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DISCLAIMER

Certain commercial equipment, instruments, or materials are identified in this report to
adequately describe the experimental procedure. In no case does such identification imply
recommendation or endorsement by the National Telecommunications and Information
Administration, nor does it imply that the material or equipment identified is necessarily
the best available for the purpose.
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LOW RATE SPEECH CODING AND RANDOM BIT ERRORS: A SUBJECTIVE
SPEECH QUALITY MATCHING EXPERIMENT

Andrew A. Catellier and Stephen D. Voran∗

When bit errors are introduced between a speech encoder and a speech decoder,
the quality of the received speech is reduced. The specific relationship between
speech quality and bit error rate (BER) can be different for each speech coding
and channel coding scheme.

This report describes a subjective experiment concerning the relationships between
BER and perceived speech quality for the TIA Project 25 Full Rate (FR), Enhanced
Full Rate (EFR), and Enhanced Half Rate (EHR) speech codecs. Using the FR
codec with 2% random bit errors as a reference, we sought to characterize the
BER values for which the EFR (or EHR) codec produces speech quality that is
equivalent to the reference. We used an adaptive paired-comparison subjective
testing algorithm to efficiently adapt BER values for the EFR and EHR codecs to
quickly locate the BER values where listeners found the speech quality to be the
same as the reference.

The results from sixteen listeners reveal ranges of BER values that were judged to
produce speech quality equivalent to the reference. When these ranges are reduced
to central values, those values indicate that on average, the EFR and EHR codecs
are more robust to bit errors than the FR codec. We provide a set of additional
results from a popular objective speech quality estimator for comparison purposes.

Key words: bit errors, listening tests, speech coding, speech quality, subjective testing

1 INTRODUCTION

An important parameter in many digital communication links, and especially in digital radio links,
is bit error rate (BER). Error detecting codes and error correcting codes can increase robustness to
bit errors. When the desired signal becomes sufficiently weak, or interference becomes sufficiently
strong, uncorrected bit errors will inevitably result. When uncorrected bit errors are introduced
between a speech encoder and a speech decoder, the quality of the received speech is reduced.

The TIA Project 25 Full Rate (FR) speech codec (encoder/decoder pair) is the cornerstone of
Public Safety digital voice communications in the United States [1]. The encoder produces 4400
bits/second of compressed speech data. This data is protected by several different error correcting
codes resulting in a 7200 bits/second data stream that can then be transmitted by radio. Some bit
error patterns will be corrected by this scheme. Patterns associated with poor radio channels will
not be corrected and the quality of the speech produced by the decoder will suffer. For this codec,

∗The authors are with the Institute for Telecommunication Sciences, National Telecommunications and Informa-
tion Administration, U.S. Department of Commerce, Boulder, Colorado 80305.



a BER of 2% has been used as a speech quality benchmark. In this report, all BER values refer to
randomly distributed or independent bit errors.

Since the introduction of the FR speech codec, the TIA Project 25 Enhanced Full Rate (EFR) and
Enhanced Half Rate (EHR) have been introduced [2]. Like the FR codec, the EFR codec uses a
net data rate of 4400 bits/second and a gross data rate of 7200 bits/second. True to its name, the
EHR codec has a net rate of 2450 bits/second and a gross rate of 3600 bits/second.

Our first goal was to characterize the BER values for which the EFR codec produces speech quality
that is equivalent to the benchmark associated with the FR codec when it is subjected to 2% BER.
Similarly, our second goal was to characterize the BER values for which the EHR codec produces
speech quality that is equivalent to that same benchmark. This benchmark is key to all the work
described in this report and we use the terms “reference speech” and “reference condition” to point
to this benchmark. That is, “reference condition” refers to FR encoding, followed by 2% random
bit errors, then FR decoding. “Reference speech” refers to speech that has been processed by the
reference condition.

In order to complete our goals, we designed a subjective listening experiment. An obvious choice
when comparing speech codecs in subjective experiments is a paired-comparison test. Paired-
comparisons are more sensitive than single-stimulus evaluations, and the listener’s job is very
concrete and objective. In such a test, two recordings are played and listeners are then asked to
indicate which stimulus they prefer. In this case, one recording is reference speech, and the other
is from the EFR or EHR codec using the current BER value under test.

In order to use paired-comparison testing to find the BERs in question, one would have to select
a range of candidate BER values and sample this range with some BER step size determined in
advance. This could result in a very large experiment, or rather coarse BER steps.

Instead, we significantly reduced the size of the experiment while maintaining high BER precision
by adapting a new subjective testing technique. This technique, described in [3], uses a listener’s
votes to intelligently adapt the test contents in order to quickly zero in on the desired point in a
parameter space. In this case, that means adapting the current BER value under test for the EFR or
EHR codec in order to quickly zero in on the BER value that gives a speech quality match between
the EFR or EHR codec and the reference speech.

