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Abstract—Traditional 35mm film cameras are no longer the 
main devices today’s consumers use to capture images. Though 
the dominant technology has shifted to digital cameras and 
displays that differ widely in pixel count and resolution, our 
understanding of the quality impact of these variables lags. 
This paper explores the quality impact of resolution within this 
new paradigm. Images were collected from 23 cameras, 
ranging from a 1 megapixel (MP) mobile phone to a 20 MP 
digital single-lens reflex camera (DSLR). Subjective ratings 
from three labs were used to explore the relationship between 
the camera’s pixel count, the display resolution, and the overall 
perceived quality. This dataset and subjective ratings will be 
made available on the Consumer Digital Video Library 
(CDVL, www.cdvl.org) when this paper is published. These 
images can be used royalty free for research and development 
purposes. 

Keywords—4K, CCRIQ, camera quality, dataset, image 
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I. INTRODUCTION

The first digital image was taken by Steven Sasson in 
December of 1975, using a device built around a 100 × 100 
pixel sensor and recorded on a cassette tape in a process that 
took 23 seconds. That event revolutionized the way visual 
information is recorded and exchanged. Breakthroughs in digital 
photography have changed the way people take, view, and 
exchange photographs. The first digital camera, which was 
invented only 40 years ago, was a 0.01 megapixel (MP) camera 
that weighed eight pounds. Today digital cameras have become 
ubiquitous and range from high-end digital single-lens reflex 
cameras (DSLR) to cameras embedded in mobile devices. 
Along with sleek and light form factors, mobile phones 
increasingly offer better optical and digital capabilities, such as 
higher image quality and more sophisticated imaging features.  

As digital photography continues to advance and as the field 
becomes more competitive, we need to understand the effect on 
perceived picture quality of different camera features and 

different viewing modes (how a digital photograph is viewed). 
Not only are the optics improving and the number of digital 
image pixels increasing, but the digital displays that constitute 
the most popular image viewing paradigm are evolving and 
increasing in their resolution capabilities (like UltraHD). As 
digital camera and display technologies evolve, consumers 
demand better quality of experience.  

In this paper, we explore the joint impact of digital image 
pixel count and display resolution on perceived image quality. 
The main goal of this work is to characterize this relationship for 
a variety of digital cameras. This work has two secondary goals 
as well. One is to identify the important variables that impact 
perceptual image quality. The other is to demonstrate a 
subjective experiment design that can be used to compare 
cameras.  

Towards this end, we created the Consumer Content 
Resolution and Image Quality Dataset (CCRIQ). This dataset 
contains images from 23 digital cameras, approximately equally 
distributed between phones, tablets, point-and-shoots, and 
higher end DSLRs. The cameras were chosen to sweep the 
resolution range from 1 to 20 MP. A variety of scenes were 
captured within each resolution category in the range. A 
subjective study was conducted to collect quality ratings for 
each image when displayed on two monitors of equal size but of 
different resolutions (an HD 1080 monitor and an UltraHD 4K 
monitor). The details of the study and the analysis of the 
subjective results are presented in the following sections.  

CCRIQ contains impairments inherently introduced by 
commercially available cameras and no simulated distortions. 
This is unlike most subjective image quality datasets, which 
typically contain simulated distortions (such as simulated blur, 
noise, compression, and transmission artifacts). The types of 
artifacts present in CCRIQ are hence completely realistic and 
typical of consumer image-capture scenarios. Furthermore, the 
range of image qualities is realistic and wholly dictated by the 
quality delivered by the cameras Unlike previous work, CCRIQ 
contains a wide range of image resolutions, and a well-balanced 
distribution among phones, tablets, point-and-shoots, and 
DSLRs is maintained for each image resolution category. 
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II. BACKGROUND 
Image datasets with corresponding subjective quality ratings 

are extremely useful for quality assessment research and for 
image perception understanding. There are a number of 
published and popular datasets in the literature, such as: 
• LIVE Image Quality Assessment Database [1], which 

contains JPEG and JPEG2000 compression, Gaussian blur, 
additive white Gaussian noise, and Rayleigh fast fading 
channel distortions  

• Tampere Image Database (TID) [2], which contains a wide 
variety of simulated distortions including several types of 
noise, blur, transmission errors, compression errors, local 
image distortions, and luminance and contrast changes 

• Categorical Subjective Image Quality Database (CSIQ) [3], 
which contains compression artifacts, blur, pink noise, and 
global contrast changes  

• IRCCyN/IVC Image Quality Dataset [4], which contains 
compression and blur artifacts  

• MICT Toyama Image Quality Evaluation Database [5], 
which contains compression artifacts  

Ref. [6] provides a good survey of existing image databases.  

