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Abstract—We announce a new Video Quality Model (VQM) 

that accounts for the perceptual impact of variable frame delays 

(VFD) in videos with demonstrated top performance on the 

Laboratory for Image & Video Engineering (LIVE) Mobile 

Video Quality Assessment (VQA) database. This model, called 

VQM_VFD, uses perceptual features extracted from spatial-

temporal blocks spanning fixed angular extents and a long edge 

detection filter. VQM_VFD predicts video quality by measuring 

multiple frame delays using perception based parameters to 

track subjective quality over time. In the performance analysis of 

VQM_VFD, we evaluated its efficacy at predicting human 

opinions of visual quality. A detailed correlation analysis and 

statistical hypothesis testing show that VQM_VFD accurately 

predicts human subjective judgments and substantially 

outperforms top-performing Image Quality Assessment (IQA) 

and VQA models previously tested on the LIVE Mobile VQA 

database. VQM_VFD achieved the best performance on the 

mobile and tablet studies of the LIVE Mobile VQA database for 

simulated compression, wireless packet-loss, and rate adaptation, 

but not for temporal dynamics. These results validate the new 

model and warrant a hard release of the VQM_VFD algorithm. 

It is freely available for any purpose, commercial, or 

noncommercial at http://www.its.bldrdoc.gov/vqm/.   

Index Terms—Edge detection, video quality model, video 

quality assessment, variable frame delay, video quality database, 

VQM_VFD 

I. INTRODUCTION 

ODERN video transmission systems contain different 

impairments than those seen two decades ago. Back in 

the 1990s, video codecs operated with one system delay. 

Difficult-to-code segments resulted in lower frame rates and 

more delay; easy-to-code segments resulted in higher frame 

rates and less delay. These delays always varied around a 

single system delay. Changes to delay occurred gradually, 

making them difficult for a naïve viewer to notice. 

Today, video transmitted over the internet contains 

occasional, systematic change to the delay. That is, the system 

varies around one delay for a while, an event occurs, then the 

system varies around a different delay, and so on. Example 

events are rebuffering and decoder buffer overflow / 

underflow. These changes are often abrupt and easy to 

perceive (e.g., the video freezes without loss of content). 

 
Manuscript received May 1, 2013.  

M. H. Pinson is with the Institute for Telecommunication Sciences (ITS), 

Boulder, CO, 80305 USA (e-mail: mpinson@its.bldrdoc.gov). ITS is the 
research and development office of the National Telecommunications & 

Information Administration (NTIA). 

L. K. Choi and A. C. Bovik are with the Laboratory for Image and Video 
Engineering (LIVE), and the Wireless Networking and Communications 

Group (WNCG), Department of Electrical and Computer Engineering, The 

University of Texas at Austin, Austin, TX 78712-1084 USA. (e-mail: 

larkkwonchoi@gmail.com; bovik@ece.utexas.edu). 

The Laboratory for Image & Video Engineering (LIVE) 

Mobile Video Quality Assessment (VQA) database [1] is a 

tool to investigate this “multiple system delays” problem. It 

contains a variety of video impairments that are typical of 

heavily loaded wireless networks, including dynamically 

varying distortions such as frame freeze and time varying 

compression rates, as well as static distortions such as 

compression and wireless packet loss. In August of 2012, 

LIVE made these video sequences and subjective scores 

available upon request to researchers. One goal is to 

encourage development of improved video quality models that 

are appropriate for mobile video applications.  

Objective video quality models are struggling to catch up 

with the impact of multiple system delays on users’ perception 

of video quality. Most models were designed under the one 

system delay paradigm. Two examples are Peak Signal to 

Noise Ratio (PSNR, see the Appendix) and the NTIA General 

Model, released in 2001 under the name Video Quality Metric 

(VQM) [2],[3].  

In August of 2011, Wolf and Pinson [4] issued a soft release 

of a new model: the video quality model for variable frame 

delay (VQM_VFD). This model was designed to 

accommodate the reality of multiple system delays. Code 

implementing VQM_VFD is freely available for any purpose, 

commercial or non-commercial [5]. VQM_VFD was soft 

released with a small announcement, while independent 

analyses were being sought.  

Another goal of the LIVE Mobile VQA database was to 

analyze the performance of existing objective video quality 

models for mobile applications. Moorthy et al. [6] analyzed 

the performance of eleven objective video quality models. 

Their conclusion was that existing VQA algorithms are not 

well-equipped to handle distortions that vary over time. This 

analysis did not include VQM_VFD, as the authors were not 

aware of each other’s work.  

We have recently employed the LIVE Mobile VQA 

database to independently analyze the performance of the 

VQM_VFD model. The VQA database was not made 

available to NTIA until after the analyses listed in this report 

were completed (to ensure impartial analysis). The good 

performance of VQM_VFD on this database verifies the value 

of the new model, which thus warrants a hard release.  

II. VQM_VFD 

A. Background and Design Goals 

In 2001, NTIA finalized the General Video Quality Model 

(VQM) [2], [3]. VQM was trained on 11 datasets, containing a 
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total of 1,536 subjectively rated video sequences [2]. VQM is 

one of the first of four models developed for digital video 

codecs that passed scrutiny when independently examined by 

the Video Quality Experts Group (VQEG). Of these four 

models, only VQM showed equally strong performance for 

both American and European frame rates. VQM gained 

popularity and is widely used.
1
 However, VQM has the 

following known flaws: 

 Training data limited to standard definition television and 

CIF resolution progressive video 

 Few examples of transmission errors in the training data 

 Assumes the “single system delay” paradigm 

VQM is a reduced reference (RR) metric, meaning low 

bandwidth features are extracted from the original video and 

compared to the processed video. For practical reasons, such 

as the difficulty of getting in-service access to original videos, 

the software implementations of VQM are full reference (FR). 

This means that the entire original video and processed video 

are available at one location. An overview of these and other 

model types is provided by Wang and Jiang [7].   

By 2010, NTIA had access to 83 datasets, containing a total 

of 11,255 subjectively rated video sequences. These datasets 

include five image sizes: Quarter Common Intermediate 

Format (QCIF), Common Intermediate Format (CIF), Video 

Graphics Array (VGA), Standard Definition (SD), and High 

Definition (HD). Five combined datasets were created, each 

with one image size. The Iterative Nested Least Squares 

Algorithm (INLSA) was used to map the subjective scores 

onto the nominal (0, 1) common scale [8]. This enabled the 

combined datasets to be used for developing and testing the 

output mapping.  

NTIA decided to develop a new FR model to replace VQM. 

The design goals were as follows: 

 Include the multi-system delay paradigm  

 Allow different viewing distances 

 Improve accuracy for transmission error impairments 

 0.90 Pearson Correlation on training data for each of five 

resolutions: QCIF, CIF, VGA, SD & HD 

Like VQM and PSNR, this new FR model requires 

calibrated video sequences. Calibration algorithms estimate 

and remove systematic differences between the original and 

received sequence that do not impact quality: 

 A constant spatial shift, horizontally and/or vertically 

 A small amounts of spatial scaling (e.g., ≤ 10%) 

 A constant delay  

 A small, constant gain and offset applied to the luma 

component / Y in the YCbCr colorspace (e.g., ≤ 10%) 

 A change to the overscan size  

NTIA developed two sets of calibration routines that can be 

used for this purpose. The first are FR calibration routines 

defined in [2] and [3]. The second are reduced reference (RR) 

calibration routines defined in [9]. 

 
1 As of the date this article was submitted for publication, Google Scholar 

finds 655 citations associated with [3]. This does not capture papers that cite 

VQM with [2], ITU-T Rec. J.144, or ITU-R Rec. BT.1683. 

B. VFD: Measurement of Multiple Frame Delays 

Digital video transmission systems can produce pauses in 

the video presentation, after which the video may continue 

with or without skipping video frames. Sometimes sections of 

the original video stream may be missing entirely (skipping 

without pausing).  

Time varying delays of the output (or processed) video 

frames with respect to the input (i.e., the original or reference) 

video frames present significant challenges for FR video 

quality measurement systems. Time alignment errors between 

the output video sequence and the input video sequence can 

produce measurement errors that greatly exceed the perceptual 

impact of these time varying video delays.  

Wolf [10] describes an algorithm that finds the best 

matching original frame for each received frame. This variable 

frame delay (VFD) algorithm does pixel-by-pixel comparisons 

between each received frame and a range of original video 

frames. A heuristic algorithm chooses the set of most likely 

matching frames. The VFD algorithm steps are as follows. 

 Normalize each original and processed frame (or field) for 

zero mean and unit variance. 

 Compute mean squared error (MSE) between each 

processed frame (or field). 

 Choose a threshold below which MSE indicates a likely 

candidate for correct alignment. This threshold is set 

empirically, based on the range of MSE for the current 

frame (or field). This produces a fuzzy set of likely 

alignments for each frame (or field). 

 Compute frame (or field) update patterns that are likely 

and ensure causality. This produces a set of alignment 

alternatives, some of which may not span the entire 

duration of the clip. 

 Sort these update patterns by length. Compute the most 

probable alignment pattern for the entire sequence, based 

upon the assumption that longer update patterns are more 

likely to be correct than shorter update patterns. 