Section 2 describes the listening experiment and a set of additional experiments that use a popular
objective estimator of speech quality. We give special attention to the speech recordings used, the
processing conditions and methods, the experiment procedure, and how the listeners interacted
with the experiment. Section 3 presents the results of these experiments. Finally, we present and
discuss the conclusions that can be drawn from this work.
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2 EXPERIMENT DESCRIPTION

The goal of the listening experiment was to characterize the BER values for which the EFR or
EHR codec produces speech quality that is equivalent to the benchmark associated with the FR
codec when it is subjected to 2% BER. For simplicity, we refer to the EFR or EHR codec as the
codec under test (CUT), and the FR codec at 2% BER as the reference condition.

The TIA Project 25 FR, EFR, and EHR encoders decompose input speech according to a multiband
excitation (MBE) model. This model allows for a mixture of voiced and unvoiced components in
different spectral bands. This model is efficient and can provide good speech quality at low bit
rates. It is also robust in the sense that speech quality can be maintained even when significant
acoustic background noise is combined with the input speech. This makes the family of codecs
well-suited for use in the two-way land-mobile radio systems used by public safety officials. Fur-
ther details are available in [1, 2, 4].

The listening experiment uses an adaptive paired-comparison technique to efficiently arrive at
BER values that produce speech quality matches. From the listener’s perspective, the experiment
procedure is quite simple. This apparent simplicity is made possible by fairly complex control
and bookkeeping mechanisms operating behind the scenes. In order to understand the system, we
must first look at its parts. At the most basic level, there are source sentences. These are the raw
materials that will be processed and presented to listeners. There are also three codecs: FR, EHR,
and EFR.

Each source sentence must be processed with the EHR and EFR codecs at varying BERs to fa-
cilitate comparison with the reference condition. We can represent each source sentence/codec
combination with the term SSxCUT. The goal is to find a BER where each SSxCUT is judged to
have the same perceived speech quality as the reference condition. In order to do this, we present a
listener with the reference speech paired with the SSxCUT processed at varying BERs. Each time
a SSxCUT is processed with a different BER, the listener compares it with the reference speech
and indicates which he prefers, or indicates that he has no preference. The result of this trial
provides information that allows the software to intelligently select the next BER to evaluate for
that SSxCUT. The iterative process of presenting each SSxCUT and its corresponding reference
condition to a listener, recording a listener’s vote, adjusting the BER accordingly, and (in the best
case) eventually arriving at the BER that produces a speech quality match is called a “task.”

Each listener was given 32 tasks to complete. The individual trials that comprise each task were
presented in a random order. Thus, on each trial a listener contributes to the completion of one of
the 32 tasks.

2.1 Speech Recordings

The speech recordings used in this experiment come from a database that was recorded at the In-
stitute for Telecommunication Sciences. The database contains four men and four women speak-
ing Harvard phonetically-balanced sentences [5]. All speakers were recorded using high quality
recording equipment in a sound isolated chamber with an average background acoustic noise level
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of less than 20 dBA. Each person spoke a total of sixteen sentences for a total of 128 recordings.
The recordings were processed with two different software tools defined in [6]. The first process
was sample rate conversion from 48,000 samples/second to 8,000 samples/second using a 160 to
3640-Hz bandpass filter (the G.712 or “PCM” filter). In the second process all recordings were
normalized to have an active speech level matched to the software speech codecs described below.
That level is 25 dB below the level of the maximum unclipped sine wave in a 16 bit representa-
tion. The average length of the recordings was 2.2 seconds. We refer to each of these processed
recordings of sentences as a “source sentence.”

In order to distribute these recordings evenly among 16 listeners, the 128 source sentences were
divided into eight groups. Two sentences from each speaker were placed in a group, resulting in
a total of sixteen sentences per group. Each group served as the basis for 32 tasks (16 for EHR,
16 for EFR) for two listeners. This use of groups allowed for the inclusion of a wider selection of
speech and speakers in a balanced fashion while maintaining a manageable experiment length.

2.2 Experiment Procedure

Listeners took part in the experiment one at a time. Upon arrival, each listener read and signed an
informed-consent form and was then seated in a sound isolation chamber with an average back-
ground noise level of less than 20 dBA. The experiment administrator then read scripted instruc-
tions to each listener. A PDA was used to interact with the experiment software and was connected
via wireless ethernet and a VNC program to a computer that displayed the human interface.

The computer that ran the experiment software also produced the signals heard by listeners via a
high quality sound card (the Mia card from Echo Digital Audio Corporation). The listening instru-
ment was a pair of Model RS1 headphones, powered by a Model RA1 amplifier, both produced
by Grado Labs. Each listener was instructed to place the headphones on his head such that the
earpieces covered his ears. Each listener was instructed to adjust the volume control on the RA1
amplifier to his or her preferred listening level.