We will refer to these as simulated impairment databases. 
The associated experimental design takes a set of source images 
(usually pristine) and creates multiple impaired versions of each. 
The impairments are mostly singly occurring simulated 
distortions. Simulated impairment databases are valuable for 
understanding of the effect of singly occurring distortions such 
as blur, noise, or compression artifacts.  

Our problem is that simulated impairments are not 
representative of the type or the level of distortion encountered 
when people take photos with a variety of consumer devices. 
Many of the distortion types or levels (the degree of distortion) 
in the datasets mentioned above do not occur in real consumer 
scenarios. While it is important to understand the effects of 
singly occurring distortions, these distortions rarely occur in 
isolation from other complex image artifacts.  

A further limitation of the simulated impairment datasets 
above is that the resolution of their photos is much lower than 
state-of-the-art consumer devices. Most of the photos in the 
LIVE IQA database and those in the MICT database are 
768 × 512 pixels, while those in the CSIQ and the IRCCyN/IVC 
image databases are 512 × 512 pixels, and the TID photos are 
512 × 384 pixels. These databases use a pixel count less than 
1 MP, while photographs obtained from consumer devices are 
typically 5 to 20 MP. More details on the limitations of these 
datasets can be found in [10]. 

Virtanen et al. [7] start to address the simulated/artificial 
distortion issue in current image quality databases. The authors 
conducted a study on a dataset of photographs collected from a 
large number of cameras. This dataset, the Camera Image 
Database (CID2013) is freely available to researchers. CID2013 
uses a non-standard rating method, named the dynamic-
reference absolute category rating (DR-ACR) study.  In addition 
to collecting subjective ratings for overall quality, subjects were 
asked to rate four individual image characteristics: sharpness, 
graininess, lightness, and saturation. The CID2013 contains 480 
images from eight scenes. For half of the images in the study, 
the subjects were instructed to give a score of a 100 for the 
highest quality photo and a score of 0 for the lowest quality 

photo within an image set. For the other half of the images, this 
anchoring of scores was not required of the subjects. CID2013 
addresses many of the limitations of prior datasets and is an 
important step forward in understanding and characterizing real 
images with subtle and complex realistic distortions.  

CID2013 has a number of limitations. The first is related to 
the scene/content diversity. The images in the dataset are 
derived from eight scenes, six of which are photographs of 
people. Most of the scenes are either indoor or outdoor daytime 
shots; night scenes are lacking. A second limitation is the 
resolution of the published images. The images in this database 
have been scaled to 1600×1200 pixels; the original images (with 
higher resolution) are not available. Third, no information is 
provided on the cameras. This raises questions about whether 
this dataset represents typical cameras and photographs and 
obscures the relationship between device dependent variables 
and image quality. These relationships play an important role in 
the development of objective image quality models.  

Simulated impairment databases have played an important 
role in designing objective image quality models, especially for 
the full reference (FR)1 quality assessment paradigm. These 
databases have important limitations for no reference (NR)2 
algorithm design. NR models depend on learning relationships 
between features and perceived quality. The main challenge is to 
identify features that generalize to real-world consumer 
scenarios. If the types of images and associated distortions in the 
training datasets are not representative of real-world consumer 
scenarios, then the resulting NR model cannot be expected to 
generalize. The work in [7]-[9] discusses the generalizability of 
NR algorithms to consumer usage models.  

NR models themselves are critical, because FR models 
cannot be applied to images captured directly from a camera. A 
different type of subjective image quality dataset is needed to 
train NR models. The dataset we present in this paper, CCRIQ, 
addresses these limitations and lets us explore the relationship 
between image pixel count, display resolution, and overall 
image quality.  

