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ABSTRACT 
This paper identifies optimum levels of reverse water-filling for 
codebook-based coding of noise and speech signals.   We find 
that there is little to be gained from optimizing an effective rate 
parameter.  We identify trade-offs between SNR and log-spectral 
error.  We show that the use of a gain factor compares favorably 
with reverse water-filling in some situations. 

1. BACKGROUND 

Let x be an input signal vector provided to a coder, and letx̂ be 
the corresponding output signal vector.  Define the error signal 
vector x-xe ˆ= .  The power spectral densities (PSD’s) of these 

three signals are related by 
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[1] and [2] show that when stationary Gaussian signals are 
coded at low bit rates and that coding is near-optimum with 
respect to a squared-error distortion measure, then the 
relationship between the power spectral density of the coded 
signal x̂  and the PSD of the original signal x is 
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This result would follow from (1) when e andx̂ are uncorrelated 
and when )(ωeeP  is replaced with D(R), the frequency-

independent value of coding distortion for a coder operating at R 
bits/sample.  From [1] we know that for a zero-mean white 
Gaussian source with variance 2

xσ , 
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The work in [2] is focused on adapting codebook-based 

analysis-by-synthesis coding to account for the effect described 
by (2).  Codebook contents are traditionally filtered to have the 
PSD described by )(ωxxP .  [2] gives a procedure for filtering 

codebook contents to have the PSD described by )(ˆˆ ωxxP since 

this may provide a more natural fit to actual coder operation.  
The process of moving from )(ωxxP  to )(ˆˆ ωxxP  is called reverse 

water-filling (RWF.)   Due to complexities associated with 
deriving RWF filters, the work in [2] and here is limited to first-
order auto-regressive (AR) signal modeling.  Even this relatively 
simple approach improves the SNR of coded signals. 

 

2. CODING CONSTRAINTS 

Coding that minimizes a squared-error distortion measure is also 
called minimum mean-squared error (MMSE) coding.  In MMSE 

coding, an input signal vector x is replaced by an 
approximationx̂ that minimizes the mean-squared error (MSE) 
between x andx̂ under some constraints onx̂ .  The nature of the 
constraints onx̂ determine the coding rate and the amount of 
coding distortion. 

If x̂ is constrained to come from a linear subspace, then the 
MMSE coder projects x onto that subspace to findx̂ .  This 
projection minimizes the MSE between x andx̂ , and insures that 
the error vector e is orthogonal to (and uncorrelated with)x̂ . 

In MMSE analysis-by-synthesis speech coding,x̂ is 
commonly constrained to come from a codebook or to be built 
from codebook members under some constraints.  In general 
these constraints are quite different from the linear subspace 
constraint mentioned above.  Codebook constraints often do not 
insure the orthogonality of e andx̂ .  Because of this (2) may be 
violated.  In MMSE coding with codebook constraints, the 
relationship between )(ˆˆ ωxxP and )(ωxxP  is driven by the 

distributions of input signals and codewords in the codebook.  
Two examples follow. 
 
Uniform Density Codebook 
We formed an n-dimensional codebook of m random codewords 
uniformly distributed throughout the hypersphere of radius 2.  
We then used this codebook to do exhaustive-search MMSE 
coding of zero-mean, unit-variance Gaussian vectors.  For rates 
between 0.2 and 2.0 bits/sample (R = log2(m)/n) we found 
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For insight, consider a small hyperspherical neighborhood N 
about the input vector x and divide this neighborhood into two 
regions.  Let N+  be the set of points in N for which the distance to 
the origin is greater than |x| and let N- be the remainder of N.  N+ 

has greater hypervolume than N- and the spatial density of 
codewords is uniform, so N+ contains more codewords than N-.  
Thus it is more likely that the codeword x̂ that is closest to x 
will be in N+ rather than in N-.  On average we find that 

22ˆ xx > and hence )()(ˆˆ ωω xxxx PP > . 
 
Gaussian Codebook 
We repeated this experiment using a Gaussian codebook, and 
found )()(ˆˆ ωω xxxx PP < IRU DOO &� ZKLFK FDQ EH FRQVLVWHQW ZLWK

(2).  The Gaussian codebook is more densely populated near the 
origin and N- typically contains more codewords than N+.  Thus, 
on average we find that 22ˆ xx < and )()(ˆˆ ωω xxxx PP < .  Since 

codebook-based speech coders often use codebooks that are 
Gaussian, or at least exhibit increasing codeword density towards 
the origin, it is likely that we will often find )()(ˆˆ ωω xxxx PP <  in 

speech coding situations.  