After the door to the sound isolation chamber was closed, listeners were instructed to use the PDA’s
stylus to push a button displayed on the PDA labeled “Begin.” The interface shown in Figure 1
then appeared on the PDA’s display. A source sentence was processed by two different codecs
and the results were then played through the headphones one right after another. There was a 0.5
second delay between the playing of the two recordings.

After both processed recordings finished playing, the listener was instructed to answer “Which
version do you prefer?” The listener’s choices were “first,” “no preference,” or “second.” Listeners
were allowed to replay the pair of processed recordings by using the stylus to push a button labeled
“Play Again.” Doing so replayed both processed recordings just as before. Listeners were allowed
to replay the processed recordings until they were ready to enter their vote. After a vote had been
submitted, software processed the next source speech sample for presentation to the listener. When
processing was complete, the next pair of processed recordings played through the headphones.
This procedure continued until the software indicated all necessary data had been collected.
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Figure 1. The human interface used during the experiment.

This experiment differs from many in that the speech signals to be presented on a given trial
were generated on-the-fly immediately before that trial. In the worst case, the time required to do
this was 750 ms. Thus, the on-the-fly generation was not perceived as an unnatural delay in the
experiment by the listeners.

2.3 Listeners

Sixteen listeners participated in the experiment. These listeners were a subset of a large pool of
employees that were randomly selected from the U.S. Department of Commerce Boulder Labo-
ratories telephone directory and invited to participate. A total of twelve males and four females
participated. Three of the listeners were estimated to be in their 20’s, five in their 30’s, six in their
40’s, and two in their 50’s. Two of the females were non-native speakers of English. Listeners
were not familiar with the goals of the experiment nor the speech codecs under test. Depending on
the listener, the duration of the experiment ranged from 10 to 30 minutes.

2.4 Speech Quality Matching Algorithm

In addition to the functions already identified, the experiment control software also implements a
speech quality matching algorithm (QMA). This algorithm seeks to find a BER value where the
CUT has the same perceived quality as the reference condition. That is, when the CUT and the
reference condition are played sequentially as a pair with randomized order, the listener votes “no
preference.” Thus the algorithm searches a line segment in BER space extending from 0% to 8%
BER. This upper limit of 8% was chosen after a preliminary listening to CUT recordings. It was
chosen to be well above the range where “no preference” votes would be likely to occur.
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In order to avoid conducting an exhaustive search of the line segment, we adapt the gradient ascent
paired-comparison method described in [3]. Adaptation is necessary because the original method
locates an area of maximum quality in parameter space, but the present problem requires quality
matching.

Since we are comparing either CUT to the reference condition, one recording in the paired com-
parison pair will always be the reference condition. The other recording in the pair is the CUT at
a given BER. The matching algorithm iterates to find a point of equivalence for each SSxCUT. As
mentioned in Section 2, the iteration to find a point of equivalence is also called a task. The result
of each task is a BER value for the SSxCUT.

For each task the algorithm starts with random BER, b, drawn from the uniform distribution be-
tween 0% and 8%. A source sentence is processed by the CUT encoder, and the resulting channel
file is modified to reflect the BER b. The modified channel file is then decoded by the CUT de-
coder. The software then encodes the same source sentence with the FR encoder, modifies the
resulting channel file to reflect a 2% BER, and finally uses the FR decoder to decode said channel
file to create the reference condition. The channel file modification process is described in Section
2.5. Both recordings are then presented to the listener as described in Section 2.2.

Instead of collecting subjective scores as described in [3], we ask listeners “Which version do
you prefer?” Listeners may respond with “first,” “no preference,” or “second.” Selecting “first”
suggests that the first recording played has a higher quality than the second. Likewise, selecting
“second” suggests that the second recording played has a higher quality than the first, and “no
preference” indicates that the listener could not distinguish the quality between the two.

After the listener has entered a vote the software stores it and performs a calculation. If the vote was
“no preference,” it stores the BER b as a point of equivalency for the source sentence processed by
the CUT. Otherwise b is adapted, following the premise that BER and speech quality are inversely
related.

The adaptation of b is described in (1). Llim and Ulim are the current lower and upper limits of the
line segment to search and are initialized to 0 and 8% respectively. If the listener preferred the
CUT over the reference, the quality of the CUT (QCUT ) must be greater than the quality of the
reference condition (QREF ), and therefore the point of equivalence must be a BER greater than the
BER b. Hence the upper branch of (1) is used to update b from bcurrent to bnew and Llim is set to
bcurrent as well.

bnew =






bcurrent +Ulim

2
, QCUT > QREF

Llim +bcurrent

2
, QCUT < QREF

(1)

If the listener preferred the reference condition over the CUT, QCUT must be less than QREF , and
therefore the point of equivalence must be a BER less than the BER b. Hence, the lower branch of
(1) is used to update b from bcurrent to bnew and Ulim is set to bcurrent as well.
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In both of these cases (QCUT > QREF and QCUT < QREF ), the result of (1) gives the BER bnew.
BER bnew is then stored and used to modify the channel file during the next iteration.