III. SUBJECTIVE TEST 
CCRIQ analyzes the quality of images that are captured by 

digital cameras and displayed to a digital monitor. The only 
intermediate processing was scaling the image to the monitor. 
We focus on two parameters: 
• The pixel count of the image produced by a camera.  
• The resolution of the display on which the image is viewed. 

Our main goal is to characterize the relationship of an 
image’s pixel count and a display’s resolution on image quality. 
This relationship is impacted by numerous factors, such as 
sensor size, lighting conditions, focal distance, and subject 
matter. An experiment including all relevant factors would be 
infeasible due to the large number of stimuli.  

Instead, we establish a compromise between controlled 
variables, uncontrolled variables, and variable limits. To limit 
the scope of our problem, CCRIQ is constrained to: 

                                                           
1 FR models perform a comparison between the desired image (i.e., 
the reference) and the delivered image.  
2 NR models examine the delivered image only.  
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• Images in landscape orientation 
• Automatic camera settings 
• Maximum pixel count for each camera 
• Full screen display of images 
• A subset of all image content  
• Large, high resolution displays  
• No tripods 

While tripods are typically used for camera evaluations (e.g., 
DxOMark©), CCRIQ matches prevalent consumer behaviors 
for the mobile phone cameras that dominate today’s market. 
This implies handheld cameras, automatic settings, and a 
mixture of artificial and natural lighting.  

This section summarizes CCRIQ. See [11] for the full 
subjective test plan.  

A. Experiment Design, Terms & Definitions 
Traditionally, subjective image and video quality tests take a 

set of pristine stimuli and create multiple impaired versions of 
each. The typical experiment design contains one full-factorial 
matrix of source images (SRC) and impairments (HRC). The 
(SRC × HRC) design cannot be used here, since the camera 
itself is the source of impairment. The challenge is that we want 
to retain the ability to compare cameras based on a single source 
stimulus.  

To do this, we need a new design and consequently new 
terms. Let us define a scene to be one subject matter with similar 
lighting, framing, distance, and viewing angle. For example, one 
scene might be your dinner at a restaurant, as seen from your 
chair. Let us define equivalent images as pictures that depict the 
same scene. An average person is expected to be able to obtain 
equivalent images by picking up two or more cameras in 
succession, without the use of a tripod or measuring tool. All 
pictures associated with a single scene will be referred to as an 
equivalent image set.  

We can now replace the (SRC × HRC) matrix with a full-
factorial (scene × HRC) matrix, where each HRC is a different 
camera. This test design reflects the real world situation where a 
consumer compares several different cameras by taking pictures 
of the same scene (e.g., a selfie). The (scene × HRC) design 
allows direct comparisons between cameras.  

Our analyses will be confounded by uncontrolled variables 
surrounding the taking of the pictures. There will be inherent 
differences within an equivalent image set due to camera 
differences (e.g., aspect ratio, focal length) and slight changes in 
the scene (e.g., moving clouds, person in a portrait shifts 
position, fluctuations in natural light). We consider these 
uncontrolled variables to be part of the overall influence of the 
camera or the scene. Work underway within the Video Quality 
Experts Group (VQEG) is expected to provide some 
understanding of the impact of this design choice.  

B. Cameras 
CCRIQ includes 23 cameras (see Table 1). Many factors 

impact a camera’s image quality, not just the image’s pixel 
count and the display’s resolution. Therefore, a wide variety of 
cameras were chosen, based on two characteristics. The first is 
pixel count in megapixels (MP), which was quantized into five 
bins: 1, 5, 8, 11 and 18 MP. These bins reflect the resolutions of 
popular consumer devices available on the market. The second 

is camera technology: mobile phone cameras, tablet cameras, 
compact cameras, and DSLRs. Camera availability depends 
upon the combination of pixel count and technology. For 
example, 1 MP cameras are an obsolete technology. Mobile 
phone cameras dominate our experiment, as this is the most 
popular camera type today. Note that compact camera “C” was 
eliminated due to an intermittent focusing problem. 

Vendor information is intentionally omitted. This study does 
not provide a fair product comparison and should not be used for 
that purpose.  

