment, and (2) if two HRCs are to be 

compared, then those HRCs must be paired with the same set of SRCs. 

The term “HRC” implies that all PVSs associated with that HRC were created using a constant set 

of control parameters. A particularly popular HRC definition specifies codec A, profile B, 

constant bitrate C, and packet loss rate D. As a side effect of this design, difficult-to-encode SRCs 

will yield a very wide range of quality (excellent to bad), while easy-to-encode SRCs will yield a 

narrow range of quality (excellent to fair). An alternative approach tries to produce equivalent 

quality for all PVSs associated with a single HRC. This can be done with variable bit rate encoding 

or a constant quantization profile (QP) value. The problem is that it becomes difficult to reach 

conclusions about the coder’s behavior at different bitrates. 

Test Environment 

Traditionally, subjective video quality tests are performed in a controlled laboratory 

environment. This reduces the effect of extraneous variables on the experiment without 

requiring a specialized space or great expense. While the potential impact of some elements is 

debatable, the traditional controlled environment demonstrates your expertise to the research 

community. 

 Walls. The walls of the test chamber should be plain white and not show potentially 

distracting objects (e.g., pictures, clock, wires). Windows must be covered with light 

blocking curtains. Temporary room dividers encourage the illusion of a non-distracting 

chamber. 

 Floor. The floor should be a neutral, non-distracting color. Solid grey is traditional. 

 Furniture. Only necessary furniture should be in the test chamber. The chair provided to 

subjects should not have wheels. This will encourage the subject to keep a constant 

http://www.cdvl.org/
http://www.irccyn.ec-nantes.fr/spip.php?article541
http://www.irccyn.ec-nantes.fr/spip.php?article541
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viewing distance throughout the test. An upright chair helps to encourage attention on 

the task. 

 Lighting. See ITU-R Rec. BT.500 clause 2.1 or ITU-T Rec. P.910 clause 7.1 for lighting 

conditions. The listed specifications can be met inexpensively using a light meter, full 

spectrum bulbs, and variable intensity lamp controls.  

 Viewing Distance. See ITU-R Rec. BT.500 clause 2.1 or ITU-T Rec. P.910 clause 7.1 for 

details. For most experiments, the monitor and chair should be positioned at a defined 

viewing distance. The viewing distance is traditionally measured in picture heights: four 

to six times picture heights (4H to 6H) for standard definition television, 2H to 3H for 

HDTV, and 8H for smartphones and other very small monitors [14].  

 Monitor. BT.500 encourages the use of a professional quality monitor, to eliminate a 

potentially confounding variable. For P.910, choose a monitor that matches the 

application. 

 Background Noise. The test chamber must be quiet, with a minimum of background 

noise. If a computer is used to play the videos, the computer should be outside the test 

chamber. 

 Bystanders. While a subject is running through the test, the chamber should be used for 

no other purpose. In some cases, the test chamber will have two or more subjects and 

the experimenter. People who are interested in seeing the test results come out a 

certain way should not interact with the subjects, perform the data analysis, or design 

the test (e.g., product managers). 

Number of Subjects, Stimuli and Test Sessions 

The reliability of ratings depends upon averaging data across multiple subjects. While BT.500 

recommends a minimum of 15 subjects, a recent study by Pinson et al. [15] endorses a 

minimum of 24 subjects. Fewer subjects may be used to indicate trending.   

Subjects have a limited attention span, and so the typical challenge is fitting all impairments of 

interest into a set of test sessions that one person can reasonably watch. Preferably, each 

session should last no more than 20 minutes, and each subject should spend no more than 1 

hour rating video. Longer experiments require additional motivation or variety to keep the 

subjects alert. Payment is the traditional motivator. The best way to add variety into an 

experiment is to increase the number of SRCs.  

Subjective experiments should use at least eight different SRCs. Differences between SRCs are a 

major variable for every subjective experiment. A large and varied pool of scenes minimizes the 

risk that the subjective experiment will reach an erroneous conclusion. This effect is 

demonstrated in Pinson et al. [12]. Whenever possible, we advocate the use of the partial matrix 

test design over a full matrix design. Each full matrix within the partial matrix test is associated 

with a different set of SRCs and HRCs. This adds much needed visual interest for the subject. 

HRCs that need to be directly compared should be put within the same matrix.  
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Choosing a Subjective Scale 

The choice of subjective scale is surprisingly contentious. Each scale has strengths and 

weaknesses. Choose the scale that best matches your goal. There are two types of rating scales: 

single stimulus (SS) and double stimulus (DS). In an SS test, the subject watches and rates each 

video sequence separately. In a DS test, the subject watches two or more versions of the same 

source video sequence during the rating process.  

Listing of Subjective Scales 

For the ACR from ITU-T Rec. P.910, the subject watches a video sequence, and then is asked to 

rate it on a discrete, 5 level scale (see Figure 2). Each level is associated with a word and a 

number: excellent = 5, good = 4, fair = 3, poor = 2, and bad = 1. Variations include 9 levels, 11 

levels, and a continuous scale with labels only at the end points. A “continuous scale” is a 

continuous line when presented to the subject and converted to a 100 level scale for the 

purposes of data analysis. Alternative labels may be needed for some experiments. ITU-T Rec. 

P.800, a speech quality subjective testing standard, provides alternate ACR wording examples 

for a listening-effort scale, and a loudness-preference scale. ACR is an SS method. 

 

Figure 2. ACR rating cycle: subject watches video clip A and then rates A 

ITU-T Rec. P.910 identifies a variant, ACR with hidden reference (ACR-HR). In ACR-HR, each 

original is included in the experiment but not identified as such. The ratings for the originals are 

removed from the scores of the associated PVSs during data processing. High quality originals 

are critical when using ACR-HR. If the quality of the original SRC drops from excellent (5) to fair 

(3), the available ACR-HR scale decreases from 4 units to 2 units. This causes an inherent bias in 

the data when comparing PVSs associated with two different SRCs. 

The degradation category rating (DCR) method from P.910 also appeared in an old version of 

BT.500 under the name double stimulus impairment scale (DSIS). DCR presents stimuli to 

subjects in pairs (see Figure 3). The original is presented first, and the subject is told that this is 

the original. The stimulus to be rated is presented second. The subject rates the difference in 

quality on a discrete, 5 level, impairment scale: imperceptible = 5, perceptible but not annoying 

= 4, slightly annoying = 3, annoying = 2, and very annoying = 1. DCR is a DS method.  