The software uses (1) to bisect a search segment until a listener reports both processed recordings
have the same quality, or the listener has voted ten times on a given task. This limit was determined
heuristically and represents a good tradeoff; obtaining as much information as is practical with-
out overburdening the listener. After ten iterations, the length of the line segment in BER space
that remains to be searched will be between 2−10× 8% and 2−9× 8% ( i.e., 0.008% to 0.016%)
depending on the initial random starting point b.

2.5 Speech Coding and Bit Errors

When the experiment control software asked for a speech signal from a particular codec at a partic-
ular BER, the following steps, shown graphically in Figure 2, were executed. Licensed reference
software provided by Digital Voice Systems Inc. (DVSI) was used to encode the 16 bit/sample
speech file using either the FR, EFR, or EHR encoder. The software encoders performed speech
coding and forward error correction (FEC), resulting in channel files that contained representations
of 7200 or 3600 bits/second data streams.

Figure 2. Signal flow through the encoding, bit error, and decoding processes.

These channel files were then read and processed to induce bit errors at the requested BER. First,
the total number of bits read from the channel file were counted, multiplied by the BER, and
rounded to the nearest integer in order to find the exact number of bits NE to invert. Next, the first
NE locations were extracted from the appropriate master bit error location pattern (master bit error
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location patterns are described below). Then the bits at those NE locations were inverted. The
other bits remained untouched, and the resulting bitstream was written to a new channel file. Note
that this procedure achieves a BER that matches the target BER exactly (within the constraint that
the total number of bits in error must be an integer).

Finally, licensed reference software provided by DVSI was used to decode the new channel file to
produce the requested 16 bit/sample speech file. The decoder was instructed to use hard decision
decoding when reading processed channel files.

The bit error generation process described above includes the use of multiple master bit error
location patterns. These patterns are simply lists of locations. Each list includes enough locations
to allow for the highest BER needed in the experiment. We use these patterns to appropriately
control variance in speech quality due to locations of bit errors. More specifically, in order to
obtain the most accurate and efficient speech quality matches, we need to minimize this source of
variance within the trials that comprise a given task. In order to accurately reflect actual operating
conditions, we need to allow this source of variance to appear between tasks. Thus, when a bit
error pattern is needed for a given task, either to generate the reference (FR) speech, or the CUT
(EFR or EHR) speech, the same master bit error location pattern is always used for that task. There
is one master pattern for each task. If a given task is done by more than one listener, a different
master pattern is used for each listener.

The use of a master bit error location pattern for each task results in a bit error location subset
property: If B(NE) is the set of bit error locations used for a given task and listener when NE bit
errors are needed, then

NE1 < NE2 ⇒ B(NE1)⊂ B(NE2) . (2)

This subset property follows directly from the fact that the master bit error location pattern is a list
of locations and we always extract the needed number of locations from the front of the list. The
bit error location repeatability property follows:

NE1 = NE2 ⇒ B(NE1) = B(NE2) . (3)

Figure 3 provides an example of a set of bit error patterns generated by this technique. The patterns
cover a group of 100 bits, and the value 1 is used to indicate a bit error. The top, middle and bottom
panels show bit error patterns for BERs of 15, 10, and 5% respectively (NE = 15, 10, and 5).

Due to the bit error location subset property, when the BER of the CUT is increased, new bit error
locations are added to the existing bit error locations. When the BER of the CUT is decreased,
bit error locations are removed from the existing bit error locations. The master bit error location
patterns provide a simple way to achieve these properties while maintaining randomly distributed
bit error locations.

8



0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

Bit Number

P
a

tt
e

rn
 V

a
lu

e

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

Bit Number

P
a

tt
e

rn
 V

a
lu

e

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

Bit Number

P
a

tt
e

rn
 V

a
lu

e

Figure 3. Example bit error patterns that conform with the subset property. BER is 15, 10, and 5%
in the top, middle and bottom panels, respectively.

For example, if the CUT BER is above 2%, the CUT bit error locations are all of the reference bit
error locations plus additional bit error locations. If the CUT BER is exactly 2%, the CUT bit error
locations match the reference bit error locations. And if the CUT BER is below 2%, the CUT bit
error locations are a subset of the reference bit error locations.

There is one additional complexity to address. For tasks where the CUT is EHR, we need a bit
error pattern of length NB bits with BER = 2% for the FR codec and a pattern of length NB/2 bits
with BER = b for the EHR codec. We use a single master bit error location pattern to create a
pattern of length NB bits and BER = 2% for the FR codec and a pattern of length NB bits with
BER = b for the EHR codec. We then subsample the second pattern by a factor of two to arrive
at a pattern with NB/2 bits with BER ≈ b. Next we add or remove bit errors at random locations
as necessary to force BER = b2. This time-domain subsampling is a desirable technique because
it preserves the BER and the temporal relationships among the error patterns, the speech signals,
and the speech coding frames to the extent possible.

