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Abstract 
This paper describes ongoing work within the video quality 

experts group (VQEG) to develop no-reference (NR) audiovisual 
video quality analysis (VQA) metrics. VQEG provides an open 
forum that encourages knowledge sharing and collaboration. The 
VQEG no-reference Metric (NORM) group’s goal is to develop 
open-source NR-VQA metrics that meet industry requirements for 
scope, accuracy, and capability. This paper presents industry 
specifications from discussions at VQEG face-to-face meetings 
among industry, academic, and government participants. This 
paper also announces an open software framework for collaborative 
development of NR image quality Analysis (IQA) and VQA metrics 
<https://github.com/NTIA/NRMetricFramework>. This framework 
includes the support tools necessary to begin research and avoid 
common mistakes. VQEG’s goal is to produce a series of NR-VQA 
metrics with progressively improving scope and accuracy. This 
work draws upon and enables IQA metric research, as both use the 
human visual system to analyze the quality of audiovisual media on 
modern displays. Readers are invited to participate. 

Introduction 
According to Cisco [1], “Globally, IP video traffic will be 82 

percent of all IP traffic (both business and consumer) by 2022, up 
from 75 percent in 2017.” Escalating video consumption drives the 
industry to seek more wireless bandwidth and higher visual quality 
at lower bandwidths. With the varied methods for content generation 
and distribution, better standalone tools are a must to drive 
experiences consumers expect. Improved methods to evaluate visual 
quality will help industry develop products and improve services. 
The missing component is no-reference (NR) metrics that perform 
image quality assessment (IQA), video quality assessment (VQA), 
and audiovisual quality assessment (AVQA).  

Traditionally, the goal of IQA, VQA, and AVQA research is a 
single value that estimates the overall quality. From an industry 
standpoint, this is informative but not actionable. So, what if the 
quality is fair? To act, industry needs to know why the quality is bad 
and how to improve the quality. Most industry applications for NR 
metrics require root cause analysis (RCA). There have been NR-
IQA tools developed from a camera capture perspective, but these 
tools do not take into account temporal changes or distribution 
concerns.  

Another major problem is that IQA and VQA researchers often 
focus on impairments that diverge from industry applications. For 
example, IQA researchers are typically limited in scope to 
traditional impairments, such as JPEG compression, Gaussian blur, 
and white noise. Analyses indicate that NR-IQA and NR-VQA 
metrics developed for this narrow use case yield dramatically 
reduced performance when applied to the broad application of 
consumer content [2]. Products and services are starting to leverage 

visual processing algorithms and artificial intelligence (AI) based 
image manipulation to “enhance” quality (e.g., when upscaling for 
the target display). We don’t have tools that address this use case, 
let alone the others that arise. Improved communication between 
industry and academia is needed to realize the vision of an NR-IQA 
or NR-VQA metric that industry can deploy in a broadcast or 
consumer workflow. 

This paper is split into two main topics. First, we will 
summarize industry needs around NR-VQA metrics, based on 
discussions within the Video Quality Experts Group (VQEG). 
Second, we will present an open software framework for 
collaborative development of NR-IQA and NR-VQA metrics. This 
framework provides the tools and resources needed to conduct NR-
IQA and NR-VQA research for the broad application of commercial 
content. By encouraging metric re-use, code sharing, and open data, 
open collaboration can produce robust solutions where private 
research and development has failed. 

Industry Needs 
NR-IQA and NR-VQA metrics are typically envisioned as real 

time substitutes for mean opinion scores (MOS) from subjective 
tests. However, the NR-VQA metric cannot simply estimate the 
mean opinion score (𝑀𝑀𝑀𝑀𝑀𝑀� ) to predict overall quality. Decision 
makers need confidence intervals (CI) to understand whether the 
difference between two 𝑀𝑀𝑀𝑀𝑀𝑀�  values is large enough to be 
significant. Subjective tests conducted on the absolute category 
rating (ACR) scale only have a CI of ≈0.5 on this [1..5] scale. In the 
absence of CIs, NR metric users assume infinite precision. 