 If the longest update pattern does not span the entire 

sequence, fill gaps using a multi-stage set of heuristics.   

The original video sequence is then modified so it matches 

the processed video sequence (i.e., VFD-matched original 

video). For instance, if the received video sequence repeats 

every other frame, then the original sequence would match 

this behavior. The VFD information generated from this step, 

together with the calibrated processed video, and the VFD-

matched original video are sent to the objective model. In this 

way, the objective model predicts quality based on correctly 

aligned original and distorted frames, and on the estimated 

annoyance of frame delay variations and frame repetition. 

The VFD algorithms act as a pre-filter for two objective 

video quality models: VQM_VFD and PSNR_VFD. 

C. PSNR_VFD  

PSNR is probably the most well-known objective video 

quality model. PSNR is a logical extension of signal-to-noise 

ratio, which is a long standing electrical engineering 

measurement. PSNR is on a logarithmic decibel scale, which 

is not a perceptual scale. PSNR is widely accepted by industry 
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and has value for that alone.  

There are multiple variations of the PSNR in use. The NTIA 

author is aware that a proprietary implementation of this 

algorithm calculates and removes the impact of variable frame 

delays before calculating PSNR. This motivated NTIA to 

develop a freely available variant, PSNR_VFD.  

PSNR_VFD [10] is calculated by comparing the received 

video with the VFD-matched original video. PSNR is then 

calculated as: 

𝑃𝑆𝑁𝑅 = 10 × 𝑙𝑜𝑔10 (
2552

1

𝑁
∑ ∑ ∑ (𝑂𝑥,𝑦,𝑡−𝑃𝑥,𝑦,𝑡)

2
𝑡𝑦𝑥

) (1) 

where  

 O is the luma plane of the original video 

 P is the luma plane of the received video 

 x, y, and t index the video horizontally, vertically, and in 

time 

 N is the total number of pixels used in the calculation 

Like most versions of PSNR, this model is very sensitive to 

calibration errors. PSRN_VFD is intended to be run in three 

steps: first calibrate the received video, second calculate VFD 

information, and third calculate PSNR_VFD. In our 

experiments, PSNR_VFD is run twice: once with the FR 

calibration routines [2] and once with the RR calibration 

routines [9].
2
  

PSNR_VFD does not capture errors due to temporal 

misalignments of the video frames, or indeed any artifacts 

whose perceptual impact is primarily temporal (such as 

flicker). Instead of measuring overall video quality as 

perceived by a person, PSNR_VFD isolates one element: the 

amount of distortion in individual frames.  

The goal of PSNR_VFD is to enable subsequent root cause 

analysis. PSNR_VFD focuses on one aspect of video quality: 

how well individual frames replicate the original picture. Root 

cause analysis may provide useful indicators as to why the 

video system is producing the given quality level. 

The disadvantage is that PSNR_VFD does not always track 

subjective opinion, as we will see in Section IV. PSNR_VFD 

is used by the VQM_VFD model, as one of its parameters. 

D. VQM-VFD Filters 

A core component of both VQM and VQM_VFD is a 

spatial information (SI) filter that detects long edges. This 

filter is similar to the classical Sobel filter in that separate 

horizontal and vertical filters are applied, then the total edge 

energy is computed as the Euclidean distance: 

 𝑆𝐼𝑛(𝑖, 𝑗, 𝑡) =  √𝐻𝑛(𝑖, 𝑗, 𝑡)2 + 𝑉𝑛(𝑖, 𝑗, 𝑡)2 (2) 

where the filter size is (n × n), i is the row, j is the column, t is 

the time (frame number), Hn is the horizontal bandpass filtered 

video, and Vn is the vertical bandpass filtered video. Unlike 

Sobel, each line of the horizontal bandpass filter is identical, 

and likewise each column of the vertical bandpass filter.   

Next, SIn is separated into HVn and 𝐻𝑉𝑛 , such that HVn 

contains the horizontal-vertical edges (and zero otherwise), 

and 𝐻𝑉𝑛  contains the diagonal edges. Low energy edges are 

 
2 ITU-T Rec. P.340 calculates PSNRconst by combining equation (1) with an 

exhaustive search calibration algorithm.  

omitted.  

Filter SIn assumes that subjects focus on long edges and 

tend to ignore short edges. As the filter size increases (e.g., 

SI5, SI7, SI9), individual pixels and small details have a 

decreasing impact on the edge strength and angle calculation. 

By contrast, Sobel (3 × 3) responds identically to short and 

long edges. 

The optimal SIn filter size depends upon the resolution of 

the target video and, consequently, the length of interesting 

edges. The filter sizes used by VQM_VFD were chosen 

empirically, based on the training databases: SI5 for QCIF 

resolution video, SI9 for CIF, SI13 for standard definition, and 

SI13 for HD. Naturally there are diminishing returns. SI21 

showed slightly improved performance over SI13 for HD, but 

the performance difference was too small to justify the slower 

run speed.    

The SIn, HVn and 𝐻𝑉𝑛  filters have potential value for other 

video or image processing applications. The advantage of SIn 

is the ability to detect long edges. HVn and 𝐻𝑉𝑛  provide a 

means to detect a shift of energy from diagonal edges to 

horizontal & vertical edges (e.g., blocking or tiling) or the 

opposite (e.g., blurred vertical edges). Here, we have only 

summarized the filters. Source code is available online at 

http://www.its.bldrdoc.gov/resources/video-quality-

research/guides-and-tutorials/guides-and-tutorials.aspx. 

E. VQM_VFD Model Parameters 

VQM_VFD computes video quality by comparing the 

received video sequence to the VFD-matched original video. 

This new video quality model accounts for the perceptual 

impact of variable frame delays, by using features extracted 

from spatial-temporal (ST) blocks spanning a fixed angular 

extent as seen by the eye. Thus, the ST block sizes change in 

response to the viewing distance. This enables VQM_VFD to 

track subjective quality over a wide range of viewing distances 

and image sizes.  

Features and parameters are extracted from ST blocks. Each 

ST block has a fixed angular extent θ, as seen by the viewer, 

plus a time extent in seconds. The viewing distance is an input 

parameter to the model. The ST block size is translated from 

angular degrees and seconds into pixels and frames using the 

current viewing distance and video sequence’s frame rate. For 

VQM_VFD, θ is 0.4 degrees. The time extent is 0.2 sec, which 

is identical to VQM.  

A “feature” is a quantity of information associated with, or 

extracted from, an ST block. A “parameter” is a measure of 

video distortion that is the result of comparing two parallel 

streams of features, one stream from the original video and the 

corresponding stream from the processed video. VQM_VFD 

contains the following eight parameters. The eight parameters 

of VQM_VFD are briefly summarized below. The reader is 

directed to the source code for additional details, including 

algorithms not given here for clipping functions, thresholds, 

and weighting. 

1) HV_Loss detects a loss in horizontal and vertical spatial 

edge energy, compared to diagonal edge energy. The 

http://www.its.bldrdoc.gov/resources/video-quality-research/guides-and-tutorials/guides-and-tutorials.aspx
http://www.its.bldrdoc.gov/resources/video-quality-research/guides-and-tutorials/guides-and-tutorials.aspx
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computation begins by estimating the edge energy in each ST 

block in both the original and processed video:  

𝑓𝐻𝑉 = 𝑚𝑒𝑎𝑛(𝐻𝑉𝑛)/𝑚𝑒𝑎𝑛(𝐻𝑉𝑛) (3) 

where mean computes the average over the pixels within a 

particular ST block. A minimum threshold is applied 

separately to 𝑚𝑒𝑎𝑛(𝐻𝑉𝑛) and 𝑚𝑒𝑎𝑛(𝐻𝑉𝑛) to eliminate erratic 

behavior from imperceptible impairments. The filter adapts in 

size to the video resolution (e.g., HV13 for HD, SD and VGA; 

HV9 for CIF; and HV5 for QCIF).  

The differences between original and processed features are 

computed by estimating the change in HV edge energy:  

𝑝𝐻𝑉𝐿 = 𝑚𝑖𝑛(𝑙𝑜𝑔10(𝑓𝐻𝑉𝑜𝑟𝑖𝑔/𝑓𝐻𝑉𝑝𝑟𝑜𝑐), 0) (4) 

where fHVorig is (3) calculated on the original video, fHVproc is 

(3) calculated on the processed video, and min computes 

minimum. This produces one parameter value per ST block, 

where decreasing (negative) values of pHVL indicate the 

processed video has lost horizontal & vertical edge energy. 

The visual masking function in (4) implies that impairment 

perception is inversely proportionate to the amount of local 

activity. 

The HV_Loss parameter in VQM was oversensitive to 

impairments for scenes with low and high luma levels and low 

and high motion levels (i.e., HV_Loss values were too large, 

so the quality predicted was too low). Thus, VQM_VFD’s 

HV_Loss parameter includes a quadratic weighting function 

that de-weights ST blocks containing low and high luma levels 

and/or low and high motion levels. These weighting functions 

reduce the magnitude of impairments detected in individual 

ST-blocks. Fig 1 depicts the luma de-weighting function. 