Finally, we describe how the locations of errored bits can influence the resulting decoded speech
quality. There are three distinct factors to consider. First, the location of errored bits relative to
each other will influence how successful FEC can be at correcting those errors. Even randomly
distributed bit errors will show different amounts of clustering from trial to trial. Second, once
FEC has failed, the location of the uncorrected bit errors within each frame of encoded speech
data determines the speech coding parameter(s) that are corrupted and the way in which they
are corrupted. Finally, the location of a frame containing one or more corrupted speech coding
parameters relative to the speech signal will determine how audible and annoying that corruption
is once it has passed through the decoder.
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2.6 Bookkeeping

Our software treats each task as a separate entity. Upon initialization, memory space is allocated
to store all necessary data and metadata for each task. All memory required for every task is
organized into a one-dimensional array where each task has its own index in the array. Memory
for a given source sentence and both CUTs is allocated at the same time. Random starting values
of BER are drawn from the uniform distribution at this time as well. The starting place, binitial , is
used as the starting place for the given source sentence with both EHR and EFR codecs. When the
equivalency algorithm is initiated for a given source sentence and either CUT, binitial is the same.

Each listener was associated with one group of source sentences. A group of source sentences
consists of 16 sentences, and for each of these a speech quality match must be made for the EHR
codec and the EFR codec. Thus each listener performed 32 tasks.

Tasks are presented to each listener in a random order. That is, with each trial the listener makes
one step of progress on one task, and that task is taken at random from the list of all unfinished
tasks. When a task encounters a terminating condition in the matching algorithm, that task is
removed from the list of unfinished tasks. When the list of unfinished tasks is empty, the listener
has finished the experiment.

Each listener used a unique set of starting BER values that were generated at the beginning of an
experiment session. The seed used to generate these unique starting points was an input string
specified by the experiment administrator that was unique for each listener. This also caused each
listener to hear a unique set of bit error patterns.

2.7 Objective Speech Quality Estimation

Listening experiments directly access human hearing and human judgement. This means they
are well suited to answering questions like “How does this system sound?” or “Which system
sounds better?” However, listening experiments require significant resources and can take weeks or
months to design, implement, and analyze. Objective estimators of speech quality seek to provide
similar information through digital signal processing algorithms. These algorithms can replace
weeks or months of listening experiment work with minutes or hours of computer processing time,
but they can only provide estimates of perceived speech quality.

The most effective objective speech quality estimator presently available (and also the most pop-
ular) is the “Perceptual Evaluation of Speech Quality” (PESQ) algorithm [7, 8, 9]. Measuring
speech quality produced by MBE codecs in the presence of bit errors is not within the applica-
tion scope of the PESQ algorithm (see Tables 1 and 3 in [9]) so our use of PESQ here is purely
experimental. Having completed a formal listening experiment, it is natural to ask how the re-
sults would compare with those produced by the best available objective estimator. The PESQ
algorithm compares an original and distorted speech signal. It produces a raw quality score that
ranges from −0.5 to 4.5 and a second value called MOS-LQON, an acronym for Mean Opinion
Score, Listening Quality, Objective, Narrowband [10] that ranges from 1.0 to 4.5. MOS-LQON
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was developed to allow direct comparison with mean opinion scores from subjective tests. We use
the MOS-LQON output from PESQ to compare with our subjective results.

We also use a previously explored variant of PESQ that applies PESQ creatively in an attempt
to more accurately account for quality loss due to channel interference. This method, known as
DPESQ (where “D” means disturbance)1, uses multiple iterations of the PESQ algorithm and some
simple math to determine a score. In order to calculate DPESQ, several versions of a signal are
needed. The original source sentence, SS, and the source sentence processed by the CUT using a
BER of 0%, SSCUT , are compared by the PESQ algorithm, and a score δclean is stored according
to the following equation:

δclean = 4.5−PESQ(SS,SSCUT ). (4)

Then SSCUT is compared with the source sentence processed by the CUT using a given BER,
SSBER, and a score δBER is stored according to (5).

δBER = 4.5−PESQ(SSCUT ,SSBER) (5)

A measure of total disturbance, δtotal , is calculated:

δtotal =
�

δclean
2 +δBER

2. (6)

Finally, a DPESQ score is calculated:

DPESQ = 4.5−δtotal. (7)

One approach we used to compare the subjective and objective results was to keep the listening
experiment design and QMA intact, and simply replace each of the 16 listeners with the PESQ and
DPESQ algorithms. (Since different listeners heard different source speech and different random
starting BER values, applying PESQ or DPESQ in place of each listener does not yield 16 identical
sets of results as it would in some experiments.)