Video service providers need RCA to accurately identify 
specific quality problems (see Fig. 1). Professional video content is 
expensive to produce. Broadcasters treat footage carefully and their 
workflows include multiple quality checks. Two impactful 
checkpoints for NR-VQA metric deployment in broadcast 
workflows are ingesting real-time, on-location video streams (e.g., 
live sporting events) and ingesting third party video streams [3]. 

Internet service providers face similar challenges for user-
generated content (UGC). YouTube ingests millions of user-
generated videos every day, and quality analysis is important for 
compression and transcoding [4]. Traditionally, YouTube applies 
full-reference (FR) IQA metrics to each frame and aggregates (e.g., 
mean, or worst 5%). However, FR metrics require a pristine image 
or video to serve as the reference. FR-IQA fails when the uploaded 
video is non-pristine. FR-IQA cannot assess quality improvements. 
Simple aggregate statistics fail to model temporal changes to 
impairment levels. NR-VQA RCA enables video-ingress workflows 
that intelligently choose optimal sets of image filters and 
transcoding parameters for each video [4]. 
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(a) 

(b) 
Figure 1.  RCA could enable transcoder feedback loops (a) or 
detect problems that require intervention (b).    

Within broadcast workflows, management wants 𝑀𝑀𝑀𝑀𝑀𝑀� . 
Workers need to detect underlying problems: misconfigured 
encoders, video upscaling, low quality de-interlacing, 
misconfigured cameras, missed videos, misconfigured video 
streams, and transmission medium errors that cause network traffic 
congestion or loss (e.g., atmospheric conditions during satellite 
transmission). These problems cause perceptible levels of macro-
blockiness, blurriness, ringing, motion artifacts, black frames, noise 
frames, static video test signals, still video, and packet loss artifacts 
[5]. Audiovisual synchronization is a common problem for 
broadcasters, because the audio and video are often split and routed 
through different equipment. An RCA that identifies symptoms will 
help broadcasters locate underlying problems. 

When industry uses 𝑀𝑀𝑀𝑀𝑀𝑀� , they need a metric that can be easily 
modified to ignore some impairments and emphasize others, based 
on the user’s task. Tailoring solutions to fit usage categories can be 
a huge advantage, especially if these implementations can learn or 
be trained. Broadcasters must reproduce impairments that reflect the 
producer’s artistic intent, so 𝑀𝑀𝑀𝑀𝑀𝑀�  may be misleading. Examples 
include noise and shaky camera work in found footage films like 
The Blair Witch Project, and the dark “Battle of Winterfell” episode 
of Game of Thrones. Broadcasters redefine 𝑀𝑀𝑀𝑀𝑀𝑀�  to exclude quality 
losses from specific impairments, and they are not alone in this 
behavior. Codec developers redefine 𝑀𝑀𝑀𝑀𝑀𝑀�  to ignore impairments 
associated with camera capture, aesthetics, scene content, and the 
camera operator’s behavior. This viewpoint is pervasive among FR 
metric developers: 𝑀𝑀𝑀𝑀𝑀𝑀�  is intrinsically limited to coding and 
transmission artifacts. Industry performs diverse tasks for different 
applications, and cannot be expected to retrain a machine-learning 
algorithm.  

Internet video distribution workflows often use adaptive bit-
rate (ABR) ladder encoding. The customer experience is directly 
impacted by the difference between the input video and the multiple 
video streams output by the ABR transcoder. Netflix uses VMAF, a 
FR-VQA metric, to improve ABR transcoding [6]. The video is 
segmented and encoded with diverse bit-rates, resolutions, etc. and 
evaluated with VMAF to find the optimal subset for ABR streaming. 

NR-VQA metrics would enable an improved ABR transcoding 
workflow for impaired professional content, live environments [3], 
and consumer content. Ideally, the metric would hypothesize quality 
response curves for various encoding bit-rates and resolutions. 

Forecasted 𝑀𝑀𝑀𝑀𝑀𝑀� s for conjectured encodings would shorten the 
development cycle. 

When networks become congested, intelligent networks could 
use NR-VQA to consider the impact of bandwidth allocation 
decisions on user experience (UX). 𝑀𝑀𝑀𝑀𝑀𝑀�  would suffice, but 
forecasted bit-rate/𝑀𝑀𝑀𝑀𝑀𝑀�  response curves would let the network’s 
decisions be more “fair” from the perspective of human perception. 
NR-VQA metrics would let priority access protocols make better 
tradeoffs in response to the needs of priority and non-priority users 
for streaming video. An NR-VQA deployed in a network must be 
accurate for both professional and consumer generated content.   