 
Fig.1. De-weighting function that reduces the HV_Loss parameter ST-blocks 

for ST-blocks with low and high luma levels. C1=0.64, C2=100, and C3=0.40. 

 

After the de-weighting function, the three-dimensional 

matrix of parameter values is reduced by a single number by:   

𝐻𝑉_𝐿𝑜𝑠𝑠 = [𝑚𝑒𝑎𝑛𝑡𝑖𝑚𝑒(𝑏𝑒𝑙𝑜𝑤5%𝑠𝑝𝑎𝑐𝑒(𝑝𝐻𝑉𝐿𝑑𝑤))]
2
 (5) 

where pHVLdw are the de-weighted pHVL values, below5%space 

computes the average of the 0
th

 through 5
th

 percentile values 

for all ST blocks associated with the same time segment, and 

meantime computes the average over time. Put another way, 

below5% detects the areas of the video that contain the 

greatest loss in HV edge energy. As a final step, a clipping 

function is applied to eliminate small values. This reduces the 

parameter’s sensitivity to small impairments 

2) HV_Gain detects an increase in horizontal and vertical 

spatial edge energy, compared to diagonal edge energy. Both 

HV_Loss and HV_Gain can be caused by edge coding noise. 

The computation is identical to HV_Loss through (4), except 

that minimum is replaced by maximum: 

𝑝𝐻𝑉𝐺 = 𝑚𝑎𝑥(𝑙𝑜𝑔10(𝑓𝐻𝑉𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙/𝑓𝐻𝑉𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑), 0) (6) 

where max computes the maximum. This produces one 

parameter value per ST block, where increasing values of 

pHVG indicate the processed video has gained horizontal and 

vertical edge energy. 

The three-dimensional matrix of parameter values is 

reduced by a single number by:   

𝐻𝑉_𝐺𝑎𝑖𝑛 = 𝑟𝑚𝑠𝑡𝑖𝑚𝑒(𝑟𝑚𝑠𝑠𝑝𝑎𝑐𝑒(𝑝𝐻𝑉𝐺)) (7) 

where rmsspace computes the root mean square (RMS) for all 

ST blocks associated with the same time segment, and rmstime 

computes the RMS over time.  

3) SI_Loss detects a general decrease in spatial edge energy 

over time due, for example, to blurring. The computation 

begins by calculating SIn feature values for each ST block in 

both the original and processed video: 

𝑓𝑆𝐼 = 𝑠𝑡𝑑𝑒𝑣(𝑆𝐼𝑛) (8) 

where stdev computes standard deviation over a particular ST 

block. A minimum threshold eliminates erratic behavior from 

imperceptible impairments. The SIn filter adapts in size to the 

video resolution as per HV_Loss. 

The difference between original and processed video is 

computed by estimating the loss in SI edge energy:  

𝑝𝑆𝐼𝐿 = 𝑚𝑖𝑛 [((𝑓𝑆𝐼𝑝𝑟𝑜𝑐 − 𝑓𝑆𝐼𝑜𝑟𝑖𝑔)/𝑓𝑆𝐼𝑝𝑟𝑜𝑐) , 0] (9) 

where fSIorig is (8) calculated on the original video, and fSIproc 

is (8) calculated on the processed video. This produces one 

parameter value per ST block, where decreasing (negative) 

values of pSIL indicate the processed video has lost edge 

energy. The visual masking function in (9) acts similarly to 

that seen in (4) and (6). 

The three-dimensional matrix of parameter values is 

reduced by a single number by:   

𝑆𝐼_𝐿𝑜𝑠𝑠 = 𝑎𝑏𝑜𝑣𝑒90%𝑡𝑖𝑚𝑒(𝑚𝑒𝑎𝑛𝑠𝑝𝑎𝑐𝑒(𝑝𝑆𝐼𝐿)) (10) 

where meanspace computes the average for all ST blocks 

associated with the same time segment, and above95%time 

averages the 90
th

 through 100
th

 percentile values over time. 

Function above90%time focuses on the time segments with the 

worst impairments. 

 

4) SI_Gain detects a general increase in spatial edge energy 

over time using the same adaptive edge filter. The SI_Gain 

parameter is sensitive to transient added edges in the picture. 

SI_Gain uses the same features as SI_loss, from (8), but 

applies a different visibility threshold. The difference between 

original and processed video is computed by estimating the 

gain in SI edge energy:  
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𝑝𝑆𝐼𝐺 = 𝑚𝑎𝑥 [((𝑓𝑆𝐼𝑝𝑟𝑜𝑐 − 𝑓𝑆𝐼𝑜𝑟𝑖𝑔)/𝑓𝑆𝐼𝑝𝑟𝑜𝑐) , 0] (11) 

This produces one parameter value per ST block, where 

increasing values of pSIG indicate the processed video has 

gained edge energy. The three-dimensional matrix of 

parameter values is reduced by a single number by:   

𝑆𝐼_𝐿𝑜𝑠𝑠 = 𝑟𝑚𝑠𝑡𝑖𝑚𝑒(𝑎𝑏𝑜𝑣𝑒98%𝑡𝑎𝑖𝑙𝑠𝑝𝑎𝑐𝑒(𝑝𝑆𝐼𝐺)) (12) 

where above98%tailspace computes the difference between two 

values: (a) the average of the 98
th

 through 100
th

 percentile 

values over space and (b) the 98
th

 percentile value over space. 

This measures the spread of the worst quality levels seen in 

one time segment. 

5) TI_Gain computes temporal information (TI) of an ST 

block by computing the pixel-by-pixel difference between the 

current frame and the previous frame.  

𝑓𝑇𝐼 = 𝑟𝑚𝑠(𝑌(𝑖, 𝑗, 𝑡) − 𝑌(𝑖, 𝑗, 𝑡 − 1)) (13) 

where rms computes RMS over a particular ST block and 

Y(i,j,t) is the luma plane. A minimum threshold on fTI 

eliminates erratic behavior from imperceptible impairments.  

The difference between original and processed video is 

computed by estimating the gain in TI edge energy:  

𝑝𝑇𝐼𝐺 = 𝑚𝑎𝑥[𝑙𝑜𝑔10(𝑓𝑇𝐼𝑜𝑟𝑖𝑔/𝑓𝑇𝐼𝑝𝑟𝑜𝑐), 0] (14) 

where fTIorig is (13) calculated on the original video, and fTIproc 

is (13) calculated on the processed video. This produces one 

parameter value per ST block, where increasing values of 

pTIL indicate the processed video has gained motion energy. 

The three-dimensional matrix of parameter values is 

reduced by a single number by:   

𝑇𝐼_𝐺𝑎𝑖𝑛 = 𝑆𝑇𝑎𝑏𝑜𝑣𝑒95%𝑡𝑎𝑖𝑙(𝑝𝑇𝐼𝐺) (15) 

where STabove95%tail computes difference between two 

values: (a) the average of the 95
th

 through 100
th

 percentile 

values and (b) the 95
th

 percentile value. Equation (15) pools all 

values of pTIG into a single ST collapsing function. This 

measures the spread of the worst quality levels seen over the 

entire sequence. 

Since the original video is VFD-matched to the processed 

clip, the TI_Gain parameter does not have a large sensitivity to 

dropped or repeated frames—these are compensated for by the 

VFD matching process. Rather, the TI_Gain parameter 

measures added transient distortions in the processed video 

(such as error blocks) that are not compensated for by the 

VFD correction. TI_Gain is sensitive to transient-added errors 

in the picture. 

6) RMSE_Gain is a full reference parameter that is 

computed by comparing pixels within an ST block of the 

received clip and the VFD-matched original clip. 

𝑝𝐷𝑖𝑓𝑓 = 𝑌𝑝𝑟𝑜𝑐(𝑖, 𝑗, 𝑡) − 𝑌𝑜𝑟𝑖𝑔(𝑖, 𝑗, 𝑡) (16) 

where Yproc is the luma plane of the processed video, and Yorig 

is the luma plane of the original video. RMSE_Gain is 

calculated as follows: 

𝑅𝑀𝑆𝐸_𝐺𝑎𝑖𝑛 = 𝑆𝑇𝑚𝑒𝑎𝑛[𝑚𝑎𝑥(𝑟𝑚𝑠𝑒(𝑝𝐷𝑖𝑓𝑓), 0)] (17) 

where STmean takes the average over all parameter values in 

space and time, and rmse is root mean square error. 

7) VFD_Par1 is extracted from variable frame delay (VFD) 

information. This temporal distortion parameter is only 

triggered by delay changes (e.g., received frame N aligns to 

original frame N, but received frame N+1 aligns to original 

frame N+3). VFD_Par1 is weighted by the duration of the 

freeze preceding the delay changes (e.g., long freezes are more 

heavily penalized than many small frame freezes). VFD_Par1 

ignores pure frame freezes, for example from a constant 

reduction to the frame rate, and errs on the side of detecting no 

impairment when the VFD alignments are ambiguous.  