View A Rate A 
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Figure 3. DCR rating cycle: subject watches the original video, watches a processed version of that 
video, and then rates the level of impairment. 

The pair comparison method from BT.500 also appears in P.800 under the name Comparison 

Category Rating (CCR), and in an old version of BT.500 under the name Double Stimulus 

Comparison Scale (DSCS). A pair of stimuli is presented to the subject; however the order of 

stimuli is random (see Figure 4). If Pair Comparison is used to compare original and processed 

sequences (like DCR), then the original would be played first for approximately half of the trials, 

and the PVS would be played first for the rest of the trials. Pair comparison is the only method 

that can directly compare two different impaired versions of the same video sequence. 

The subjects rate the quality of the second stimulus compared to the quality of the first on a 

discrete, 7 level scale: much better = 3,better = 2, slightly better = 1, about the same = 0, slightly 

worse = -1, worse = -2, and much worse = -3. Variations include a continuous scale (100 levels) 

and a discrete, 2 level preference (better or worse).   

 

Figure 4. Pair Comparison rating cycle: subject watches video sequence A, watches video sequence B, 
and rates B relative to A. 

The Double Stimulus Continuous Quality Scale (DSCQS) method from BT.500 involves four 

presentations of two stimuli, A and B (see Figure 5). One of these is the original, assigned 

randomly to position A or B. The subject is presented with stimulus A, then B, then A again, then 

B again. Afterward, the subject rates A and B separately, each on a continuous scale showing 

the ACR labels (excellent, good, fair, poor, or bad). 

 

Figure 5. DSCQS rating cycle: subject watches video clip A, then B, A again, B, again, and then rates A 
and B. 

The single stimulus continuous quality evaluation (SSCQE) method from BT.500 presents the 

subject with a stimulus of long duration (e.g., 5 to 30 min). The subject has a slider that is 

constantly moved to reflect the subject’s current opinion of the video quality (see Figure 6). 
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Ratings are sampled every half second. SSCQE was intended for the analysis of monitoring 

applications. SSCQE uses a continuous scale.  

 

Figure 6. SSCQE rating cycle: watch a long video sequence, and continuously update a slider to reflect 
current opinion of the video quality. 

The SAMVIQ method from ITU-R Rec. BT.1788 uses a continuous scale, marked with the ACR 

labels. The test uses a computer interface, which presents the subject with multiple versions of 

the same SRC (see Figure 7). The subject may play each stimulus multiple times, and may choose 

the order in which stimuli are rated. One of the stimuli is the original and explicitly labeled as 

such. Another stimulus is a hidden reference—identical to the original, but not labeled. The 

subject rates each version of one SRC and adjusts the ratings relative to each other.  

 

Figure 7. SAMVIQ rating cycle: subject watches several versions of one SRC in any order. Ratings are 
adjusted until the subject is satisfied. 

An Analysis of Single Stimulus (SS) Rating Methods  

ACR with a 5 level scale maximizes cognitive ease and the number of video sequences rated 

each minute [16]. ACR produces very repeatable subjective results, even across different groups 

of subjects, provided that the test design and instructions are carefully prepared [17]. Studies 

[16]-[18] compared ACR ratings with ratings gathered from DSCQS, DCR, and SAMVIQ. The 

rating scale choice had a minor impact on data accuracy.  

The SS methods (ACR and SSCQE) have two weaknesses. The first is that some types of 

impairments are difficult to detect without an explicit comparison between two video 

sequences. For example, small color shifts are difficult to detect using ACR tests.  
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The second weakness is that SS ratings do not differentiate between impairments in the source 

sequence and impairments intentionally added to the processed sequence. SS scores are often 

biased by subjects’ opinions of the scene’s esthetics, composition, production quality, and 

subject matter, in spite of instructions to the contrary. ACR-HR offsets this flaw by removing the 

original video’s rating during data analysis. Thus, ACR-HR ratings look more like DS ratings (i.e., a 

score of “5” on the ACR-HR scale means that the original video and PVS have identical quality). 

This technique only works better with high quality SRCs.  

SSCQE has strengths and weaknesses similar to ACR. SSCQE has the potential for allowing the 

most evaluations from a single subject in a short time, because there are no pauses between 

stimuli for ratings. Pinson and Wolf [19] demonstrated that SSCQE can be as accurate as DSCQS 

and Pair Comparison for rating short video sequences by using multiple randomizations, hidden 

reference removal, and the SSCQE score at the end of each sequence. A variety of devices have 

been used to implement an SSCQE slider, including a game station steering wheel [20] and a 

sensory glove [21]. True SSCQE data analysis is complex, as it requires time series analysis.  

An Analysis of Double Stimulus (DS) Rating Methods  

DS methods address both problems of the SS method, at least to some extent. DS methods ask 

one of two basic questions.  

The first DS question is “which of these two sequences do you like better.” Pair Comparison is 

the only DS method that directly answers this question. Inversion errors can occur but seem to 

be rare (e.g., the subject marks “the second sequence is much better” when they intended to 

mark “the second sequence is much worse”). Pair Comparison takes approximately twice as long 

as ACR for the same number of stimuli. 

Pair Comparison is the obvious choice for detecting very small differences between two 

different impaired versions of the same video sequence. Doherty et al. [22] demonstrate the use 

of Pair Comparison to detect differences between frame rate conversion algorithms. 

The second DS question is “how well does the impaired sequence reproduce the reference 

sequence.” DCR answers this question explicitly. DSCQS, SAMVIQ and ACR-HR answer this 

question implicitly.  

DCR takes approximately twice as long as ACR for the same number of stimuli. This is as fast as 

any DS method can claim, and inversion errors do not occur. Tominaga [16] concludes that DCR 

is more desirable than DSCQS or SAMVIQ, due to improved speed and ease of use, without loss 

of accuracy. DCR cannot be used to measure quality improvements—the rating scale does not 

allow a subject to say that the processed video sequence is of higher quality than the source. 