Video clients have analytic tools based on network parameters 
like bit-rate and buffering. The missing tool capability is an NR-
VQA metric that measures client side video quality and returns that 
information to the provider. An NR-VQA metric on the client side 
would enable end-to-end quality ratings and could detect problems 
before the customer notices [3].  

Camera and codec developers need NR-VQA metrics to 
optimize video encoding algorithms. Like broadcasters, codec 
developers need both 𝑀𝑀𝑀𝑀𝑀𝑀�  and RCA. The NR-VQA metric must be 
extremely fast (real-time if possible), and it must understand quality 
impacts of the entire camera capture pipeline (i.e., sensor, image 
processing, encoder, decoder, and display).   

Coding decisions are made independently on small blocks. 
This community needs the NR-VQA metric to scale down to 
64 pixel × 64 pixel × 2 frames. Humans cannot evaluate the quality 
of 0.03 seconds of video without the surrounding context, so we 
must create training data that enables this extrapolation, as proposed 
by [7]. Camera capture is one of the few applications where the NR-
VQA metric absolutely must be pixel based; bit-stream information 
does not yet exist. An NR-VQA metric would also help the camera 
optimize performance for applications with different quality needs.  

First responders want intelligent cameras that understand how 
their needs differ from broadcasters and consumers. First responders 
use cameras for mission critical response in environments that stress 
cameras—inclement weather, smoke, dark nights, and jiggling 
camera mounts. Law enforcement officers need to meet the evidence 
needs of the courts to accurately portray situations and events. 
Forensic video analysts want the entirety of each video frame to be 
in focus, because individual frames will be extracted for use as 
photographs. During a snowstorm, a typical camera tries to 
reproduce the falling snow, but first responders watching video 
surveillance monitors want to see distant people or read license 
plates. First responders need an NR-IQA metric so that the camera 
can warn them about problems while there is still a chance to take 
another photograph [8].   

Another application with unique needs is AI systems, such as 
autonomous vehicle systems and video analytics. Out-of-service, 
the NR-VQA metric would serve as a prefilter, detecting whether 
the quality is high enough for the AI algorithm to succeed. In-
service, the NR-VQA metric would enable camera control feedback 
loops. The system could pan, zoom, re-focus, increase the bit-rate, 
turn on a light, or change camera feeds to boost the AI algorithm’s 
accuracy [9]. Like codec developers, AI systems need scalable NR-
VQAs that can operate on small regions of interest. 

Metric Capabilities 
Open source usage rights are critical for viable collaboration 

and widespread adoption. Licensing restrictions hinder 
collaboration and cause metrics to languish unused. Industry needs 
to understand the metrics and to trust their analyses (𝑀𝑀𝑀𝑀𝑀𝑀�  and 
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RCA). Researchers need industry to provide feedback. Industry 
feedback contributes to the pool of knowledge and helps researchers 
focus on high-impact problems. Particularly welcome are sets of 
application-specific images or videos that depict a specific 
impairment. Researchers need these datasets to train RCA 
algorithms.  

Our goal is a single metric that predicts 𝑀𝑀𝑀𝑀𝑀𝑀�  and RCA for both 
IQA and VQA. The importance of RCA was demonstrated in the 
previous section. Conventionally, IQA and VQA are separate lines 
of research. Today, the displays are identical, and the cameras 
include common electronics. We will gain increased understanding 
by merging IQA, VQA, and eventually AVQA into a single line of 
research. 

Our training data must include quality problems associated 
with the real world subject, the camera operator’s actions, aesthetics, 
and the entire camera capture pipeline. The metric must understand 
and accommodate these quality problems, even if 𝑀𝑀𝑀𝑀𝑀𝑀�  ignores 
them. Users will apply the metric to new content, and the metric 
must have a minimal loss of accuracy. Users will also apply the 
metric to out-of-scope impairments, and performance must degrade 
gracefully. Reduced accuracy is acceptable; random results are not.  