Using PESQ, each pair of recordings was used to generate a vote: either “first,” “second,” or “no
preference.” PESQ produced a MOS-LQON speech quality estimate S1 for the first recording and
a MOS-LQON estimate S2 for the second recording. The PESQ vote was calculated as follows:

1Alan Wilson, “DPESQ and MOS for Phase 2,” Presentation to the TIA APCO Project 25 Interface Committee
Vocoder Task Group, Document Number 08-013-VTG, Apr. 22, 2008.
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∆ < S1−S2 First,
|S1−S2| <= ∆ No Preference,
S1−S2 < −∆ Second,

(8)

where ∆ is a “sensitivity” parameter discussed in Section 3.2 below. Once the decision had been
calculated, the result was given to the experiment system which would then calculate and pro-
duce the next pair of recordings to evaluate. This process continued until the same termination
conditions imposed on the listening experiment were met.

In order to use DPESQ in this construct, we used MOS-LQON values to perform the calculations
needed to create a DPESQ score (not raw PESQ scores). This allows us to compare results more
directly with the PESQ and subjective results. DPESQ scores, DS1 and DS2, were calculated for
the first and second recordings in each pair, respectively. The DPESQ vote was then calculated as
shown in (8), substituting DS1 for S1 and DS2 for S2.

While the experiment design and QMA used were identical to those used during the listening
experiment, each objective test had a unique set of starting places as well as unique bit error
patterns.

Another method, a more common exhaustive search (ES) of objective scores in the BER space,
was also conducted. We used PESQ and DPESQ to directly estimate MOS-LQON scores for all
of the source sentences used in this experiment at BERs ranging from 0% to 8% with an interval
of 0.1%. We then looked at the mean MOS-LQON value and the confidence interval that the FR
codec achieved at 2% BER over all of the source sentences, and determined at which BERs the
EFR and EHR codecs perform equivalently.
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3 RESULTS

In this section we describe in detail the results of the listening experiment. Next we present the
results of the parallel efforts with an objective estimator of speech quality. Finally we describe our
work to verify the randomness of the bit error patterns used in the experiments.

3.1 Listening Experiment

As previously described, each listener performed 16 speech quality matching tasks for the EFR
codec and 16 tasks for the EHR codec. Sixteen listeners participated in the experiment, so 512
tasks were performed: 256 for EHR and 256 for EFR.

The sixteen listeners completed a total of 1292 paired-comparison trials in the listening experi-
ment. Of these trials, 596 were trials in EFR tasks and 696 were trials in EHR tasks. The compar-
isons between EFR and FR resulted in a “no preference” vote 247 times, thus terminating 247 of
the 256 EFR tasks. The comparisons between EHR and FR resulted in a “no preference” vote 244
times, thus terminating 244 of the 256 EHR tasks. Thus 491 of the 512 tasks were terminated due
to a vote of “no preference” and the other 21 tasks were terminated because the limit of 10 trials
per task had been reached.

Thus 41% of the EFR trials produced a speech quality match and 35% of the EHR trials did the
same. In other words, relative to an exhaustive search of the BER line segment, a small amount
of effort was expended to find points of equivalency. The average task length for EFR was 2.3
trials, and the average task length for EHR was 2.7 trials. This indicates that the listeners were not
burdened with an unreasonably large number of trials.

The key results from this experiment are the BERs for which a pair formed by a CUT and the
reference is voted “no preference.” Figure 4 shows a histogram of BERs where EFR-FR pairs
were voted “no preference.” The central 95% of the results are shown; 2.5% of the results have
been removed from each tail of the histogram. The votes in the central 95% of results range in
BER from 0.29% to 7.75%, the mean BER value is 3.70%, and the median value is 3.69%. If all
results are considered, calculating a mean results in a BER of 3.71%, and this mean has a 95%
confidence interval that covers the interval from 3.47% to 3.96%. More detailed statistics can be
found in Table 1.

Table 1. Results of the Listening Experiment

% BER
min max mean median % complete avg. trials

EHR 0.22 6.63 2.92 2.86 95 2.72
EFR 0.29 7.75 3.70 3.69 96 2.33

Likewise Figure 5 shows a histogram of BERs where EHR-FR pairs were voted “no preference.”
The votes in the central 95% of results range in BER from 0.22% to 6.63%, the mean BER value
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Figure 4. Histogram of BER equivalence values for the EFR codec, mean of all values indicated
by the dark gray line.
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Figure 5. Histogram of BER equivalence values for the EHR codec, mean of all values indicated
by the dark gray line.

is 2.92%, and the median is 2.86%. If all results are considered, calculating a mean results in a
BER of 2.96%, and this mean has a 95% confidence interval that covers the interval from 2.73%
to 3.18%.