8) VFD_Par1∙PSNR_VFD is the product of VFD_Par1 and 

the full reference metric PSNR_VFD. This parameter is 

triggered by video clips that contain both temporal distortions 

impacting the pattern of frames (e.g., pauses and skips 

detected by VFD_Par1) and spatial distortions impacting 

individual frames (e.g., fine details detected by PSNR_VFD).  

F. VQM_VFD Model Description and Training 

The VFD algorithm and VFD_Par1 were developed using a 

small number of clips known to contain variable frame delays. 

This training emphasized manual inspection of individual 

received sequences and VFD delay traces. VFD_Par1 and 

VFD_Par1∙PSNR_VFD were tested on portions of the QCIF, 

CIF and VGA combined subsets (see [10]).  

The remaining parameters were chosen for consistent 

performance across all five combined datasets, either in 

isolation or as a complement to the other parameters. The 

HV_Loss, HV_Gain, SI_Loss and SI_Gain parameters are 

similar to parameters used in the prior model, VQM, with 

improvements that appear in the Fast Low Bandwidth Models 

[11]. Variants of TI_Gain and RMSE_Gain were considered 

for inclusion in those prior models. The final form for each 

parameter was determined by calculating numerous variations 

(e.g., different values for θ and the time extent; see [2] for 

other examples). The parameter variant and parameter 

combinations were experimentally determined via searches of 

the five combined databases using Pearson’s correlation 

coefficient.  

A neural network (NN) is used to combine these eight 

objective video quality parameters. The video sequences from 

the 83 databases were randomly divided into 70% NN training 

and 30% NN testing. The MATLAB® NN training tool 

(nntraintool) was used to train and test the NN.
3
  

The eight-parameter input vector is multiplied by an 8 × 8 

weighting matrix, which is added to a bias vector, and sent to 

a hidden layer consisting of eight tan-sigmoid (tansig) 

neurons. The outputs of these eight tansig neurons are then 

weighted, summed together with a bias, and sent to a pure-

linear (purelin) output neuron. There are thus 72 weights and 

nine biases in the NN, for a total of 81 free parameters, which 

are determined in the training phase. A tansig/purelin NN was 

chosen because of its ability to act as a generalized function 

approximator (i.e., be similar to nearly any function). 

 
3 Certain commercial equipment, materials, and/or programs are identified 

in this report to specify adequately the experimental procedure. In no case 
does such identification imply recommendation or endorsement by the 

National Telecommunications and Information Administration, nor does it 

imply that the program or equipment identified is necessarily the best 

available for this application. 
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VQM_VFD achieves a 0.9 Pearson correlation to subjective 

quality for each of the five subjective datasets. 

G. Comments on VQM_VFD 

While the VQM_VFD model achieves good performance in 

predicting subjective ratings, there is always room for 

improvement. One obvious improvement would be the 

addition of color distortion parameters. 

One possible reason for the difficulty in obtaining a robust 

color distortion measure that brings added information to the 

VQM_VFD model might be the lack of independent color 

distortions in the subject datasets. Distortions that appear in 

the chroma channels (CB, CR) nearly always also appear in 

the luma channel (Y).  

Another reason might be that some of the color distortions 

are actually pleasing to the eye (e.g., colors are made more 

vibrant). Thus, a color distortion metric probably needs to be 

bipolar, where some distortions produce increases in 

subjective quality while others produce decreases in subjective 

quality. 

III. TESTING ON THE LIVE MOBILE VQA DATABASE 

A. Background and Motivation 

The Laboratory for Image & Video Engineering (LIVE) at 

the University of Texas at Austin performs research on the 

human perception of video and images. LIVE is known for the 

LIVE image quality database [12], the LIVE video quality 

database [13], and the LIVE 3D image quality database [14]. 

These databases are available to the research community free 

of charge. 

The recently-released LIVE Mobile VQA database focuses 

on video quality distortions typical of a heavily-trafficked 

wireless network. The goal was to make a dataset available to 

researchers that aids the development of perceptually 

optimized VQA algorithms for wireless video transmission on 

mobile devices and that helps the design of video streaming 

strategies for video network resource allocation and rate 

adaptation as a function of time. It is useful for our purposes 

since it includes systematic simulations of realistic distortion 

including changes in delay. The dataset contains: 

 720p 30 fps videos 

 High quality original video sequences 

 A large number of impaired video sequences 

 A wide range of quality 

 Examples of most common mobile video impairments 

Combined, these characteristics were not available from 

preexisting video databases. This section provides an 

overview of the LIVE Mobile VQA database. For details, see 

[6]; and to obtain a copy, see [1]. 

B. Reference Videos and Distortion Simulation 

The LIVE mobile VQA database reference video sequences 

are 720p (1280 × 720) at 30fps and 15 sec duration. These 

videos were filmed with the best acquisition quality option 

(42MB/s). The final scene pool contains 12 videos that depict 

a variety of content types. Two of these videos were used for 

training the human subjects, while the rest were used in the 

actual study.   

For each scene, four encoding levels were chosen that show 

unmistakably different quality levels. The JM reference 

implementation of H.264 scalable video codec (SVC) [13], 

[14] was used with fixed Quantization Parameter (QP) 

encoding. The QP parameter / scene content interaction 

produces a unique bitrate. The four QP levels are R1 (highest 

QP), R2, R3 & R4 (lowest QP). The goal was to ensure 

perceptual separation of the subjective scores (i.e., perceived 

quality of Ri < perceived quality of Ri+1). This perceptual 

separation makes it possible for people (and algorithms alike) 

to produce consistent judgments of visual quality [11], [15]. 

Because the source video content is quite varied, the resulting 

bitrates vary between 0.7 Mbps and 6 Mbps. 

The LIVE Mobile VQA database consists of 10 reference 

videos and 200 distorted videos. The distortions simulate most 

common mobile video impairments as follows: 

Compression: This subset contains coding-only 

impairments R1, R2, R3 and R4 for each sequence. 

Rate adaptation: This subset explores the quality impact of 

rate changes of different magnitudes (i.e., large or small). The 

video sequence began with an encoding rate of either R1, R2 or 

R3 then after 5 seconds switched to the highest rate (R4), then 

again after 5 seconds switched back down to the original rate. 

Three rate adaptations are illustrated in Fig. 2. 

 

 
Fig.2. Rate Adaptation: Schematic diagram of the three different rate-switches 

in a video stream simulated in this study. 

 

Temporal dynamics: This subset was designed to evaluate 

the effect of multiple rate switches, using five patterns:  

pattern 1) multiple rate switches between R1 and R4 

pattern 2) R1 – R2 – R4  

pattern 3) R1 – R3 – R4  

pattern 4) R4 – R2 – R1  

pattern 5) R4 – R3 – R1  

These patterns were designed to evaluate two types of switch 

patterns: abrupt (pattern 1) and smooth (patterns 2 to 5). Each 

new rate was presented for between 3 and 5 seconds.  

Wireless packet loss: The H.264 bitstream (e.g., R1, R2, R3, 

and R4) was impaired using a Rayleigh fading channel, which 

was modeled by an IEEE 802.11 based wireless channel 

simulator. Bit errors due to attenuation, shadowing, fading and 

multiuser interference in wireless channels cause 

spatiotemporal transient distortions which appear as glitches in 

videos.   

Frame-freezes: This subset models two types of frame-

freeze impairments:  

 Frame-freezes that did not result in the loss of a video 

segment, to simulate stored video delivery  

 Frame-freezes that resulted in a loss of video segments 
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and lacked temporal continuity, to simulate live video 

delivery  

Three frame-freeze patterns were designed, such that the total 

duration of all freeze events was held constant:  

 Eight 1 sec frame-freezes 

 Four 2 sec frame-freezes 

 Two 4 sec frame-freezes  

This subset uses uncompressed video sequences. 

C. Test Methodology 

Subjects rated the videos using the single-stimulus 

continuous quality evaluation (SSCQE) method [19] with 

hidden reference [11], [17], [20]. Subjects watched 200 test 

videos on a 4" touchscreen Motorola Atrix™ with a resolution 

of 960 × 540 and 100 different test videos on a 10.1" 

touchscreen Motorola Xoom with a resolution of 1280 × 800.  

Because these platforms do not support uncompressed video 

playback, videos were lightly compressed (> 18Mbps MPEG-

4). The experimenters were unable to detect any differences 

between the visual quality of the uncompressed video files and 

quality of the compressed video streams. The video files used 

by objective models do not include this compression, nor do 

they include the resolution due to the monitor or playback 

software. 

Testing took place at the LIVE subjective testing lab, using 

software that was specially created for the Android platform to 

display videos. The subjects rated the videos as a function of 

time during the playback, yielding continuous temporal 

quality scores using an uncalibrated bar that spanned the 

bottom of the screen (see Fig 3a). Subjects also rated the 

overall quality at the end of each video, using a similar bar 

(see Fig. 3b).  

 

  
(a) (b) 

Fig.3. Subjective study interface: (a) video display and a temporal score rating 

bar, (b) overall score rating bar. 

 

A total of 36 subjects attended the mobile study, and 17 

subjects participated in the tablet study. Most of the subjects 

were undergraduate students between 22 and 28 years old. 