DCR is the only method where subjects are unambiguously instructed to rate the perceptual 

difference between a original sequence and an impaired version of that sequence. 
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A quirk of DCR is that the original video will not be scored as perfect. That is, if the original video 

is played identically as both the “original” and “processed” video in Figure 3, the rating will be 

slightly less than 5.0. This imposes a systematic downward shift on all scores that bothers some 

researchers.( Pair Comparison is the only subjective method that is likely to yield perfect scores 

for original video sequences.) This bias causes no problems for the data analysis. 

DSCQS takes approximately four times as long as ACR for the same number of stimuli. The 

repeated viewings of stimuli A and B are intended to yield improved accuracy per subject for 

small quality differences, but this has not been proven.  

Inversion errors are a problem for DSCQS. Inversion errors are impossible to detect and remove 

from the data, and this is perhaps the reason why DSCQS failed to show improved accuracy in 

[16] and [18]. It should be possible to avoid DSCQS inversion errors using an automated 

subjective testing system that swaps the order of the fourth and fifth steps in Figure 5. 

SAMVIQ takes approximately twice as long as ACR for the same number of stimuli. SAMVIQ is 

slowed down by the ability of subjects to repeatedly play and compare sequences, yet sped up 

by presenting all versions of each SRC to the subject simultaneously. SAMVIQ is the only method 

that allows subjects to directly compare multiple versions of a single SRC.  

The advantage of SAMVIQ is improved accuracy. SAMVIQ with 15 subjects is as precise as ACR 

with more than 22 subjects [17]. An open question is whether or not SAMVIQ’s improved 

accuracy per subject yields an additional advantage for an experiment that focuses on a narrow 

range of quality.  

Discrete versus Continuous 

Discrete levels are used for ACR, DCR, and Pair Comparison. Continuous scales are used for 

SSCQE and DSCQS. Researchers have explored continuous scales and different numbers of 

discrete levels for ACR and Pair Comparison. Tominaga et al. [16] showed that a 5 level discrete 

scale provides a much easier cognitive task for the subject than an 11 level discrete scale or a 

continuous scale. Studies [16]-[18] demonstrate that the continuous scales do not improve 

measurement accuracy. This makes sense; research on human thought indicates that people can 

only hold about seven items in immediate memory [23]. (The Harvard Mind Brain Behavior 

(MBB) Event Video Archive provides a nice summary of [23] at minute 8:30 of the video “The 

cognitive revolution at fifty plus or minus one: a conversation with Jerome Bruner, Susan Carey, 

Noam Chomsky, and George Miller – Part 1.”)  

When using a discrete scale, researchers disagree on whether or not the level numbers should 

be displayed to the subject. No consensus exists on this subject.  
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Implementation 

Playing Broadcast Quality Video on a Television 

The ideal video playback system plays uncompressed video flawlessly. Why use uncompressed 

video? With uncompressed video and perfect rendering comes the guarantee that the playback 

system does not add new impairments to the video.  

This ideal television playback/capture system costs about US$10,000 excluding monitor, a cost 

that has been fairly consistent for the past decade. The components consist of a multiple core 

computer, a redundant array of independent disks (RAID), and a specialized board to play video 

from the RAID to the serial digital interface (SDI) high-definition SDI (HD-SDI) or high-definition 

multimedia interface (HDMI). The following companies currently produce professional grade 

video capture and playback cards that are compatible with professional editing suites: AJA, 

Bluefish444, Blackmagic, and Matrox. Bit perfect playback and capture must be proven, which 

requires two systems (i.e., system 1 plays the video, system 2 captures it, and then a pixel-by-

pixel comparison is performed). Common problems include insufficient RAID speed, operating 

system interruptions, anti-virus software interruptions, and driver incompatibilities.  

The alternative is to use dedicated hardware. There are too many professional grade devices 

available to list here. Most of these devices compress the video slightly (e.g., 4 to 10 times). 

Professional video devices ensure reliable video play and record capability, usually with no 

perceptual impairment.  

Playing Video on a Computer Monitor 

The ideal video playback system plays uncompressed, progressive video flawlessly from a 

computer hard drive to its monitor. If compressed playback is acceptable, the computer set-up 

is simplified and the price drops. For some devices, only compressed video playback is easily 

available (e.g., smartphones) and reliable playback requires substantial compression (e.g., 30 to 

250 times). Any added impairment from the coder, decoder, or display will confound the 

research data and may cause the data analysis to be misleading. To avoid this problem, 

identically compress all video sequences for the purposes of playback only. That is, after the 

videos have been impaired as specified in the experiment design, re-encode all videos at the 

same (higher) bitrate for playback purposes. The goal is that any added playback impairments 

will be imposed identically on all videos.  

When using a computer video playback system, you must calculate the appropriate level of 

compression yourself. The highest bitrate that guarantees flawless playback will minimize the 

perceptual impact of the recompression. To find this bitrate, encode a large variety of high 

quality SRC, and play them to the target display repeatedly, while looking for playback problems 

(e.g., intermittent pauses, reduced frame rate).  
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The Test Sessions: Automated, Edited or Manual 

There are three options for playing video and recording scores during the actual subjective test: 

automated playback and scoring, edited sessions, and manual sessions.  

When playing uncompressed or lightly compressed progressive video to a computer monitor, 

automated software provides an elegant solution for subjective testing. The software should 

identify subjects by ID number (see the section “Conducting the Experiment”), generate a 

unique randomized order of sequence presentation for each subject, implement the chosen 

method’s rating cycle, ensure flawless playback for all subjects, present the rating scale after 

video playback finishes, record scores to a file, run each session separately, prompt for breaks, 

remove visual clutter from the screen, and either allow or disallow video replay. Three freely 

available software packages are AcrVQWin [24], TALLY [25] and SubjectivePlayer [26]. 

If subjects are allowed to replay the video, some subjects will, and this impacts the ratings. No 

consensus exists on the advisability of the replay option. Allowing replay provides the subject an 

option other than guessing when their attention wandered—but conflicts arise with the usage 

paradigm for some video systems where rewind is not available. Thus, any article that describes 

a subjective test must specify whether or not videos could be replayed. 

When subjective video quality testing began, the only option available was editing test tapes. 

Edited sessions work as well today as they did then, though the playback system is likely to be 

DVD, BluRay, 3D BluRay, or simply a long video file. No specialized software is required, and 

equipment costs are minimal. DVD or BluRay ensure consistent playback quality.  