The metric must be fast, to enable real-time implementation on 
video streams. An NR-IQA that takes minutes for a single image is 
impractical for NR-VQA analysis. The metric must run on any 
resolution or frame rate.  

To achieve this lofty goal, we accept two limitations. First, 
quality estimates assume the media is scaled for a particular display 
(e.g., results are reported for a 1920 × 1080 display). Thus, we 
ignore the complex question of how to evaluate the added value of 
40 megapixel (MP) image over a 5 MP image, when both are viewed 
on a (1920 × 1080) monitor. Second, we evaluate the immediate 
quality response, using very short videos without scene cuts. The 
motion picture experts group (MPEG) limits content in this way 
when evaluating proposed coding algorithms. Work in the 
International Telecommunication Union (ITU) Study Group 12 
demonstrates that temporal integration of quality fluctuations can be 
studied separately and applied as post-processing.  

Software Framework 
Literature identifies a core of innovative NR-IQA and NR-

VQA metrics. Feedback from industry indicates none of the 
available metrics meets their needs around scope, accuracy, and 
features. Common problems include ambiguous licensing terms, 
unavailable source code, slow run speed, insufficient training data, 
failure to provide RCA, and exaggerated metric performance. 
Another major concern is that NR metrics are a black box that 
cannot be understood, and thus cannot be trusted.   

Where individual efforts have been unsatisfactory, success may 
be possible by pooling industry, academic, and government 
resources in open collaboration. To that end, VQEG formed the no-
reference metric (NORM) working group. Our goal is to gather 
knowledge of industry requirements, produce datasets of topical 
images and videos, create software tools, and establish a series of 
metrics.  

1 Certain commercial equipment, materials, and/or programs are 
identified in this article to specify adequately the experimental 
procedure. In no case does such identification imply 
recommendation or endorsement by the National 

This section announces a GitHub repository that contains an 
open source software framework for collaborative development of 
NR-IQA and NR-VQA metrics [10]. The initial version of this 
software framework was provided by NTIA/ITS, with the intention 
that all interested parties will contribute to a growing body of code. 
This framework provides:  
• Open source license
• List of training datasets
• Data structure to codify datasets
• Standard function interface for metrics
• Control software, to compute metrics on multiple datasets
• Analysis tools

NR-IQA and NR-VQA metrics are typically trained using three 
or fewer datasets, most likely due to limited computation power, 
difficulty obtaining datasets, and logistics. Storage and computation 
problems are an inevitable byproduct of video research. The GitHub 
repository resolves the other two problems by identifying suitable 
training databases and a software framework that provides logistic 
support for handling thousands of images and videos from diverse 
datasets. 

Most publicly available subjective datasets are not ideal for 
training NR-IQA or NR-VQA metrics. Publicly available datasets 
are far too small for machine learning. Traditional IQA and VQA 
experiments use a small set of pristine source media, which does not 
address the need for robust response to new content. Traditional 
VQA experiments use 8+ second videos with temporal changes, 
which does not adhere to our “immediate quality response” goal. 
The impairments may be outdated or unrelated to industry use cases. 
The GitHub repository mostly identifies newer experiments, and 
more training data is needed.   

The software framework establishes a data structure that 
describes a subjective dataset (e.g., file names, subjective ratings, 
resolution displayed to subjects). This data structure logically 
divides the media (images or videos) into categories specified by the 
experiment design. For example, the CCRIQ dataset has categories 
for display on a 4K monitor (2160 × 3840) and display on an HD 
monitor (1080 × 1920) [11]. The GitHub repository contains pre-
filled structures plus functions that create structures for new 
datasets. These MATLAB® functions1 are named import_dataset 
and export_dataset.  

One category established for all datasets is training vs 
verification. Of the media in each dataset, 90% are available for 
training and 10% are set aside for metric verification. The 
verification data are only used to report how performance drops on 
data that was never used for training. This addresses industry’s need 
for unexaggerated performance evaluations—provided there is 
minimal overlap of scenes and systems between the training and 
verification categories. Note that machine learning must further split 
the 90% training data into subsets for training & validation iteration. 