Although no vision test was executed, a verbal confirmation of 

soundness of (corrected) vision was obtained from each 

subject. Each subject attended two separate sessions. Each 

session lasted less than 30 minutes, and consisted of the 

subject viewing 55 videos in randomized order (5 reference 

and 50 distorted videos). A short training set (6 videos) 

preceded the study.  

Differential Mean Opinion Scores (DMOS) were calculated 

as the difference between the score that the subject gave the 

reference video and the score for the distorted video. The 

overall scores were used to evaluate the Image Quality 

Assessment and Video Quality Assessment (IQA/VQA) 

models.  

D. Evaluation of Subjective Opinion 

This section summarizes trends indicated by the subjective 

scores. This analysis uses the overall scores.  

The design goal of the compression subset was achieved. 

Subjective opinion of each compression rate (Ri) was 

statistically better than of the next lower rate (Ri-1) for all 

contents. For example, for the following scenes, the four 

DMOS values from R1 to R4 were: 

 “bulldozer with fence” [3.24, 2.09, 1.04, 0.36]  

 “two swan dunking”  [3.23, 2.55, 1.39, 0.31]    

Subjects preferred fewer freezes of long duration to more 

frequent yet short duration freezes, perhaps because the latter 

lead to choppy playback. Subjects also preferred not to lose 

content after a frame-freeze, however that preference was less 

pronounced. For example, subjects preferred two 4 sec frame-

freezes with loss of content over eight 1 sec frame freezes with 

no loss of content.  

A Student’s t-test on the DMOS results for the rate 

adaptation and temporal dynamics subsets showed that the 

time-varying quality of a video had a definite and quantifiable 

impact. When variations in quality occurred, the opinion 

scores were influenced by the magnitude, order, and duration 

of those quality level changes.  

The rate adaptation subset analysis indicated that it is 

preferable to switch from a low rate to a higher rate when the 

higher rate segment lasts at least half as long as the lower rate. 

This study only included rate increases that lasted at least 5 

seconds, so further study is needed. Nonetheless, this 

conclusion parallels a speech quality subjective test that 

analyzed time varying quality in talk-spurts [22]. A change in 

the lowest rate has a clear impact on visual quality. 

The temporal dynamics subset analysis indicated that it is 

preferable to switch to an intermediate rate before switching to 

a higher or lower rate (patterns 2 to 5). An abrupt change of 

bitrate received a statistically significantly lower score 

(pattern 1).  

A comparison between the coding subset and the temporal 

dynamics subset showed a preference for constant bitrates. For 

example, R3 is favored over R2 – R4 – R2. This preference is not 

explained by a weighted sum of the compression-only DMOS 

scores for rates R2 and R4. This behavior could indicate a 

quality penalty for changing video bitrates, as Voran and 

Catellier [22] demonstrated can occur when the audio coding 

bitrate of a talk-spurt is increased.  

An analysis of the temporal dynamics subset showed that 

multiple bitrate switches were preferred over fewer switches. 

For example, bitrate switches every 3 sec with the pattern R1 – 

R4 – R1 – R4 – R1 was preferred over bitrate switches every 5 

sec with the pattern R1 – R4 – R1; and this preference could not 

be explained by the 1 sec difference in the duration of the R4 

level. We interpret this to mean that humans perceive multiple 

changes in quality level as attempts to provide better quality 

and appear to reward those endeavors.  

The overall quality scores were impacted by the quality at 

the end of the clip. This supports the forgiveness effect theory 
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proposed by Hands [23]. 

Regarding the comparison of subjective opinions between 

the mobile and the tablet study, subjects seemed to be more 

sensitive to dynamically varying distortions displayed on the 

tablet device. The higher resolution or larger screen size of the 

display probably caused those distortions to be more 

perceptible.  

E. Evaluation of Algorithm Performance 

The overall performance of various leading FR IQA/VQA 

algorithms on the LIVE Mobile VQA database indicates that 

none of the contemporary FR IQA/VQA algorithms are able to 

predict video quality accurately for the time varying dynamic 

distortions. 

A useful lesson from the correlation coefficient analysis of 

algorithms is that true multiscale processing (as in 

VQM_VFD) is recommended to achieve scalability against 

variations in video resolutions, display sizes, and viewing 

distance. Another valuable reflection is that the variable frame 

delay approach is beneficial for the prediction of video 

quality.   

F. Comments on LIVE Mobile VQA Database 

The new LIVE Mobile VQA database opens fertile ground 

for researchers to test and develop perceptually improved 

VQA algorithms as well as providing analysis of human 

behavior to support successful video streaming strategies.  

Due to limitations of the study session durations, the dataset 

could not include several other interesting scenarios, such as 

multiple rate changes between different quality levels, a large 

number of rate changes, a single change with a high quality 

segment at the end (e.g., R4 – R1 – R4) and so on.   

Longer video sequences (e.g., five to thirty minutes) with 

rate switch simulations to analyze time varying quality would 

also be beneficial for better understanding human perception 

of visual quality. We looked at short term effects in this 

current study. Future work will step towards longer studies 

including more possible scenarios.   

IV. MODEL PERFORMANCE ANALYSIS 

Moorthy et al. [6] analyze the performance of models 1 

through 11 in Table I on the LIVE Mobile VQA database. All 

eleven are FR models. Models 1 to 9 are IQA models, while 

10 and 11 are VQA models. This paper extends that work to 

include FR VQA models 12 to 15. 

The intended use of the IQA models is to predict image 

quality. The IQA scores for each video sequence were 

calculated by averaging the frame-by-frame scores across 

time. Since it is not clear how FR IQA algorithms may be used 

for frame-freeze, we did not include this case in our 

evaluation. This paper presents the performance of 

PSNR_VFD [10] and VQM_VFD [4] with two additional 

calibration options: Reduced Reference (RR) calibration 

version 2 [9] and Full Reference (FR) calibration [2]. FR 

calibration is more accurate but does not check for spatial 

scaling. RR calibration version 2 checked whether or not the 

codec spatially scales the video. Estimation of spatial scaling 

can be achieves with RR calibration, but the problem is ill-

suited for FR calibration. We chose the “with spatial scaling” 

option for the RR calibration version 2. Since the version we 

used (BVQM ver2 [5]) requires input videos in YUV422p 

format, the YUV420p videos were converted to YUV422p 

without compression.  

 
TABLE I 

LIST OF FR 2D IQA/VQA ALGORITHMS EVALUATED 

 

No. Algorithm 
  

1. Peak Signal-to-Noise ratio (PSNR), as defined in the Appendix 

2. Structural Similarity Index (SS-SSIM) [21] 

3. Multi-scale Structural Similarity Index (MS-SSIM) [24] 

4. Visual Signal-to-Noise ratio (VSNR) [25] 

5. Visual Information Fidelity (VIF) [26] 

6. Universal Quality Index (UQI) [27] 

7. Noise Quality Measure (NQM) [28] 

8. Signal-to-Noise-ratio (SNR) 

9. Weighted Signal-to-Noise ratio (WSNR) [29] 

10. Video Quality Metric (VQM) [2],[3] 

11. MOtion-based Video Integrity Evaluation (MOVIE) index [30] 
  

12. 
Peak Signal-to-Noise ratio with Variable Frame Delay [10] with 

Reduced Reference calibration version 2 [9] (PSNR_VFD_RR) 

13. 
Peak Signal-to-Noise ratio with Variable Frame Delay [10] with  

Full Reference calibration [2] (PSNR_VFD_FR) 

14. 

Video Quality Model for Variable Frame Delay [4] with  

Reduced Reference calibration version 2 [9]  (VQM_VFD_RR) 

[5] 

15. 
Video Quality Model for Variable Frame Delay [4] with  

Full Reference calibration [2] (VQM_VFD_FR) [5] 

 

A. Correlations Against Subjective Opinion  

The wide variety of FR IQA/VQA algorithms listed in 

Table I were compared using the Spearman Rank Order 

Correlation Coefficient (SROCC), the Pearson’s (Linear) 

Correlation Coefficient (LCC), and the root mean-squared-

error (RMSE). The SROCC measures the monotonicity of the 

objective algorithm prediction with human scores, while the 

LCC assesses the prediction accuracy. The LCC and the 

RMSE were computed after performing a non-linear 

regression on the objective algorithm scores using a logistic 

function prescribed in [26].
4
 Table II shows the SROCC and 

LCC for the entire LIVE Mobile VQA database—except for 

the frame-freeze subset, which, as explained earlier, was 

omitted from the FR IQA/VQA algorithm analysis.  