The concept is to edit together a long video sequence for each session. For example, when 

conducting an ACR test with 10 sec sequences, the sequence would alternate between playing a 

10 sec sequence and playing 8 sec of mid-level gray while the subject scores. This editing is 

simple yet prone to errors. A minimum of two different sequence orderings must be created, to 

minimize the impact of ordering effects (i.e., the quality of clip N influences the perceived 

quality of clip N+1). Order effects can be reduced by randomizing the sessions (e.g., one subject 

sees session A, B, C; another subject sees session C, B, A). Ratings are entered either on a paper 

score sheet or on a small mobile device. Unlike an automated test, the ratings are not 

synchronized with the video playback. The audio track and text overlays keep the subject 

synchronized (e.g., please score clip 1). Subjects will sometimes make a mistake, and get “off by 

one” in their scores (e.g., record the quality of clip 9 where they were supposed to score clip 8). 

Data entry errors can occur when copying paper rating sheets into a spreadsheet. 

The last option is a fully manual experiment. The experimenter can manually play each 

sequence in the desired order, ask the subject to choose a rating aloud, and record that rating 

themselves. This approach seems inelegant and the experimenter’s behavior could influence 

ratings. It is, however, quite inexpensive and very practical.  
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We recommend playing mid-level gray between video sequences (i.e., Y=128, Cb=0, Cr=0). The 

following MATLAB® code will create this JPEG image, for VGA (480 × 640): 

imwrite(zeros(480,640,’uint8’) + 128, ‘Gray.jpg’, ‘jpg’); 

Pretest 

The purpose of the pretest is to check the experiment design for flaws. The pretest allows 

design problems to be fixed before too much time and money has been invested in the 

subjective test. Start by viewing the PVSs yourself. The resulting distribution of quality may show 

undesirable clusters. If you, the experiment designer, are unable to detect differences between 

most of your PVSs, the subjects will not either.   

A pretest is often performed before some elements of the test are ready (e.g., no automation, 

no instructions, or an inappropriate environment). The pretest often includes only a subset of 

the scenes and impairments. A small, biased sampling of subjects (e.g., five to six coworkers or 

friends) is acceptable, because the goal is to look for design flaws. Example design flaws include 

problems subjects experienced during the experiment, a narrow range of quality (e.g., no 

statistically significant conclusions can be reached), and data bunching (e.g., many clips with 

nearly identical quality). Consider eliminating HRCs with nearly identical quality, when training 

or testing a model. Zeliṅski and Rumsky [27] identify potential sources of bias that should be 

considered during the pretest.  

Conducting the Experiment 

When administering the subjective test, the experimenter should not influence or bias any 

subject’s behavior. To the extent possible, each subject’s experience should be identical. The 

task of choosing an experiment administrator is very important. Good social skills and good 

communication skills are critical, because part of the administrator’s job is to put the subjects at 

ease. The administrator must be guarded about the test itself, and thus less likely to 

unintentionally influence the results. Questions that may influence the subject’s behavior should 

be answered only after the subject’s participation is over. 

Ethics and Informed Consent 

Awareness of ethical considerations in human testing arose from several infamous psychological 

and medical experiments. The Belmont Report [28], written in 1979 by the U.S. government, 

outlines the basic ethical principles in research involving human subjects. In 1991, the U.S. 

government published the Common Rule [29] for the protection of human subjects. While this 

policy applies only to U.S. Federal workers, it provides reasonable guidelines for ethical human 

testing and informed consent.  

The first ethical consideration is privacy. Subjects’ names must be kept private, and the 

researcher must ensure that the rating data cannot be used to identify subjects, even 
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accidentally. The easiest and safest way to accomplish this is to identify subjects by number, and 

to never record the number/name association. Second, subjects must be informed of potential 

risks. Video quality subjective experiments typically have no risk of benefit or harm. Third, 

subjects should be given an informed consent form, to read and sign. The Common Rule 

contains guidance on appropriate information to include, such as a brief summary of the 

purpose of the experiment, the method used to keep people’s names confidential, any risk or 

benefit to the subject, notification that participation is voluntary, and who to contact with 

questions about research subjects’ rights or in the event of a research-related injury. 

Vision Testing 

Vision testing is traditionally performed before the experiment begins. Unless you are an 

ophthalmologist, it is inappropriate to tell the subject whether or not they passed the vision 

test; all people should participate in the experiment, regardless of whether or not their data will 

be used. 

ITU-R BT.500 and ITU-T P.910 require that subjects be screened for normal visual acuity (e.g., 

with glasses if worn) and normal color vision. Test the subject’s distance vision using the Snellen 

eye chart at a range similar to that used during the experiment. Test color vision with the 

Ishihara Color Blindness plates under natural lighting (i.e., sunlight). The Ishihara plates should 

be replaced after about five years, because the colors fade, rendering the test inaccurate. These 

plates typically only test red-green color blindness, as that is the most common type. 

There is some question as to whether there is a difference between ratings from people with 

normal vision and people who fail the distance vision or color vision test. Pinson et al. [15] found 

no significant difference in ratings; however that was not the primary goal of the reported 

experiment. A. K. Moorthy et al. [30] present arguments against the use of vision tests. 

Regardless, these vision tests convey to the subject that they are participating in an important 

scientific experiment and should pay attention to their rating task. 

Subject Demographics and Convenience Sampling 

The ideal in psychology is random sampling that perfectly matches the demographics of the 

population to be studied. This is most easily accomplished by outsourcing subject recruitment to 

a specialized company that performs market research through focus groups. The drawback is 

the high cost. Most video quality subjective tests use convenience sampling—that is, a 

population of subjects that are easy to obtain. Universities tend to recruit students; large 

companies tend to recruit employees. To better represent the larger population, consider using 

a temporary hiring agency or online advertisements.  

The problem with convenience sampling is that the research results may not generalize to the 

larger population. For video quality subjective testing, the relationships between variables will 

remain correct—but the MOS values will not be absolute (see Pinson et al. [15]). So be careful 
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not to generalize your convenience sampling results into absolute thresholds (e.g., “MPEG2 at 

this bit rate will result in a quality of 4.0 or better”). 