3.2 Objective Estimation

Section 2.7 describes parallel experiments using objective estimators of speech quality called
PESQ and DPESQ. (8) shows how PESQ and DPESQ results are translated to automated votes
using the parameter ∆. We investigated ∆ values of 0.05, 0.1, 0.2, 0.25, and 0.5. Given the de-
cision criteria listed in (8), using ∆ = 0.05 would model a highly sensitive listener while using
∆ = 0.5 would model a less sensitive listener. For each value of ∆, the objective estimator per-
formed the experiment using the same QMA as the listening experiment. Table 2 shows the results
obtained for each value of ∆, along with the listening experiment results for comparison. Values
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in the column marked “% BER” describe point of equivalence statistics.

Table 2. Results of the Listening Experiment and Objective Experiment

% BER
∆ min max mean median % complete avg. trials

listening EHR n/a 0.22 6.63 2.92 2.86 95 2.72
EFR n/a 0.29 7.75 3.70 3.69 96 2.33

QMA PESQ

0.5 0.20 5.45 2.58 2.69 100 1.54
0.25 0.21 4.08 1.93 1.82 97 2.24

EHR 0.2 0.19 4.41 1.87 1.84 94 2.73
0.1 0.09 4.42 1.70 1.61 83 3.88

0.05 0.10 4.07 1.68 1.57 71 5.14
0.5 0.20 6.42 3.15 3.21 100 1.32

0.25 0.39 5.97 2.98 3.06 98 1.71
EFR 0.2 0.38 5.71 2.96 3.05 96 2.07

0.1 0.47 5.84 2.94 2.79 87 3.43
0.05 0.48 5.71 3.15 3.20 73 4.94

QMA DPESQ

0.5 0.28 5.09 2.61 2.75 100 1.58
0.25 0.42 4.80 2.42 2.34 97 2.12

EHR 0.2 0.25 4.61 2.21 2.03 94 2.55
0.1 0.26 4.80 2.26 2.10 89 3.55

0.05 0.23 5.12 2.48 2.43 75 4.84
0.5 0.28 6.67 3.26 3.37 99 1.38

0.25 0.42 6.18 3.35 3.36 98 1.80
EFR 0.2 0.50 6.23 3.27 3.32 97 2.13

0.1 0.61 6.40 3.51 3.59 91 3.31
0.05 0.94 6.11 3.76 3.82 72 5.15

The results from the objective estimators do not reproduce the listening experiment results, but the
DPESQ results come closer than the PESQ results. For both PESQ and DPESQ the range of BER
values is narrower than those produced by the listening experiment. For the PESQ results, the
mean and median BERs of those ranges are markedly lower than those produced by the listening
experiment. However, when ∆ = 0.2 the completion rate (94% for EHR, 96% for EFR in the PESQ
results, 94% for EHR, 97% for EFR in the DPESQ results) and average number of trials per task
(2.7 trials per task for EHR, 2.1 trials per task for EFR in the PESQ results, 2.6 trials per task for
EHR, 2.1 trials per task for EFR in the DPESQ results) resemble those of the listening experiment.
Perhaps this ∆ value models the average discrimination abilities of the listeners in the listening
experiment.

In the second part of our objective investigation, we used both PESQ and DPESQ to survey the
BER space for each codec. PESQ gave an estimate for the reference condition of 3.28 with a 95%
confidence interval of ±0.05 points, while DPESQ gave an estimate of 3.22 with a 95% confidence
interval of ±0.05 points.
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The PESQ estimate indicated that the EHR codec would have the same mean quality at 0.6% BER.
In order to state a range of BERs where we are 95% certain that the equivalent BER lies we need
to take the 95% confidence intervals on the means into account. This results in the rather wide
range from 0 to 2% BER.

Similarly, the PESQ estimate indicated that the EFR codec provided mean equivalent quality at
2.5% BER, with an equivalence range of 0 to 3.6% BER. The mean BERs calculated by this
exhaustive search approach are significantly lower than those of our subjective results, and the
equivalence ranges exclude what the subjective results show are points of equivalence.

The DPESQ exhaustive search estimate indicated that the EHR codec provided equivalent quality
at 1.9% BER, and had an equivalence range of 0 to 3.1% BER. Similarly, the DPESQ estimate
indicated that the EFR codec provided equivalent quality at 3.5% BER and had an equivalence
range of 2.2 to 4.3% BER. These results are closer to the subjective results than the PESQ results
are, yet differences of up to 1% BER remain.

As described, DPESQ1 uses raw PESQ scores. However, the MOS-LQON output from the PESQ
algorithm is specifically designed for comparison with subjective results. We performed all ob-
jective measurements using both raw PESQ scores and PESQ MOS-LQON values. We found
that results derived from MOS-LQON values do give better agreement with our subjective test
results than those derived from raw PESQ scores and we have included only results derived from
MOS-LQON in this report.