The software framework establishes a standard interface for 
calculating NR features, parameters, and metrics. This standard 
interface is referred to as an NR feature function (NRFF). Function 
calculate_NRpars does the heavy lifting of running the NRFF on 
multiple datasets. Function calculate_NRpars provides code to read 
media (images or videos), split videos into frames, perform color 

Telecommunications and Information Administration, nor does it 
imply that the program or equipment identified is necessarily the 
best available for this application.  
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space conversions, rescale, deinterlace, parallel process, etc. 
Basically, calculate_NRpars provides logistic support to calculate 
NR metrics on diverse datasets.   

NR features hold intermediate calculations (e.g., local estimate 
of blurring or noise). The NRFF produces a number, vector, or 
matrix of values for each image or video frame. For example, the 
NR feature may divide each media into ≈100 regions of roughly the 
same size using function divide_100_bocks.m and apply a 
calculation to each region.  

NR features naturally fall into four types. Spatial impairment 
(SI) features operate on individual images or video frames, as per 
NR-IQA metrics. Temporal impairments (TI) features operate on 
two subsequent frames, to analyze motion. Images are converted 
into still video before calculating TI features. Less common are 
features that operate on an entire video at once, for example to 
perform a 3D Fourier Transform. The fourth type of NR feature 
manipulates bit-stream information. An NRFF interface that is 
planned but not yet available will provide motion vector and 
quantization protocol (QP) information from video bit-streams. 
Purists would bar bit-streams from NR research but, realistically, 
bit-streams are available for most industry applications.  

Where NR metrics predict overall quality (typically 𝑀𝑀𝑀𝑀𝑀𝑀� ), NR 
parameters also have a single value for each medium but serve as an 
intermediate result between NR features and NR metrics. The 
framework assumes a workflow where the researcher chooses an 
impairment; designs several NR features and parameters; calculates 
the NR features and parameters; analyzes the results; iterates until 
satisfied; and ultimately combines NR parameters into an NR metric 
using linear regression. NR features are saved, so that the researcher 
can quickly try many different ideas to calculate NR parameters 
from NR features. This workflow assumes that each NR parameter 
focuses on a specific impairment and that machine learning (if used) 
is conducted on NR parameters (to yield RCA) and not on NR 
metrics (to yield 𝑀𝑀𝑀𝑀𝑀𝑀� ).  

This workflow addresses three industry concerns. First, the NR 
metric naturally provides RCA via the NR parameters. Second, 
𝑀𝑀𝑀𝑀𝑀𝑀�  can be easily modified to remove an impairment the user wants 
to ignore (i.e., by removing an NR parameter from the final 
equation). Third, the metric is less of a black box. Linear regression 
produces easily understood equations, and the motivation of each 
RCA can be understood even if the algorithm is incomprehensible. 

The GitHub repository provides several tools for analysis and 
metric building. Function analyze_NRpars calculates statistics and 
creates scatter plots to help the user analyze parameters. This 
function is part of the “iterate until satisfied” step of the workflow. 
Function compromise_NRpars calculates statistics and creates plots 
to help the user understand whether two NR parameters complement 
each other. Function export_NRpars saves NR parameter data to a 
spreadsheet, so that other programs can be used to train metrics. 

Root Cause Analysis 
RCA provides a more difficult challenge than 𝑀𝑀𝑀𝑀𝑀𝑀� . RCA can 

describe the impairments that contribute to a subjective score (see 
Fig. 2); or RCA can identify a transformative or distributive process 
that creates impairments (e.g., compression, scaling, transmission 
medium errors, camera, or display). The former definition provides 
a pragmatic starting point for NR metric development but ultimately 
industry wants the latter (cause identification). In this section, we 
describe five strategies for training RCA.  

Figure 2. VQEG identified 23 spatial artifacts (left) and 10 
temporal artifacts (right) that influence root cause analysis. 

The first strategy for RCA research is to remove the influence 
impairments other than the one being studied can explain, and to 
remove it also from the MOSs. This increases the value of datasets 
like CCRIQ where MOS is influenced by a variety of confounding 
impairments. When researching noise, for example, the researcher 
could gather a set of NR parameters for impairments other than 
noise, create a metric, calculate residuals (𝑀𝑀𝑀𝑀𝑀𝑀 −𝑀𝑀𝑀𝑀𝑀𝑀� ), and then 
evaluate potential noise NR parameters against those residuals. The 
GitHub repository enables this strategy by encouraging RCA metric 
sharing and the NRFF interface.  