C. Scenes 
Intel and NTIA took photos of 69 scenes. The scenes were 

limited to five topic categories: flat surfaces, landmarks at night, 
landscapes with good lighting, portraits, and still lifes. Cameras 
were operated in fully automatic mode. For each scene, one of 
two techniques was used to reduce the impact of random 
variables like handshake. Either multiple pictures were taken 
with each camera and one image selected, or an experienced 
photographer with steady hands took a single picture.  

From the 69 scenes, 18 were selected for inclusion into 
CCRIQ. Figs. 1 and 2 display one image from each scene. Fig 3 

TABLE 1. CAMERA RESOLUTION & TYPE 

Camera Type 1 MP 5 MP 8 MP 11 MP 18 MP
Mobile phone A G H I N L M  Q R S V 
Tablet D J    
Compact camera B E O P T W 
DSLR  F K U X 

  

MP Range 0.9–1.3 4.0–5.3 8.0 9.4–13 16–20 
 

 
Autumn Mountains 

 
Beach Toys  * 

Bouquet Dim Close

 
* Building Night 
Flash Disabled 

 
Denver Botanic 

Gardens Greenhouse 
 

Machen Illustrations 
Fox St Bridge  

 
Lady & Fence 

  
* Lady & Metal 
Flash Disabled 

 
Mirror Ball Confetti

 
* Sushi Rolls

  

Fig. 1. Representative image of each scene in the red pool. Sets 
with less than 23 images are marked with an asterisk (*). 
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shows a few equivalent images, to show the large differences 
between cameras. At least three scenes were chosen from each 
topic category, to showcase different camera responses within 
that category. For example, “Evacuation Plan” shows a large flat 
surface at a medium distance in good artificial light, while 
“Machen Illustrations Fox St Bridge” shows a small flat surface 
at a short distance with dim natural light. 

The CCRIQ scenes in Figs 1 and 2 contain a variety of 
lighting conditions. Illumination ranged from 25,000 lux 
(“Winter Peaks”) to less than 20 lux. “Mirror Ball Confetti” 
depicts a blue table lit by a yellow spot light. “Denver Botanic 
Gardens Greenhouse” points the lens near the midday sun.  

By default, all compositions used auto-flash, and so most 
dim lighting compositions contain a mixture of flash and no-
flash pictures. “Flash Disabled” indicates that the flash was 
manually turned off. “Lady & Fence Flash Disabled” and “Lady 
& Metal Flash Disabled” are partial sets, containing only 
cameras where auto-flash was triggered for “Lady & Fence” and 
“Lady & Metal” respectively. Other than this, each equivalent 
image set was supposed to contain photos from all 23 cameras. 
Some scenes depict short-lived events, so user error occasionally 
resulted in one or two images being missing.  

D. Subjective Method and Preliminary Test 
CCRIQ uses ITU-T Rec. P.913 [12] and the absolute 

category rating (ACR) scale. The scope of P.913 does not 
include image quality, however we believe this is an appropriate 
extension. Generally speaking, image quality is simply a special 
case of still video.  

Subjective testing was performed by three laboratories: Intel 
(Santa Clara, CA, USA), NTIA/ITS (Boulder, CO, USA), and 

the Ghent University–iMinds (Ghent, Belgium). Each 
environment was a quiet room devoted to the task, with a mix of 
natural and artificial light (see Fig. 4). The illumination and 
viewing distance conditions were in compliance with ITU-T 
Rec. P.913. Also in compliance with Rec. P.913, visual acuity 
and color deficiency tests were performed but the subjects were 
not screened on this basis. 

The subjective test ran automatically, using specialized 
software developed by Intel for the purpose of the study. Each 
test computer was configured with two 4K monitors (Samsung 
U28D590, a 28" 4K display).3 One was configured for HD 
resolution (1920 × 1080) and the other configured for 4K 
resolution (3840 × 2160). Images were presented randomly to 
one or the other monitor throughout the test. Images were left in 
their original file (as saved by the camera) and scaled to the 
monitor using the High Quality Fant bitmap scaling algorithm 
implemented by the Image Class in the Microsoft .Net 
framework.  