 
4 There were two exceptions. The fitting failed for MOVIE; instead the logistic in 

[33] was used. There was a discrepancy in the logistic function used for the computation 

of the LCC for VQM. Here, we use the logistic function defined in [29]. 
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TABLE II 

SPEARMAN’S RANK ORDERED CORRELATION COEFFICIENT (SROCC) AND LINEAR (PEARSON’S) CORRELATION COEFFICIENT (LCC) BETWEEN THE ALGORITHM 

SCORES AND THE DMOS FOR VARIOUS IQA/VQA ALGORITHMS: MOBILE STUDY AND TABLET STUDY 
 

 
 Mobile Study 

 

Tablet Study 

 SROCC LCC 
 

SROCC LCC 
       

PSNR  0.6780 0.6909 
 

0.5886 0.6348 

SS-SSIM  0.6498 0.6637 
 

0.4300 0.4893 

MS-SSIM  0.7425 0.7077 
 

0.5678 0.6213 

VSNR  0.7517 0.7592 
 

0.5929 0.6444 

VIF  0.7439 0.7870 
 

0.7261 0.7635 

UQI  0.4894 0.6619 
 

0.3642 0.3256 

NQM  0.7493 0.7622 
 

0.6614 0.7178 

WSNR  0.6267 0.632 
 

0.6255 0.6665 

SNR  0.5836 0.5189 
 

0.5474 0.5544 

VQM  0.6945 0.69174 
 

0.5552 0.58164 

MOVIE  0.6420 0.7157 
 

0.6792 0.7828 
       

PSNR-VFD-RR  0.1109 0.0178 
 

0.0351 0.0939 

PSNR-VFD-FR  0.1020 0.0906 
 

0.0030 0.0404 

VQM-VFD-RR  0.8301 0.8645 
 

0.8133 0.8110 

VQM-VFD-FR  0.8295 0.8631 
 

0.8385 0.8347 

 

TABLE III 

ROOT MEAN-SQUARED-ERROR (RMSE) BETWEEN THE ALGORITHM SCORES AND THE DMOS FOR VARIOUS IQA/VQA ALGORITHMS: (A) MOBILE STUDY, (B) 
TABLET STUDY 

 

 Compression 
Rate 

Adaptation 

Temporal 

Dynamics 
Wireless All 

      

PSNR 0.7069 0.5733 0.4179 0.7279 0.6670 

SS-SSIM 0.7566 0.6023 0.4228 0.7670 0.6901 

MS-SSIM 0.7316 0.4792 0.4199 0.7160 0.6518 

VSNR 0.6021 0.5115 0.4157 0.5932 0.6005 

VIF 0.5354 0.5078 0.4572 0.4945 0.5692 

UQI 0.9283 0.6496 0.4445 0.7542 0.6916 

NQM 0.6374 0.4999 0.4280 0.5463 0.5972 

WSNR 0.7458 0.5733 0.4592 0.7707 0.7150 

SNR 0.8654 0.6230 0.4580 0.8944 0.7887 

VQM 0.7312 0.4840 0.4141 0.7279 0.6663 

MOVIE 0.6674 0.4974 0.4458 0.7719 0.6444 
      

PSNR-VFD-RR 1.1389 0.6297 0.4592 1.1227 0.9225 

PSNR-VFD-FR 1.1365 0.6774 0.4464 1.1163 0.9188 

VQM-VFD-RR 0.4523 0.4029 0.4443 0.4219 0.4638 

VQM-VFD-FR 0.4469 0.4029 0.4478 0.4207 0.4660 

(A) 
 

 Compression 
Rate 

Adaptation 

Temporal 

Dynamics 
Wireless All 

      

PSNR 0.7057 0.5810 0.2510 0.7205 0.6630 

SS-SSIM 0.8985 0.5855 0.2585 0.8538 0.7483 

MS-SSIM 0.7896 0.5332 0.2533 0.7489 0.6724 

VSNR 0.7004 0.5562 0.2530 0.7216 0.6562 

VIF 0.5820 0.5195 0.2590 0.5500 0.5541 

UQI 1.0080 0.6261 0.2470 0.8683 0.8113 

NQM 0.6477 0.5884 0.2575 0.5902 0.5974 

WSNR 0.6424 0.4792 0.2532 0.7281 0.6397 

SNR 0.7741 0.5164 0.2429 0.8349 0.7141 

VQM 0.8047 0.5922 0.2593 0.7594 0.6980 

MOVIE 0.6224 0.3855 0.2593 0.5087 0.5342 
      

PSNR-VFD-RR 1.0961 0.6155 0.2544 0.9881 0.8543 

PSNR-VFD-FR 1.1038 0.6324 0.2539 0.9859 0.8574 

VQM-VFD-RR 0.5750 0.3133 0.2593 0.3205 0.5020 

VQM-VFD-FR 0.5318 0.3137 0.2452 0.3099 0.4726 

(B) 
 

 

Table III tabulates the RMSE between the algorithm scores 

and DMOS for each distortion subset. For each column of 

Table III, the bold font highlights the top performing model 

(i.e., minimum RMSE) and all statistically equivalent models. 

RMSE is used to compare model performance on different 

subsets, because these RMSE values can be directly compared 

to each other. Pinson et al. [31] demonstrate how LCC drops 

as the range of quality narrows. 

VQM_VFD showed the best performance for the entire 

LIVE Mobile VQA database in both the mobile and tablet 

studies. Since FR and RR calibration options showed almost 

no determinant differences on high correlation coefficients, we 

analyzed the performance across calibrations. The tables 

indicate that the new VQM_VFD model takes into account 

time varying video delays, and thus is a notable improvement 

on the previous VQM model. VQM_VFD also outperforms 

the two top performing models from [6], VSNR and VIF, 

which are true wavelet decomposition based IQA algorithms. 

VQM_VFD achieved 0.8301 (SROCC) and 0.8645 (LCC) in 

the mobile study and 0.8385 (SROCC) and 0.8347 (LCC) in 

the tablet study. These results imply that VQM_VFD is quite 

well correlated with human opinion and properly accounts for 

the importance of modeling variable frame delays in 

perceptual VQA. 

VQM_VFD was either the top performing model or 

statistically equivalent to the top performing model for each 

data subset. Looking horizontally across Table III, notice that 

the RMSE values for the temporal dynamics subset are similar 

to those received by the other subsets. 

Nonetheless, the temporal dynamics subset identifies a 

limitation of VQM_VFD. Fig. 4 shows a scatter plot between 

the VQM_VFD model with FR calibration and DMOS for the 

mobile and tablet studies. Notice that the VQM_VFD scores 

for the temporal dynamics subset are nearly identical (see the 

magenta diamonds in Fig. 4). The VQM_VFD time collapsing 

functions do not take the order of events into account (e.g., 

average the 10% of ST blocks containing the largest 

impairment values). Almost all other algorithms exhibit a 

similar behavior.  

This demonstrates that there remains much work to be done 

on VQA algorithms to enable them to better handle temporal 

distortions. The implication is that these models should take 

into consideration the order of events. This might have a 

systematic impact on IQA/VQA models, because a scene’s 

coding complexity can change over time.  
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(a) (b) 

Fig. 4. Scatter plots of VQM-VFD prediction: (a) Mobile study. (b) Tablet study. Each square, circle, cross, or diamond marker indicates compression, wireless, 

rate adaptation, and temporal dynamics distortion, respectively.  
 

TABLE IV 

MOBILE STUDY: STATISTICAL ANALYSIS OF ALGORITHM PERFORMANCE. WITHIN EACH ELEMENT THE MATRIX, THE SYMBOLS CORRESPOND 

TO [COMPRESSION, RATE ADAPTATION, TEMPORAL DYNAMICS, WIRELESS, AND ALL] 

 

 PSNR SS-SSIM MS-SIM VSNR VIF UQI NQM WSNR SNR VQM MOVIE 
PSNR-

VFD-RR 

PSNR-

VFD-FR 

VQM-

VFD-RR 

VQM-

VFD-FR 

PSNR - - - - - - - - 1 1 - 1 - - 1 - - - - - 0 - 1 0 0 1 - - 1 - - - - 0 0 1 1 1 1 1 1 1 - 1 1 1 - - - - 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 0 - 1 0 0 0 - 1 0 0 

SS-SSIM - - - 0 0 - - - - - - 1 - 0 - - - - 0 0 0 - - 0 0 - - - - - 0 - - 0 0 - 1 - - - 1 1 - - 1 - - - 0 0 - - 1 - - 1 1 1 – 1 1 1 1 - 1 0 - 1 0 0 0 - 1 0 0 

MS-SSIM - 0 - - 0 - 0 - 1 - - - - - - - 0 - - 0 0 0 - 0 0 - 0 - - - 0 0 - 0 0 - - - - 1 1 - - 1 1 - 0 - - - - 0 - - - 1 - - 1 1 1 - - 1 1 0 0 - 0 0 0 0 - 0 0 

VSNR - - - - - - - - 1 1 - 1 - - 1 - - - - - 0 - 1 0 0 1 - - 1 1 - - - 0 - 1 1 1 1 1 1 1 - 1 1 1 0 - - - 1 - 1 1 1 1 - 1 1 1 1 1 1 1 1 0 - 1 0 0 0 - 1 0 0 

VIF 1 - 0 1 1 1 - - 1 1 1 1 - 1 1 1 - 0 1 1 - - - - - 1 - - 1 1 1 - - 1 1 1 1 - 1 1 1 1 - 1 1 1 1 - 1 1 1 - - 1 1 1 1 - 1 1 1 1 - 1 1 - - - 1 - - - - 1 - 