It appears there may be two complications associated with 
RWF in codebook-based coding.  First, e is not always 
orthogonal tox̂  so (2) is not always satisfied.  Second, (3) gives a 
bound on D for any given rate R in the white Gaussian case, but 
it does not give actual values of D to use in RWF for general 
cases.  Thus we elected to do some coding experiments to 
determine optimum levels of RWF for noise and speech signals.  
We investigated RWF using two measures of coding distortion, 
and we compared RWF with the application of a gain factor. 

3. CODING EXPERIMENTS 

[2] gives a procedure for filtering codebook contents to have the 
PSD described by )(ˆˆ ωxxP as given in (2), when )(ωxxP is a first-

order AR process.  For a given rate R, (3) is used (with equality) 
to determine a level of coding distortion D.  This distortion level 
is then used to design a first-order auto-regressive moving 
average (ARMA) filter that will shape white codewords to the 
PSD described by )(ˆˆ ωxxP . 

We adopted this filter design procedure, but rather than 
driving it with the actual coder rate R, we used an effective 
rateR

~ .  This allowed us to varyR
~ to determine an optimal level 

of RWF.  To prevent attempts at designing filters for 0)(ˆˆ <ωxxP , 

we followed the procedure of [2] and calculated effective 
distortion D

~  as 
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where 1 is defined for each experimental case below. 
For white signals RWF is equivalent to the application of a 

gain factor.  If codeword variance is equal to input signal 
variance, then (2) and (3) give this gain factor as 
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Following [2], our experiments were done at R=0.25 and 
R=1 bits/sample.  These rates nicely bracket the rates of much 
current speech coding work.  For R=0.25 we used signal vectors 
and codewords with length n=40, and codebooks with 102=m  
codewords. For R=1, we used n=10 and 102=m .  Note that 
R=log2(m)/n.   

We used SNR and log-spectral error (LSE) as measures of 
coding distortion:   
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where )(ˆˆ ixxP ω  and )( ixxP ω represent length n sampled PSD’s 

calculated using a symmetric Hamming window.  For the white 
and colored noise coding experiments, SNR and LSE were 
calculated for length n signal vectors.  For the speech coding 
experiments, SNR and LSE were calculated over 10 ms frames of 
the speech signals, consistent with [2].  Experimental results are 
given in Table 1.  Searches for optimal values 

optG  and 
optR

~ used 

step size 0.01. 
 
 
 

White Gaussian Noise 
The first set of coding experiments used zero-mean, unit-variance 
white Gaussian input vectors and codewords.  These codewords 
were scaled by the gain factor )

~
(RG which is equivalent to RWF 

at an effective rate R~  when G � �� *LYHQ DQ LQSXW VLJQDO YHFWRU

x, the coder exhaustively searched the scaled codebook to find 

the codeword x̂ that minimized .ˆ 22
xxe −=  We varied G over a 

range to determine what values of G would give maximal SNR 
and minimal LSE.  SNR and LSE values were averaged over 
20,000 trials for each value of G.  The table shows that in the 
white Gaussian case, gain or RWF can improve SNR by about 
1.0 dB at 18.0

~
0.25, == RR and by 0.2 dB at 68.0

~
1, == RR .  

On the other hand, this technique causes LSE to increase by 2.3 
dB and 0.2 dB respectively.  The table also shows the results of 
optimizing RWF to minimize LSE.  This can only be done at the 
expense of SNR.  An SNR vs. LSE trade-off must be made.  In 
several cases LSE is minimized by gains greater than 1.  This 
corresponds to “water filling” rather than RWF.  This result 
indicates that in some cases the best spectral match is 
accomplished by fighting, rather than accommodating the effect 
described in (2). 
 
Colored Gaussian Noise  
The second set of coding experiments used zero-mean, colored 
Gaussian input vectors.  Unit-variance white Gaussian vectors 
were colored using a low-pass first-order AR filter  
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with 1 = G = 1.  We used .1=0.7 for consistency with [2] and 
with speech PSD’s.  Codewords were constructed by filtering 
unit-variance white Gaussian vectors as well.  For the RWF case 
we used the ARMA filter specified in [2]: 
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with 1 = 1.  The MA portion of this filter accomplishes RWF.   
Given the simplicity of the gain factor approach and its 

equivalence to RWF in the white case, we applied it in this case 
as well.  We created a second set of filtered codewords using (7) 
with 1 = 1.  We varied G and R

~ over ranges to determine what 

values would optimize SNR and LSE.  SNR and LSE values were 
averaged over 5000 or 100,000 trials. 

With RR=~ , we were able to approximately reproduce the 

SNR improvements reported in [2].  The absolute SNR values 
were not in exact agreement but the improvements were 0.7 dB 
at 25.0

~ == RR and 0.4 dB at 1
~ == RR  which agree well with 

the 0.7 dB and 0.3 dB improvements reported in [2].  The best-
case SNR increases were 0.7 dB at  0.77

~
0.25,R == R and 0.5 

dB at 85.0
~

1, == RR .  The peaks in the SNR vs. R
~ curves are 

broad, so while R and 
optR

~  are not particularly close, the 



resulting SNR’s are quite close.  The optimization of R
~  offers 

little advantage over the case RR=~ .  At R=0.25, the gain factor 

and RWF offer similar SNR improvements but at R=1 RWF 
offers a larger SNR improvement than the gain factor.  At both 
rates, the gain factor gives a better LSE than RWF does.  An 
SNR vs. LSE trade-off must be made. 
 