A preliminary test was run at a single lab (Intel) using seven 
subjects who rated all images associated with 15 scenes. This 
resulted in a set of 367 images, which were rated at both monitor 
resolutions for a total of 7 × 367 × 2 ratings. This data indicated 
an undesirable lack of scenes with a high average mean opinion 
score (MOS). This triggered the collection of two new scenes 
with good lighting and aesthetics.  

The preliminary test was also found to last too long for 
subject comfort. Therefore, the stimuli and subjects were 
divided into two pools: the red (Fig. 1) and the blue pool 
(Fig. 3). Each pool contains approximately half of the scenes. 
Two scenes are in both pools, to provide rating stability (Mirror 

                                                           
3 Certain commercial equipment, materials, and/or programs are 
mentioned in this report to specify adequately the experimental 
procedure. In no case does such identification imply 
recommendation or endorsement by the authors, nor does it imply 
that the program or equipment identified is necessarily the best 
available for this application. 

 
Evacuation Plan 

 
Flower Spot  

Flash Disabled 
 

Golf Course 

 * 
Lady & Fence  
Flash Disabled 

 
Lady & Metal 

 
Martha Daniel 

Painting 

 
Mirror Ball Confetti 

 
Parking Night 1 

* Sushi Rolls 

 
Winter Peaks 

Fig. 3. Representative image of each scene in the blue pool. Sets 
with less than 23 images are marked with an asterisk (*). 

 
camera B 

 
camera D  

camera J 

camera N  
camera L 

 
camera U 

camera G 
 

camera H  
camera I 

Fig. 2. These sample images show the large variety of camera 
responses within an equivalent image set. Cameras G, H and I are 
all 5 MP phone cameras (bottom row). 
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TABLE 2. IMPACT OF CAMERA F

Factor 
Pearson 

Correlatio
n 

All Cameras (2000–2006 & 20
Camera Type 0.365 0
Pixel Count 0.730 0
Sensor Size 0.385 0

Old Cameras (2000–200
Camera Type 0.606 0
Pixel Count 0.988 0
Sensor Size 0.305 0

Modern Cameras (2011–2
Camera Type 0.554 0
Pixel Count 0.670 0
Sensor Size 0.644 0

  
Fig. 4. Test environment for Ghent Universi
and Intel (right). All environments had natura

Fig. 5. Overall MOS score histogram for all i

TABLE 3. PEARSON CORRELATION BETWEEN

 Ghent ITS 
Ghent 1 0.952 
ITS  1 
Intel   

Fig. 6. Scatter plot of MOS scores from th
MOS scores from the HD monitor.  

Ball Confetti and Sushi Rolls). Each subje
one pool on both monitors (HD and 4K). E
9 subjects for each pool. Thus, each image 
subjects for each monitor resolution and th
were rated by 53 subjects for each 

FACTORS

R2 
Spearman 
Correlatio

n 
011–2014)
0.133 0.404 
0.533 0.682 
0.148 0.413 
06) 

0.367 0.463 
0.976 0.928 
0.093 0.205 
2014) 
0.306 0.626 
0.448 0.585 
0.415 0.676 

 
ity (left), ITS (middle) 
al light. 

 
images in the dataset. 

N LAB MOS SCORES 

Intel 
0.915 
0.941 

1 

 
he 4K monitor versus 

ect rated all images in 
Each lab provided 8 or 

was rated by 26 or 27 
he overlapping images 

monitor resolution. 

Justification for this split and
(without rescaling) can be fo
discarded in post analyses. 

IV. AN

Fig. 5 shows the overall M
data set as a histogram of the
MOS range from 1 to 4.78. Ta
comparison. The Pearson corr
MOSs of the three labs. The 
MOS scores correlate well amo

The data show high linear 
obtained from the HD monitor 
monitor. The Pearson correlati
correlation statistics between H
0.958, and 0.976 respectivel
illustrates this highly linear and

A two-sided Student’s t-te
rejects the null-hypothesis that 
are statistically equivalent. Let
into MOSs lower than three a
three, as obtained from the HD
bar in Fig. 6.). Now, a two-sid
statistically significant differen
the higher quality range (with
0.2 MOS points higher than t
difference in the lower quality 
scatter plot in Fig. 6 shows th
quality range mostly fall abov
the lower quality range they 
distributed around it.  