UQI 0 - - 0 - - - - - - - 1 - - - 0 - - 0 0 0 - - 0 0 - - - - - 0 - - 0 0 - 1 - - 1 - - - - 1 - 0 - - - - - - - - 1 - - 1 1 1 - - 1 1 0 - - 0 0 0 0 - 0 0 

NQM - - - 1 1 1 - - 1 1 1 1 - 1 1 - - - 1 - 0 - - 0 0 1 - - 1 1 - - - - - 1 - - 1 1 1 - - 1 1 1 0 - 1 1 1 - - 1 1 1 - - 1 1 1 - - 1 1 0 0 - - 0 0 0 - - 0 

WSNR 0 0 0 0 0 - 0 - - - - - - - 0 0 0 0 0 0 0 0 - 0 0 - 0 - - 0 0 - - 0 0 - - - - - - - - - - - 0 - - 0 - 0 - - 0 - - - - 1 1 - - - 1 0 0 - 0 0 0 0 - 0 0 

SNR 0 0 - 0 0 0 0 - - 0 0 - - 0 0 0 0 - 0 0 0 0 - 0 0 - - - - 0 0 - - 0 0 - - - - - - - - - - - 0 - 0 0 - 0 1 - 0 - - 1 - 1 - - 1 - 1 0 0 1 0 0 0 0 1 0 0 

VQM 0 - - - - - - - 1 1 - 1 - - - 0 1 - - - 0 - - 0 0 - 1 - - - 0 1 - 0 0 - 1 - - 1 - 1 - 1 1 - - - - - - - 1 - - 1 1 1 1 1 1 1 1 1 1 0 - 1 0 0 0 - 1 0 0 

MOVIE 0 - 0 0 0 - - 0 - - - 1 - - - 0 - 0 0 0 0 - - 0 0 - - - - - 0 - - 0 0 - 1 - - 1 - 1 0 - 1 - - 0 - - - - - - - 1 1 - - 1 1 1 - - 1 0 - - 0 0 0 - - 0 0 

PSNR-VFD-RR 0 0 0 0 0 0 0 0 - 0 0 - - 0 0 0 - 0 0 0 0 0 - 0 0 0 - - 0 0 0 - - 0 0 - - - - 0 - - 0 - 0 0 0 0 0 0 0 0 - - 0 - - - - - - - - - - 0 0 - 0 0 0 0 - 0 0 

PSNR-VFD-FR 0 0 0 0 0 0 0 0 - 0 0 - - 0 0 0 0 0 0 0 0 0 - 0 0 0 - - 0 0 0 - - 0 0 0 - - - 0 - - 0 - 0 0 0 0 0 0 0 0 - - 0 - - - - - - - - - - 0 0 - 0 0 0 0 - 0 0 

VQM-VFD-RR 1 - 0 1 1 1 - 0 1 1 1 1 - 1 1 1 - 0 1 1 - - - 0 - 1 - - 1 1 1 1 - - 1 1 1 - 1 1 1 1 0 1 1 1 - 0 1 1 1 - - 1 1 1 1 - 1 1 1 1 - 1 1 - - - - - - - - - - 

VQM-VFD-FR 1 - 0 1 1 1 - 0 1 1 1 1 - 1 1 1 - 0 1 1 - - - 0 - 1 1 - 1 1 1 1 - - 1 1 1 - 1 1 1 1 0 1 1 1 - 0 1 1 1 - - 1 1 1 1 - 1 1 1 1 - 1 1 - - - - - - - - - - 

 
TABLE V 

TABLET STUDY: STATISTICAL ANALYSIS OF ALGORITHM PERFORMANCE. WITHIN EACH ELEMENT THE MATRIX, THE SYMBOLS CORRESPOND 

TO [COMPRESSION, RATE ADAPTATION, TEMPORAL DYNAMICS, WIRELESS, AND ALL] 
 

 PSNR SS-SSIM MS-SIM VSNR VIF UQI NQM WSNR SNR VQM MOVIE 
PSNR-

VFD-RR 

PSNR-

VFD-FR 

VQM-

VFD-RR 

VQM-

VFD-FR 

PSNR - - - - - 1 0 - - 1 1 0 - - 1 - 0 - - - 0 0 - 0 0 1 0 - 1 1 - 0 - 0 - - 0 - - - - 0 0 - - 1 0 - - 1 - 0 - 0 - - 0 - - 1 - 0 - - 1 0 0 - 0 0 0 0 - 0 0 

SS-SSIM 0 1 - - 0 - - - - - - - - - - 0 - - - 0 0 0 - 0 0 - - - - - 0 - - 0 0 0 - - 0 0 0 - 0 - - - - - - - - - - 0 0 - - - - - - - - - - 0 0 - 0 0 0 0 - 0 0 

MS-SSIM 0 1 - - 0 - - - - - - - - - - 0 - - - - 0 0 - 0 0 - - - - 1 0 - - 0 - 0 - - - 0 - - 0 - - - - - - - - 0 - 0 0 - - - - 1 - - - - 1 0 0 - 0 0 0 0 - 0 0 

VSNR - 1 - - - 1 - - - 1 1 - - - - - - - - - 0 0 - 0 0 1 - - 1 1 - - - 0 - - - - - - - - - - - 1 - - - 1 - 0 - 0 - - - - - 1 - - - - 1 0 0 - 0 0 0 0 - 0 0 

VIF 1 1 - 1 1 1 1 - 1 1 1 1 - 1 1 1 1 - 1 1 - - - - - 1 1 - 1 1 1 1 - 1 1 1 1 - 1 1 1 - 0 1 1 1 1 - 1 1 1 - - 1 1 1 1 - 1 1 1 1 - 1 1 1 - - 0 1 1 - - 0 - 

UQI 0 1 - 0 0 - - - - - - - - - 0 0 - - 0 0 0 0 - 0 0 - - - - - 0 - - 0 0 0 - - 0 0 0 0 0 - 0 - - - - - - 0 - 0 0 - - - - - - - - - - 0 0 - 0 0 0 0 - 0 0 

NQM - 1 - 1 - 1 - - 1 1 1 - - 1 - - - - 1 - 0 0 - 0 0 1 - - 1 1 - - - - - - - - - - - 0 - 1 - 1 - - 1 1 - 0 - - - - 0 - 1 1 - - - 1 1 0 0 - 0 0 0 0 - 0 0 

WSNR - 1 - - - 1 - - 1 1 1 - - - 1 - - - - - 0 0 - 0 0 1 - - 1 1 - - - - - - - - - - - - - 1 - 1 - - 1 1 - - - 0 - - - - - 1 - - - - 1 0 0 - 0 0 0 0 - 0 0 

SNR - 1 1 - - 1 - 1 - - - - 1 - - - - - - - 0 - 1 0 0 1 1 1 - 1 - 1 - 0 - - - - 0 - - - - - - 1 - 1 - - - - 1 0 0 - - 1 - 1 - - 1 - 1 0 0 1 0 0 0 0 1 0 0 

VQM 0 1 - - 0 - - - - - - - - - - 0 - - - 0 0 0 - 0 0 - - - - - 0 - - 0 0 0 - - 0 0 0 - 0 - - - - - - - - 0 - 0 0 - - - - 1 - - - - 1 0 0 - 0 0 0 0 - 0 0 

MOVIE - 1 - 1 - - - - 1 1 - 1 - 1 1 - 1 - 1 - 0 - - 0 0 - 1 - 1 1 - 1 - - - - - - 1 - - - 0 1 1 - 1 - 1 1 - - - - - - - - 1 1 - - - 1 1 0 0 - 0 0 0 0 - 0 0 

PSNR-VFD-RR - 1 - - 0 - - - - - - - - - 0 - - - - 0 0 0 - 0 0 - - - - - - 1 - 0 0 - - - - 0 - - 0 - 0 - - - - 0 - - - 0 0 - - - - - - - - - - 0 0 - 0 0 0 0 - 0 0 

PSNR-VFD-FR - 1 - - 0 - - - - - - - - - 0 - - - - 0 0 0 - 0 0 - - - - - - - - 0 0 - - - - 0 - - 0 - 0 - - - - 0 - - - 0 0 - - - - - - - - - - 0 0 - 0 0 0 0 - 0 0 

VQM-VFD-RR 1 1 - 1 1 1 1 - 1 1 1 1 - 1 1 1 1 - 1 1 0 - - 1 0 1 1 - 1 1 1 1 - 1 1 1 1 - 1 1 1 1 0 1 1 1 1 - 1 1 1 1 - 1 1 1 1 - 1 1 1 1 - 1 1 - - - - - - - - - - 

VQM-VFD-FR 1 1 - 1 1 1 1 - 1 1 1 1 - 1 1 1 1 - 1 1 0 - - 1 - 1 1 - 1 1 1 1 - 1 1 1 1 - 1 1 1 1 0 1 1 1 1 - 1 1 1 1 - 1 1 1 1 - 1 1 1 1 - 1 1 - - - - - - - - - - 

 

Among the tested objective IQA/VQA models, PSNR_VFD 

showed the worst result. PSNR_VFD focuses on one aspect of 

video quality: how well individual frames replicate the 

original picture. PSNR_VFD failed to predict subjective 

human opinion partly because it does not impose any penalties 

for dropped or repeated frames and variable video delays. 
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Note PSRN_VFD’s extraordinarily large RMSE values for the 

Compression subset. This suggests that H.264 SVC makes 

significant changes to individual frames that people either do 

not notice or do not find objectionable. 