Instructions, Training Sessions and Questionnaires 

Instructions must be written out and agreed upon before the testing begins. All subjects must 

receive the same instructions. This eliminates one potential source of subject bias. The 

instructions should describe the rating cycle, the quality scale, how to record ratings, quirks of 

your playback system or environment, behavior to be avoided, and the scenario (e.g., watching 

free video clips on a mobile device, watching a pay-per-view movie). The instructions should 

include: “Please do not base your opinion on the content of the scene or the quality of the 

acting.” Still, ratings inevitably include both the clip’s artistic quality and its technical quality. 

This is why subjective tests normally include the original video for comparison. After presenting 

the instructions, ask the subjects if they have any questions.  

The training session immediately follows the instructions. The training session serves two 

purposes. The first is to demonstrate the task. This is easily accomplished with two or three 

rating cycles. The second purpose is to familiarize the subject with the range of quality and type 

of impairments in the experiment. This may take much longer (e.g., 5 to 20 sequences). The SRC 

used for training session should not appear in the rest of the experiment.  

A questionnaire can be used after the rating sessions, to gather additional information. 

Questionnaires can potentially provide feedback on problems the subject had with the test, 

whether or not the subject understood the task, and whether the subject noticed a problem 

with your test set-up. A written questionnaire is preferable to asking questions aloud, because 

people are more likely to be blunt and provide additional information. Questionnaires can also 

be used to understand quality of experience (see the section “Data Analysis Techniques”). No 

standard questionnaire exists today. 

Writing the Report 

The ultimate goal of a video quality subjective test inevitably includes publishing the results, 

either internally or externally. The report of results should fully describe the goal of the 

experiment, the environment (e.g., monitor brand and model, lighting level in lux, viewing 

distance in screen heights, picture of environment), the test methodology (e.g., ITU 

Recommendation, any departures), the rating method, the SRC (e.g., quantity, sample frames), 

the HRC (e.g., quantity, coding algorithm, bitrate, transmission error level), the experiment 

design (e.g., full matrix or partial matrix or other, number of PVS), the test sessions (e.g., 

number, duration, playback mechanism, playback compression characteristics, software used to 

control the test), the subjects (e.g., number of, age and gender distribution), mechanism used to 

obtain subjects, and the data analysis results.  



17 

This article was accepted by and will appear in IEEE Signal Processing Magazine,  

January 2015 edition. Signal Processing Magazine is copyright © IEEE. 

Always include a picture of the viewing environment in the report. This will provide readers an 

improved understanding of your environment (see Figure 8). Brunnström et al. [31] is an 

example of a superior experiment report.  

 

Figure 8. Include a picture of the viewing environment in the final report. This sample environment 
shows a sound isolation booth. A BlueRay player outside the room plays audiovisual sequences on a 
broadcast quality monitor and speakers.   

For privacy reasons, the names of subjects should not be mentioned in any report. Care should 

be taken when explicitly mentioning vendor names. If the experiment was not designed to 

directly compare the quality of those vendors’ equipment, a comparative analysis might be 

biased. In such cases, the vendor names should be omitted from external reports. 

Data Analysis Techniques 

Any data analysis is divided into three specific steps: clean the data, choose the correct 

analytical technique (this step should be done before the subjective study is run), and interpret 

the results. Each step’s method has to fit the problem under investigation. To begin, key 

statistical concepts will be described.  

Measurement Scales, Agreement, and Association 

Values related to a particular variable (for example bitrate) can be measured in different ways 

[32]. Measurement scales are classified and divided into four types: ratio, interval, ordinal, and 

nominal. For each type of measurement scale, correct statistical techniques exist and should be 

used. The ratio measurement scale makes it possible to define a distance between any two 

values and compute their ratio. For example, the distance between 3 Mbit/s and 6 Mbit/s is 

3 Mbit/s, and the second bit rate is two times larger than the first. With the interval 

measurement scale, the distance between each point is the same but the measured numbers 

are arbitrary. For example, consider encoder bit rate setup categorized to three values 1 = 

3Mbit/s, 2 = 5 Mbit/s, and 3 = 7 Mbit/s). The measured values 1, 2, and 3 cannot be compared 

using a ratio (i.e., 3 does not have bit rate three times as high as 1), but the distance between 1 

and 2 is the same as the distance between 2 and 3. With an ordinal measurement scale, an 

order of values can be found but exact distances cannot. For example, bit rate category 

“medium” has a higher bit rate than “low” and lower than “high”. Nevertheless, with an ordinal 

scale, we cannot determine whether a value “low” has the same distance to “medium” as 

“medium” to “high”. With nominal, each value is different and an order cannot be determined. 
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For example, encoders A, B, and C cannot be ordered without focusing on a specific feature, like 

price or encoding speed.  

Agreement means that subjects should give the same quality ratings, and we only tolerate 

differences that are caused by a random distribution of measurement noise. On the other hand, 

association requires only that subjects follow the same pattern. So if two subjects agree they 

also associate, but the opposite is not true [33]. For example, if subject one is always scoring one 

point lower than subject two (where possible), they do not agree at all but they do associate 

perfectly. For subjective experiments focused on quality, agreement is not expected, since a 

subject can be more or less discriminating. On the other hand, if there is no association it can be 

explained only if a subject is more tolerant than average for some impairments and less for 

others. This is not impossible, but an experimenter may choose to consider a subject who does 

not associate with others to be irrelevant. Perhaps the rating task was too difficult or was not 

understood properly.  

Cleaning the Data 

Before using any statistical technique, the data has to be cleaned. This involves first detecting 

irrelevant subjects, and second detecting errors in the experiment setup. Detecting an irrelevant 

subject depends on the way the test was run. It is usual to monitor a subject in a lab; in this 

case, we can be sure a subject did the test. If this does not happen, the first screening technique 

is focused on finding out if a subject actually did the test. Gardlo et al. [34] describe some 

techniques like adding content questions e.g. “Was a car present in the scene?” Such questions 

reveal whether a subject actually saw a particular sequence. If a test is run in a controlled 

environment, detecting if a subject did the test is usually trivial. Nevertheless, the subject could 

misunderstand the test, the test could be too difficult, or the subject might not pay attention. 

Therefore screening is still a necessary and important step.   