Figs. 7 and 8 show ratin
MOSs (i.e., averaging over all 
blue box spans the 25th to 75t
center marks the mean MOS
median, and all MOS values a
Fig. 7 shows a boxplot for ea
dependent quality response. 
factors. Phones and tablets are
“mobile,” due to the small num

Several factors impact the q
camera. Table 3 shows statisti
(i.e., averaged over all subjects
specific factors. The factor ana
is suspect for two reasons. Fir
in the study, three of which are
quality (see Fig. 8). Second, 
significantly from 2000–2006 
post processing on the chip. A
sensor size of modern cameras 
= 0.35). 

V. CON

Focusing primarily on m
following conclusions: 
• Pixel count impacts ≈30% t
• Sensor size impacts ≈27% t
• The overall quality differe

mobile cameras is 0.67 MO

d for combining the data directly 
ound in [13]. No subjects were 

NALYSIS 
MOS distribution over the entire 
e scores. Notice that it spans the 
able 3 shows the lab to lab MOS 
relation is computed between the 

high correlations show that the 
ong the three labs. 

correlation between MOS scores 
and the MOS scores from the 4K 

ion, R2, and Spearman rank order 
HD MOS and 4K MOS are 0.979, 
ly. The scatter plot in Fig. 6 
d monotonic trend. 

est at the 95% significance level 
the HD MOSs and the 4K MOSs 

t us then partition the data points 
and those greater than or equal to 
D monitor (i.e., along the vertical 
ded t-test concludes that there is a 
nce between HD and 4K MOSs in 
h the 4K MOSs being on average 
the HD MOSs), but no statistical 
range. Indeed a closer look at the 
hat the data points in the higher 

ve the 45 degree line; whereas in 
are approximately symmetrically 

ng trends via boxplots of image 
subjects, labs, and monitors). The 
th percentile, the white dot in the 
, the red vertical line marks the 

are rounded to one decimal place. 
ach scene; note the strong scene 
Fig. 8 shows camera and scene 

e combined into a single category 
mber of tablets.  

quality of an image produced by a 
ics comparing per camera MOSs 
s, labs, monitors, and scenes) with 
alysis of old cameras (2000-2006) 
st, there are only six old cameras 
e obsolete 1 MP cameras with bad 
camera technology has changed 
to 2010–2014, particularly in the 

Additionally, the pixel count and 
are not independent variables (R2 

NCLUSION 
modern cameras, we reach the 

to 45% of camera quality. 
to 42% of camera quality. 

ence between DSLR cameras and 
OS. 
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Fig. 7. Boxplot shows range of quality spanned by each scene. 

 

 

Fig. 8. Boxplots show rating trends by camera (top) and scene 
(bottom). 

1 2 3 4

AutumnMountains
BeachToys
BouquetDimClose
BuildingNightFlashDisabled
DenverBotanicGardensGreenhouse
EvacuationPlan
FlowerSpotFlashDisabled
GolfCourse
Lady&Fence
Lady&FenceFlashDisabled
Lady&Metal
Lady&MetalFlashDisabled
MachenIllustrationsFoxStBridge
MarthaDanielPainting
MirrorBallConfetti
ParkingNight1
Sushirolls
WinterPeaks

S
ce

ne

MOS

1 2 3 4

Type

Pixels

Year

Mobile
Compact
DSLR
1 MP
5 MP
8 MP
11 MP
18 MP
2000 to 2006
2011 to 2014

MOS

1 2 3 4

Lighting

Distance

Night
Dim
Bright
< 1m
1 to 2m
> 10m

MOS

• The overall quality difference between a 18 MP camera and 
a 5 MP camera is 1.0 MOS.  

These trends may be influenced by confounding factors. 
CCRIQ contains balanced experiment design (see Table 1) with 
the intent of reducing the influence of secondary factors. 

The entire CCRIQ dataset is available for research and 
development purposes on the Consumer Digital Video Library 
(CDVL, www.cdvl.org). These image files retain the camera’s 
format, compression, and metadata (i.e., except for vendor 
information). This is a valuable resource for the community. The 
CCRIQ dataset proposes a method for subjective testing of 
cameras with different resolutions, and statistics that relate pixel 
count and resolution to image quality. This information is 
expected to apply to video quality subjective testing. 
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