Appendix C of [12] proposes a second strategy for media with 
confounding impairments: perform a subjective test where subjects 
rate the influence of several RCA factors on each media’s quality. 
The time and expense of the subjective test would increase. No such 
subjective data is currently available. 

The opposite solution is a challenge dataset—a set of images 
or videos that demonstrate a single impairment, while avoiding 
others. Challenge datasets must include high, medium, and low 
levels of the impairment, plus unimpaired media. While other 
impairments cannot be fully eliminated, their influence must be 
minimized. The its4s4 dataset [13] demonstrates the challenge 
dataset concept for camera pan impairments, and function 
nrff_IPSpan.m contains the resulting NR-VQA parameter. 
Challenge datasets can use the traditional ACR scale, which 
simplifies subjective testing and algorithm development.  

The third strategy is to create a challenge dataset as a field 
study. We propose this strategy as an impactful way for industry to 
encourage RCA metric development—show us what you want. The 
field study emphasizes realism and scene variety to demonstrate the 
authentic workflow and diverse response of a real application. We 
recommend at least 100 media, either images or 4 s videos without 
scene cuts. Unrepeated scene experiment designs [14] are preferred, 
so the RCA has a robust response to new content (e.g., each video 
depicts a different scene). Industry involvement would be limited to 
selecting media; researchers can then perform subjective tests and 
tackle algorithm development.  

The fourth strategy is to create a challenge dataset as a lab 
study. These challenge datasets contain a full matrix of scenes and 
impairments. This strategy allows researchers to scrutinize the RCA 
algorithm’s biases for different scenes. The disadvantage is reduced 
realism (e.g., simulated impairments, limited subject matter variety). 
Leszczuk et al. [15] demonstrate this strategy, illustrated through 
four challenge datasets and seven RCA algorithms (e.g., exposure 
time, noise, and freezing). These RCA algorithms, referred to as key 
performance indicators, detect the presence of an impairment, 
measured as a Boolean.  

The fifth strategy is to take advantage of experts. Fernández 
and Leszczuk [16] demonstrate this approach for audio-to-video 
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synchronization (AV sync or lip-sync). The authors based the 
measurement of AV sync distortion on two components: (i) the 
degree of mouth opening and (ii) the presence of speech. These are 
measured successively through modules called lip movement 
tracker and voice activity detector. They obtained video samples 
with perfect AV sync to create training data (ground truth data) for 
each video with “0 delay” (meaning with no AV sync error). Oher 
delays were generated artificially. 

Datasets that portray the complex impairment interactions of a 
real application are valuable for double-checking RCA algorithms. 
For example, the CCRIQ dataset [11] depicts the camera capture 
problems of 23 cameras. A drop in performance is expected (due to 
the presence of other impairments) but over-trained RCA metrics 
will exhibit poor behavior that can be seen on scatter plots (e.g., as 
a random scattering of data points). General datasets can indicate 
whether the proposed RCA metric detects the unintended 
impairment. One approach is to compute a linear fit between 𝑀𝑀𝑀𝑀𝑀𝑀�  
and several RCA metrics that track different impairments. For 
example, let us consider the CCRIQ dataset (which contains blur 
and noise impairments), a proven RCA metric that detects blur, and 
a new RCA metric that detects noise. If the noise metric’s 
contribution to the linear equation is not statistically significant, then 
the “noise metric” may instead be detecting sharp edges.  

Challenge datasets can be made freely available on the 
Consumer Digital Video Library (CDVL, www.cdvl.org). CDVL 
videos can be used for this purpose, provided the modified videos 
are redistributed on CDVL. 

Conclusion 
The Industry at large needs to establish an open source work-

stream to develop, refine, validate, and deploy NR-IQA and NR-
VQA tools. The framework in this paper supports a proposal that 
would elevate the quality analysis across several use cases that are 
acceptable to both professionals and consumers. The framework is 
available at https://github.com/NTIA/NRMetricFramework  
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