The screening technique described in the ITU-R Rec BT-500 is based on the subject agreement 

and measuring scale being ratios. The basic concept is to measure how often a subject’s answers 

do not fit the confidence interval created by the other subjects’ answers. (A MATLAB code for 

performing this test can be found at http://www.its.bldrdoc.gov/resources/video-quality-

research/guides-and-tutorials/subject-screening-overview.aspx.) Subjects do not have to agree 

among themselves, so we will focus on techniques based on association rather than agreement.  

The most popular way of measuring association is the Pearson correlation. This technique was 

used to screen subjects in the VQEG high definition television validation test plan [35]. Pearson 

correlation is based on the assumption that the measurement scale is ratio and Pearson 

correlation interpretation and tests generally assume the data has a normal distribution. If the 

quality scale is short (e.g. ACR), Pearson correlation should be changed to Spearman correlation, 

which is based on the weaker assumption that the measurement scale is ordinal. For a short 

scale it is difficult to assume that the answer distribution is close to normal (especially if most 

answers are close to one of the scale borders) and that the distances between answers are the 

http://www.its.bldrdoc.gov/resources/video-quality-research/guides-and-tutorials/subject-screening-overview.aspx
http://www.its.bldrdoc.gov/resources/video-quality-research/guides-and-tutorials/subject-screening-overview.aspx
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same. Computing Pearson or Spearman correlation requires two vectors: 𝒖𝑖  (a single subject’s 

ratings) and �̅�𝑖 (average of the other subjects’ ratings) for all sequences. The MATLAB Statistics 

Toolbox functions are:  

a=corr(ui,udashi,'Type','Pearson'); 

b=corr(ui,udashi,'Type','Spearman'); 

where 𝑢𝑖 is denoted by ui and �̅�𝑖  is denoted by udashi.  

The question is: At what threshold should a subject be discarded? A correlation that is 

statistically greater than zero does not guarantee that a subject is relevant. A good example 

occurred during a VQEG HDTV test [35], the goal of which was to choose the best objective 

metric for HDTV. For an experiment that used edited sessions on BluRay discs, the scoring time 

was too short for one subject, so he did not see the first few seconds of some sequences. The 

Pearson correlation was statistically significantly higher than zero (0.633) but much lower than 

for other subjects’ correlation (the lowest being 0.784 and the average 0.877). The VQEG rule is 

that a subject should be discarded if the correlation is below 0.75 for television and mobile 

applications. The disadvantage of using correlation for data cleaning is that the correct 

threshold must be found experimentally, based on how difficult it is for subjects to evaluate a 

particular service. The 0.75 threshold cannot simply be used for new services (e.g. 3DTV, 

ultraHD) or a different association metric (e.g. Spearman correlation). 

These two methodologies (i.e., as described in Rec BT.500 and based on Pearson correlation 

analysis) are by far the most commonly used to detect irrelevant subjects. They rely on the ratio 

measuring scale. Since subjective experiments are often performed on a short measuring scale 

which is ordinal rather than ratio, some different methods are needed. Adejumo et al. [33] and 

Gibbons [36] provide descriptions of numerous different agreement and association metrics. A 

commonly used agreement metric using an ordinal scale is named Cohen’s Kappa coefficient. It 

is widely used by the psychology community when subject agreement is especially important. 

The Kappa coefficient can be computed using the MATLAB function created by Cardillo [37]. No 

more details are presented in this paper since association rather than agreement metrics should 

be used in case of quality tests. Nevertheless, an interested reader can find details in [33]. 

Kendall’s tau can be an alternative solution when an association metric is needed and the 

measuring scale is ordinal. Kendall’s tau is the difference between the probability of 

concordance 𝜋𝑐 and discordance 𝜋𝑑, given by: 𝜏 = 𝜋𝑐 − 𝜋𝑑 . Kendall’s tau is an easy to interpret 

parameter, since it refers to concordance and discordance between two vectors. Gibbons [36] 

provides more details on when Kendall’s tau should be used. The MATLAB function is:  

a=corr(ui,udashi,'Type','Kendall'); 

A subject can have a low association with other subjects because the subject did not pay 

attention to the task or because an error occurred in the experiment setup. While an 

experiment is being run, many different problems can occur. An intermittent video playback 

problem in the test interface can cause occasional added visual impairment (e.g., freezes during 
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a sequence that should have played smoothly). Video clips can be played in the incorrect order, 

so that the written video clip/rating association is incorrect (e.g., an editing error in a 

prerecorded sequence, a coding bug in automated playback software). Some sequences can be 

different from the description (e.g., encoded at the wrong bit rate). A time synchronization error 

can occur between subject ratings and videos (e.g., a subject scoring on paper rating sheets 

scores clip N in the box for clip N+1). All of these problems have been observed by the authors. 

Specific problems call for specific solutions, so it is impossible to describe a general procedure. 

Nevertheless, our experience shows that the following three steps are very helpful. First, if 

prerecorded sequences are used, the results obtained for a PVS should be statistically the same 

when it appears in different recordings. Second, the quality ratings can be compared to the 

experimenter’s expectations, and sequences with large differences should be checked. Third, 

the association between users within sessions should be checked. If a user is well associated 

with others for one session and poorly for another, this indicates a problem with that session.  

The most difficult problems to detect are rare interface failures resulting in degradation of the 

watched video (e.g., the automated test software pauses during video playback for 2% of the 

sequences). This problem is best detected during the pretest (e.g., the experimenter takes the 

pretest, and then compares his/her scores to the expected quality). Intermittent playback 

failures will cause all subjects to score atypically low quality for a few, random clips. One way to 

find such inconsistencies is to compare a user’s association with other users for all sequences 

with that user’s association with other users for a subset of sequences. If percentage of errors is 

a subset is higher than in whole set it is easier to detect them.  

If the data cleaning eliminates more than two or three subjects, something may be wrong with 

your test procedure. To put this into perspective, only one of the 214 subjects in [15] was 

eliminated for being irrelevant (see [38] to view the individual subject ratings).  

Data Analysis 

After screening subjects and ensuring that all of them saw the experiment properly, the final 

and most important analysis can be run. The section “Goal of Experiment and Design 

Consequences” described different reasons to run subjective experiments. These different 

reasons call for different data analyses.  