However, based on the lack of agreement between the listening experiment results and the PESQ
and DPESQ results, we conclude that objective measures are not a suitable substitute for subjec-
tive listening experiments in this application area. This is consistent with the stated scope of the
PESQ algorithm. Despite the increased performance that using DPESQ in either objective method
provides, it is not safe to assume that DPESQ is a suitable replacement for subjective tests in this
context.

3.3 Bit Error Statistics

The constraint when generating bit errors at various BERs was that individual bit errors must be
equally likely to occur at any given position in a channel file and that probability is the BER. In
other words, the bit errors are to be random. If bit errors are not random they are said to be bursty.
With bursty errors the probability of an error in bit position n is increased when there is an error in
bit position n− 1. Because we used known seeds to generate all necessary bit error patterns (via
master bit error location patterns), it is possible for us to recreate all bit error patterns and test them
for randomness.

Let PUE be the unconditional probability of bit error. Our empirical estimate of PUE is (total bit
errors) / (total bits). Let PCE be the conditional probability of bit error. Our empirical estimate of
PCE is found by analyzing only the bit positions that immediately follow a bit error. If there are
NE such positions then PCE is estimated as (number of the NE bit positions that have a bit error) /
NE.
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A bursty bit error pattern will have PCE > PUE , meaning it would be more likely that an error
occurred directly after another error. A random bit pattern will have PCE ≈ PUE , where an error is
equally likely to occur on its own as it is to occur after another error. Thus PCE−PUE is a measure
of burstiness.

We are interested in examining the bit error patterns associated with “no preference” votes. These
bit error patterns are interesting because it is important to ensure that a less-than-random pattern
did not cause adverse quality effects during testing. Figure 6 shows the burstiness measurement
for bit error patterns associated with the “no preference” vote for the EFR codec. The figure shows
that PCE is not reliably greater or less than PUE at any BER and we conclude that the error patterns
are random, not bursty. The variation in PCE−PUE reflects the trial-to-trial variation inherent when
small samples of a random process are observed.

Note that good estimates of PCE become increasingly difficult as BER goes to zero because NE
becomes small so the estimates are “data poor.” In Figure 6 PCE has been estimated as zero for
a number of BER values between 0 and .005. When this happens PCE −PUE becomes −PUE and
this generates the line with slope −1 in the lower left.
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Figure 6. Burstiness measurements for the EFR BER points of equivalence.
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4 CONCLUSIONS

We adapted an efficient new paired-comparison subjective testing method to find BER values
where the EFR and EHR codecs produce speech quality equivalent to that produced by the FR
codec at 2% BER. Sixteen listeners made 1292 comparisons that resulted in 491 votes for “no
preference.” The BER values associated with these “no preference” votes are the output of the ex-
periment. Meticulous attention was paid to the generation of bit error patterns, and post experiment
analysis confirms their randomness.

As both Figure 4 and Figure 5 show, there is a range of BER values that listeners perceive as
sounding the same as the reference. This, however, is not unexpected and the variance can logi-
cally be attributed to sources from two main classes. The first class is the signal production class
and includes the temporal relationships among the bit error patterns, the bits in each transmitted
frame, and the speech content in each transmitted frame. The second class is the signal perception
class and includes the hearing, personal auditory preferences, and other personal characteristics
(diligence, patience, etc.) of the listeners who participated in the experiment.

It is critical that the distribution of BER values resulting from this work is not ignored, but is
instead taken into consideration when setting radio channel performance goals, and when defining
coverage areas. The distribution of BER values indicates that a distribution of user experiences
can be expected depending on the factors cited above, and other factors (e.g., acoustic background
noise at transmitting and receiving locations) that occur outside the laboratory environment.

Nonetheless, simplification is sometimes desirable in order to draw the most basic conclusions.
Toward that end, we note that when one considers the measures of central tendency presented in
this report (mean and median) to characterize the BER distributions in the most simplistic terms,
those measures for EHR and EFR are higher than the 2% reference BER value used with FR. Thus
on average, under the conditions of this experiment, both the EFR and EHR codecs appear to be
more robust (in terms of decoded speech quality) to random bit errors than the FR codec.

We also observe that the PESQ algorithm, widely considered to be the most effective objective
speech quality estimator presently available, produces results that are pessimistic (lower BER)
when compared with this listening experiment. This lack of agreement is not unexpected as this
experiment concerns an application area that is outside the stated scope of PESQ. DPESQ has been
developed to address additional disturbances that were not considered during the development of
the PESQ algorithm. DPESQ results agree with subjective test results better than PESQ results do.
Even so, DPESQ does not serve as a reliable replacement for the subjective tests described here.

Additional insights might follow from knowledge of the range of BERs that would generate a “no
preference” vote for a given task and a given listener. A modified version of this experiment could
be designed to investigate this topic and is a potential topic for future work. In fact, there are
multiple experimental approaches that could be applied to investigate the more general topic of
listener resolution in paired-comparison subjective testing.
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