B. Hypothesis Testing and Statistical Analysis  

1) Inter-Algorithm Comparison: We executed a statistical 

analysis of the algorithm scores using the F-statistics as in [13] 

and [32] to evaluate whether the correlations of PSNR_VFD 

and VQM_VFD were significantly different from other 

algorithms. Specifically, the F-statistic was used to evaluate 

the variance of the residuals produced after a non-linear 

mapping between the two algorithms being compared. Tables 

IV and V list the results of this analysis for each distortion 

category and across all distortions for the mobile and the tablet 

studies, respectively. A value of ‘1’ in the tables indicates that 

the row (algorithm) is statistically superior to the column 

(algorithm), while a value of ‘0’ indicates that the row is 

worse than a column; a value of ‘–’ indicates that the row and 

column are statistically indistinguishable. Within each entry of 

the matrix, the first four symbols correspond to the four 

distortions (ordered as in Section III.B: compression, rate 

adaptation, temporal dynamics, and wireless), while the last 

symbol represents significance across the entire database.  

Tables IV and V indicate that VQM_VFD significantly 

outperforms other models. Only VIF is competitive with 

VQM_VFD for the entire database in the hypothesis test. This 

tells us that true multiscale and variable frame delay 

algorithms like VQM_VFD can improve the performance of 

objective VQA models for mobile video applications.  

2) Comparison with the Theoretical Optimal Model: 

Seshadrinathan et al. [13] and Sheikh et al. [32] propose an 

alternate method for evaluating the accuracy of an objective 

video quality model. This technique is built on the premise 

that DMOS is an estimate of the underlying true mean of the 

entire population; and that an objective model should track 

this underlying true mean. The optimal (e.g., null) objective 

model displays this behavior.  

Objective models estimate mean opinion score (MOS). 

Using the subjective data, we can calculate MOS and the 

variance of individual subjective ratings around this mean. 

Similarly, we can calculate the variance of individual 

subjective ratings round each estimated objective model value. 

An F-test will tell us if the latter variance is significantly 

greater than the former. If the two variances are statistically 

equivalent, then the model is equivalent to the optimal 

objective model. 

The variance between the Differential Opinion Scores 

(DOS) and the DMOS is a measure of the inherent variance of 

subjective opinion (σ
2

null). This is compared to the variance 

between the DOS and the algorithm scores (σ
2
algorithm). The 

ratio of the two variables, σ
2

algorithm / σ
2

null is evaluated with the 

F-statistic. A threshold F-ratio can be determined based on the 

degrees of freedom exhibited by the numerator and 

denominator at the 95% confidence level. If the F-statistic is 

larger than the threshold, the algorithm performance is 

statistically equivalent to the theoretical optimal model.  

Table VI indicates that VQM_VFD is equivalent to the 

theoretical optimal model, when compared to the compression 

and the wireless subsets. However, none of the algorithms are 

equivalent to the optimal model when the entire database is 

considered. Obviously, despite the significant progress of 

VQM_VFD, there remains considerable opportunity to 

improve the performance of VQA algorithms and 

corresponding subjective human opinions.  

 

 

TABLE VI 

ALGORITHM PERFORMANCE VS. THE THEORETICAL OPTIMAL MODEL FOR (A) MOBILE STUDY, (B) TABLET STUDY. BOLD FONT INDICATES STATISTICAL 

EQUIVALENCE TO THE THEORETICAL OPTIMAL MODEL.  

 
(A) 

 Compression 
Rate 

Adaptation 

Temporal 

Dynamics 
Wireless All 

      

PSNR 0.8331 0.1365 0.0342 0.8391 0.3821 

SS-SSIM 0.757 0.0212 0.0302 0.7722 0.3526 

MS-SSIM 0.7959 0.2384 0.0327 0.8589 0.401 

VSNR 0.9764 0.2054 0.036 1.0432 0.4614 

VIF 1.0555 0.2094 0.0022 1.1661 0.4959 

UQI 0.4549 0.0407 0.0128 0.7934 0.3507 

NQM 0.7845 0.2172 0.0262 1.1043 0.4651 

WSNR 0.7739 0.1365 0.0004 0.7658 0.3197 

SNR 0.5727 0.0755 0.0014 0.5297 0.2156 

VQM 0.7966 0.2337 0.037 0.8392 0.383 

MOVIE 0.8897 0.2201 0.0117 0.7635 0.41 
      

PSNR-VFD-RR 0.0002 0.0668 0.0004 0.0021 0.0003 

PSNR-VFD-FR 0.0058 0.0027 0.0113 0.0184 0.0066 

VQM-VFD-RR 1.1413 0.3075 0.013 1.2424 0.5982 

VQM-VFD-FR 1.1463 0.3075 0.0101 1.2431 0.5963 
      

Threshold F-ratio 1.139 1.1622 1.1234 1.139 1.0672 
 

(B) 

 Compression 
Rate 

Adaptation 

Temporal 

Dynamics 
Wireless All 

      

PSNR 0.9773 0.0859 0.0043 0.6947 0.2932 

SS-SSIM 0.5638 0.0802 0.0005 0.4514 0.1743 

MS-SSIM 0.8095 0.1434 0.0031 0.6463 0.2809 

VSNR 0.9873 0.1163 0.0033 0.693 0.3022 

VIF 1.1904 0.1589 0.0002 0.9459 0.4242 

UQI 0.2844 0.0271 0.0063 0.4224 0.0771 

NQM 1.0823 0.0766 0.0009 0.8928 0.3749 

WSNR 1.0915 0.2023 0.0032 0.682 0.3233 

SNR 0.8421 0.1623 0.0084 0.4884 0.2237 

VQM 0.7773 0.0717 0.0000 0.628 0.2462 

MOVIE 1.1253 0.2897 0.0000 0.9966 0.426 
      

PSNR-VFD-RR 0.0365 0.0414 0.0025 0.1645 0.0064 

PSNR-VFD-FR 0.014 0.0186 0.0027 0.1696 0.0012 

VQM-VFD-RR 1.2013 0.3441 0.0000 1.1776 0.4786 

VQM-VFD-FR 1.2652 0.3439 0.0057 1.1853 0.507 
      

Threshold F-ratio 1.1956 1.2292 1.1732 1.1956 1.0831 
 

 

V.  CONCLUSION 

We introduced a new video quality model (VQM_VFD) 

that is able to handle variable frame delays, and successfully 

captures multiple system delays of the processed video frames 

with respect to the reference video frames to track subjective 

quality. The performance of the VQM_VFD was evaluated on 

the recently-released LIVE Mobile VQA database, which 
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encompasses a wide variety of distortions, including 

dynamically-varying distortions as well as uniform 

compression and wireless packet loss. This confirms that 

variable frame delays have a definite impact on human 

subjective judgments of visual quality and that VQM_VFD 

significantly contributes to the progress of VQA algorithms. 

Based on non-optimized code, VQM_VFD takes five times as 

long to compute as PSNR. 

Although VQM_VFD performed better than existing top-

performing IQA/VQA models tested on the LIVE Mobile 

VQA database, there remains significant room for 

improvement. The temporal dynamics subset indicates that 

human subjective opinion is influenced by the time ordering of 

quality events within short video clips. Understanding the 

reactions of humans to time varying behavior and temporal 

dynamics may prove helpful in the design of future improved 

objective VQA algorithms that are appropriate for mobile 

video applications. 

VSNR and VIF were the best performing IQA models. 

These image quality models were applied to rate video quality 

instead, by performing frame averages over time. The 

accuracy of these models implies that there is merit to the idea 

of an IQA model as the basis of a VQA model. The 

performance differential between VQM and VFD_VQM on 

the LIVE Mobile VQA database indicates that such IQA based 

VQA models could benefit by integrating the VFD algorithm 

[10]. Such integration would require separate training, which 

is beyond the scope of this paper. Note that the VFD algorithm 

and SIn long edge detection filter can be used for any purpose, 

commercial or non-commercial.  

In this article, we only summarized the portion of the LIVE 

Mobile database relevant to evaluating PSNR_VFD and 

VQM_VFD using a performance analysis mirroring the one 

that Moorthy et al. did in [6]. The reader is referred to [6] for a 

detailed description of the study including the evaluation of 

temporal quality scores.  

APPENDIX 

Here, PSNR was calculated using the MeTriX MuX Visual 

Quality Assessment Package from Cornell University [34]. 

PSNR is calculated as follows: 

𝑃𝑆𝑁𝑅 =
1

𝑇
∑ 10 × 𝑙𝑜𝑔10 (

2552

1

𝑁
∑ ∑ (𝑂𝑥,𝑦,𝑡−𝑃𝑥,𝑦,𝑡)

2
𝑦𝑥

)𝑡  (2) 

where  

 O is the luma plane of the original video 

 P is the luma plane of the processed video 

 x, y and t index the video horizontally, vertically and in 

time  

 N is the number of pixels in each image  

 T is the number of frames  
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