Answering a Question 

An experiment designed to answer a question contains different conditions, which most often 

are different HRCs but could also be different subjects or different SRCs. Different conditions 

generate groups of results that can be compared to answer a specific question. Therefore, 

answering a question can be reduced to comparing subsets of subjective experiment results. 

The most common way to compare two groups is to answer the question of whether the results 

are statistically the same or not. This question will be answered with a specific significance level. 
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Most often, 5% significance (i.e., 95% confidence) is chosen. This is the default in many MATLAB 

statistical tests and is specified as 0.05.  

The most popular technique for comparing two groups is the Student’s t-test. The goal of the 

Student’s t-test is to validate if the difference between the mean values of two groups has a 

particular value. For example, if our goal is to validate whether the quality obtained for HRC 1 

and HRC 2 are the same we should compare vectors �̅�1 and �̅�2. Each element of the �̅�𝑖 vector is 

a value obtained for the same HRC with different other conditions (e.g., SRCs or repetitions). It is 

very important to have the same order of conditions in both vectors. The MATLAB function for 

computing the Student’s t-test is: [h, p]=ttest(u1-u2); where h is 1 if the difference is 

statistically different from zero and 0 if it is not, and p is the corresponding p-value, which has to 

be larger than 0.05 to conclude that the obtained difference is not statistically significant.  

If the goal is to compare multiple groups, then the methodology and significance level must be 

adjusted in order to maintain the same significance level for a group as for single comparison. 

The commonly used methodology for comparing multiple groups is one way ANOVA (Analysis of 

Variance). The MATLAB anova1 computes one way ANOVA. A handy way to call this function is 

to specify a vector of all compared values (e.g. MOSs) and a vector of tags describing groups. For 

example u=[2.3,3.2,1.2,2.4,3.2] and g=[‘A’,’B’,’B’,’A’,’C’] means that the first 

and fourth values belong to group A, the second and third to group B and the last one to group 

C. anova1 is called using: p = anova1(u,g); where u is the compared values vector, g is the 

grouping vector and output p is the p-value. Similarly to ttest, a value of p smaller than 0.05 

indicates that at least one group is different. 

The disadvantage of both Student’s t-test and ANOVA is the assumption that the data comes 

from a normal distribution, i.e., it follows a specific distribution and can be measured on a ratio 

or interval scale. This can be validated by the Kolmogorow-Smirnow (small sample) or Chi square 

(large sample) test. If one of those assumptions is not met, different statistical methods should 

be used. The Student’s t-test should be changed to the Mann-Whitney U-test and the one way 

ANOVA should be changed to the Kruskal-Wallis test. The Mann-Whitney U-test compares 

medians not means, and as such it needs only an ordinal measuring scale. The equivalent of this 

test in MATLAB is [p, h] = ranksum(u1, u2); where the p, h, u1 and u2 parameters 

are the same as for the ttest function, but ordered differently. The multiple group comparison 

version of the Mann-Whitney U-test is the Kruskal-Wallis test, which can be called similarly to 

the anova1 function: p = kruskalwallis(u,g); 

The discrimination powers of the Student’s t-test and the ANOVA test are greater than those of 

the Mann-Whitney U-test and the Kruskal-Wallis test. The cost for this increased discrimination 

is the requirement of a normal distribution and interval measuring scale. Choosing Mann-

Whitney U-test or Kruskal-Wallis test leads to more conservative conclusions. If a test with the 

weaker assumption shows differences between groups, then the Student’s t-test and ANOVA 

will show it as well. The opposite is not necessarily true. 
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A useful MATLAB tool for comparing multiple groups is the multcompare function. Both 

anova1 and kruskalwallis functions can return more than one parameter. After three 

parameters are returned, multcompare can be run by using: [p,table,stats]= 

kruskalwallis(u,g); multcompare(stats); This function generates a handy interactive 

plot that makes it easy to compare groups.  

Training a Metric or Algorithm 

Subjective experiments maximize measurement accuracy, but also increase cost and time taken. 

They cannot be used to monitor a service. Therefore it is common practice to build a metric 

which objectively emulates a video quality (i.e., MOS). When training a metric or algorithm, the 

goal is to find a function that links explanatory variables to a dependent variable. Example 

explanatory variables are bit rate, packet loss ratio, quality estimation parameters extracted 

from the video, and subject age. The dependent variable is most often video quality.  

The easiest solution is to design a linear model using linear regression. A linear model is a linear 

function of model parameters, but not necessary a linear function of explanatory variables. 

Nonlinearities in the explanatory variables are detected and removed (e.g., using square or 

square root functions), and it is common to use interactions between explanatory variables 

(e.g., the product of two explanatory variables). According to the above description an example 

linear model is given by the equation:  𝑢 = 𝑎0 + 𝑎1𝑏 + 𝑎2 log 𝑡𝑎 + 𝑎3𝑏 log 𝑡𝑎, where 𝑢 is 

estimated MOS, 𝑎𝑖  are model parameters, 𝑏 is a bit rate, and 𝑡𝑎 is the temporal activity of the 

SRC. A linear model can be estimated in MATLAB by the glmfit function, which returns both 

the estimated values and the p-values of each estimated parameter.  

While training the linear model, the researcher examines and understands the relationship 

between the candidate explanatory variables and the dependent variable. Example techniques 

include examining the ability of a single explanatory variable to predict the dependent variable 

(e.g., using Pearson correlation or root mean square error (RMSE)), and plotting the explanatory 

variable against the dependent variable to find nonlinearities or outliers. Fox [39] provides 

instruction on techniques for applying linear regression analysis. The advantage of linear 

regression is that the resulting linear model is typically easy to explain and understand.  

Alternatives to classical linear regression are methods based on machine learning. Many 

techniques are available. In this article, only three are mentioned. Genetic programming-based 

symbolic regression analyzes a large number of different models, thus helping to build a model 

that is similar to a linear model [40]. The advantage of this technique is that the output is easy 

to interpret. Partial least squares regression is more difficult to interpret but has the advantage 

of optimizing explanatory variables. Due to the use of principal component analysis, the final 

output is as simple as possible for a given prediction accuracy using explanatory variables that 

contain the most significant information [41]. Random neural networks are even more difficult 

to interpret but can approximate different nonlinear functions [42]. 