Speech 
The final set of coding experiments used 64 seconds of high-
quality speech signals with 300-3400 Hz nominal passband and 
fs=8 kHz.  Two female and two male English-language speakers 
were used and each speaker provided six sentences.  The 
autocorrelation method (using a 20 ms Hamming window) was 
used to derive a first-order AR model for each 10 ms frame of 
speech.  Each frame was then divided into 2 (R=0.25) or 8 (R=1) 
signal vectors.  Codewords were constructed by filtering unit-
variance white Gaussian vectors.  For the RWF case we used the 
filter specified in (8) and for the gain factor case we used the 
filter specified in (7).  In each case 1 and .1 were set to agree with 
the first-order AR speech model.  We varied R

~ and G over 

ranges to determine what values would optimize SNR and LSE.  
For each value of R

~  or G the SNR and LSE values were 

averaged over the frames of all 24 sentences, excluding any 
frames with energy 20 dB or more below the average frame 
energy, consistent with [2]. 

The table shows that for these speech signals, RWF can 
provide best-case SNR improvements of 0.5 dB and 0.3 dB at 
R=0.25 and R=1 respectively.  The improvements reported in [2] 
are 0.5 and 0.4 dB so our optimization procedure offers no

benefit in this case.  RWF also improves LSE by about 1.5 and 
0.6 dB respectively. At R=0.25, the gain factor gives the same 
SNR improvement as RWF, but a smaller LSE improvement.  At 
R=1 the gain factor provides no benefit.  With these speech 
signals, the maximal SNR and minimal LSE operating points are 
quite close, so there is little need or opportunity to trade one off 
against the other. 

4. CONCLUSIONS 

Codebook constrained MMSE coding may or may not motivate 
RWF, depending on the signal and codeword distributions.  For 
speech coding, these distributions do generally motivate RWF.  
For white and low-passed Gaussian signals, RWF can increase 
SNR but only at the expense of LSE.  For white signals RWF is 
equivalent to a gain factor.  For low-passed Gaussian signals a 
gain factor may offer some advantages over RWF in terms of 
LSE.  For speech signals, RWF is more useful than a gain factor.  
RWF based on an optimized effective rate offers no significant 
advantage over the use of actual rates.  We offer thanks to Søren 
Vang Andersen and W. Bastiaan Kleijn, authors of [2].  This 
paper relies heavily on their work. 
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Gain Reverse Water-Filling Signal, 

Rate 
Baseline 

SNR (dB) 
Baseline 
LSE (dB) Gopt SNR 

(dB) 
LSE 
(dB) optR

~
 

SNR 
(dB) 

LSE 
(dB) 

GmaxSNR=0.47 1.16 8.12 
maxSNRR

~
=0.18 

1.16 8.12 White 
Gaussian, 
R=0.25 

0.12 5.81 

GminLSE=1.17 -0.48 5.75 
minLSER

~
: � 

0.12 5.81 

GmaxSNR=0.60 2.46 6.94 
maxSNRR

~
=0.77 

2.43 7.87 Colored 
Gaussian, 
R=0.25 

1.71 5.83 

GminLSE=1.16 1.15 5.69 
minLSER

~
 : � 

1.71 5.83 

GmaxSNR=0.63 2.70 10.29 
maxSNRR

~
=0.48 

2.69 9.73 Speech, 
R=0.25 

2.17 11.21 

GminLSE=0.46 2.54 10.10 
minLSER

~
=0.74 

2.68 9.65 

GmaxSNR=0.78 4.77 5.00 
maxSNRR

~
=0.68 

4.77 5.00 White 
Gaussian, 

R=1 

4.54 4.79 

GminLSE=0.98 4.59 4.75 
minLSER

~
=2.33 

4.59 4.75 

GmaxSNR=0.80 6.60 4.97 
maxSNRR

~
=0.85 

6.80 5.70 Colored 
Gaussian, 

R=1 

6.35 4.84 

GminLSE=1.06 6.22 4.68 
minLSER

~
 : � 

6.35 4.84 

GmaxSNR=0.93 7.06 9.10 
maxSNRR

~
=1.04 

7.35 8.62 Speech, 
R=1 

7.05 9.18 

GminLSE=0.68 6.71 8.93 
minLSER

~
=0.90 

7.24 8.54 

 
Table 1.  Results of coding experiments with gain or reverse water-filling. 