23 

This article was accepted by and will appear in IEEE Signal Processing Magazine,  

January 2015 edition. Signal Processing Magazine is copyright © IEEE. 

Machine learning algorithms must be used with care in order to not over train the model. A 

typical machine learning model contains lots of parameters, and relatively little subjective data 

is typically available to train a video quality metric. 

All the previously presented solutions model MOS (i.e., the average of many ratings), not the 

actual subjective ratings. If quality is measured on a scale with a small number of levels, each 

rating level’s probability can be predicted using the generalized linear model (GLM). GLM is able 

to model multinomial distribution. A detail description of using GLM is given in [43]. 

Analyzing a Metric or Algorithm 

To analyze a metric, its predictions and subjective results have to be compared. The algorithm 

that fits the subjective data best should be chosen. This analysis has to address two specific 

realities of subjective experiments. Previous research shows that two instances of the same 

subjective experiment repeated in two different laboratories can have high association 

(measured by correlation) but the results are not identical [3], [15]. Since the results of the two 

subjective experiments results have high association but not necessarily agreement, a metric 

should associate with the validation subjective experiment but it does not have to agree (i.e., an 

offset is possible).  

The final conclusion is that metrics should be validated by association rather than by agreement, 

or agreement should be measured for the metric after the values have been transferred to a 

common scale. In addition, two metrics can differ due to randomness related to the subjective 

experiment. Such metrics should be called “the same” even if the agreement or association 

metric is superior for one of them. The methodology for addressing the problems described 

above is used by VQEG and is described in ITU-T Recommendation P.1401. 

Thoughts on Quality Of Experience 

We have provided detailed information for conducting video quality subjective tests. Video 

quality is one aspect of a larger topic—Quality of Experience (QoE). Compared to video quality 

testing, QoE testing is in its infancy and no step-by-step tutorial is available at this time. Instead, 

this final section summarizes some QoE definitions and frameworks. This overview points out 

limitations of video quality subjective tests and identifies areas where QoE issues impact 

experiment design, monitor selection, subject demographics, post-test questionnaires, and, as a 

consequence of these choices, the strength of the conclusions that can be reached.  

Video quality is just one aspect of QoE. According to Le Callet et al. [44], QoE is the degree of 

delight or annoyance the user receives from an application or service. It results from the 

fulfillment of the user’s expectations (in light of his or her personality and current state) with 

respect to the utility and/or enjoyment of the application or service. More succinctly, QoE is a 

measure of how well a service or an application meets the user’s Expectation of Quality (EoQ) 

[45]. Different artifacts arising along an end-to-end service delivery chain may result in QoE that 
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does not meet a user’s EoQ. However, each service provider is expected to aim at the condition 

QoE = EoQ [46], ensuring revenues, reducing churn, and increasing customer satisfaction. 

Today, each of us is a consumer of multimedia services and knows how many variables influence 

our EoQ. Therefore, a holistic QoE approach should span the whole telecommunication 

ecosystem combining user behavior, technical issues, and business models as proposed in [44] 

and [47]. 

Batteram et al. [45] propose three dimensions that can be used to express QoE: service 

availability, service responsiveness, and media quality (i.e., audio and video quality). Service 

availability is a measure of whether the user can utilize the desired service, while responsiveness 

is the time to get the service answer. Media quality relates to all artifacts generated by 

compression and packet network delivery that deteriorate the user’s perception. Audio and 

video quality subjective tests measure media quality, but fail to quantify the impact of service 

availability and responsiveness.  

On the other hand, Marez and Moor [46] point out that QoE may depend on many service 

context-of-use factors (i.e., the actual conditions under which an application is used). The 

service has to be paid for through some provider-defined business mode (e.g., transaction, 

subscription, advertisement). The underlying network technology (e.g., wired, wireless, satellite) 

impacts QoE, as do other technological factors. Personal, social, cultural, and education issues 

are influential, and a user’s EoQ is modified by the location or device used for service 

consumption. There is interest in extending video quality subjective testing techniques but as of 

yet no established solution (e.g., a way to measure MOS that accounts for screen size 

differences).  

The multivariate structure of QoE may suggest initially that, from the QoE analytical modeling 

point of view, numerous analysis models could be deployed in order to understand the 

relationships between variables and their relevance to the actual QoE problem being studied 

[44]. An expert panel [46] found about 60 multidisciplinary methods (both qualitative and 

quantitative) suited for QoE investigations!  

While the rating scales in section “Ethics and Informed Consent” are intervals (which define the 

ratio, interval, ordinal, and nominal measurement scales), QoE variables are often ordinal (e.g., 

satisfied, neutral, and dissatisfied) or nominal (e.g., gender, user profile, device, and content 

type). These category variables differ radically from interval variables because distances 

between categories are not defined and subjects can interpret the categories differently. Thus, 

most of the techniques from the section “Data Analysis Techniques” are inappropriate. The 

proper tool for dealing with such unmeasurable variables is categorical data analysis (i.e., 

multicategory logit models). These techniques are more complicated and the results derived are 

a bit more difficult to interpret. 

Customer satisfaction surveys solve this problem by using a variety of Latent Trait Models (LTM). 

For example, the Item Rasch Theory (IRT) is the simplest LTM model. LTM is a powerful 
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approach as it can relate “manifest variables” (i.e., service features that can be readily judged by 

a tester) with latent traits (i.e., the tester’s experience with a service)—provided that the 

questionnaire is properly designed. The LTM approach was recently suggested by [48] and [49] 

as a proper tool for 3D video quality analysis. 

In summary, QoE uses multiple dimensions to measure different users’ experiences of service 

received and relate their experiences to parameters of a service delivery chain and a service 

context-of-use. A reliable QoE measurement calls for a multidisciplinary approach (e.g., 

operations research, customer satisfaction surveys, sociology), because of the different nature 

of the variates involved. Users’ experiences may differ even if they use the application in the 

same context and under the same network conditions. Therefore, to arrive at a valid QoE 

assessment, it is necessary to conduct tests with large numbers of subjects. Although such 

subjective tests are time- and resource-consuming, emerging crowdsource QoE assessment has 

recently appeared as a solution [50]. QoE is QoE is gaining increasing momentum among 

researchers, service providers, and network operators; this may eventually result in the 

implementation of user-centric services.  
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