Universal Radio: Making new spectrum! (sort of)

Jim Lansford, Ph.D.
Vice President, Business Development
Mobilian Corporation
jim.lansford@mobilian.com
www.mobilian.com
Radio Spectrum: A precious resource

- Governments sell it
- Allocation is now a huge international issue
 - WRC 2003
- Licensed spectrum predominates
 - But purchasing it is risky
 - Always a fight between commercial, civil, military
- Unlicensed is attractive to commercial
 - Small barrier to entry into market
 - Poses large interference problem

So nobody wants to pay for it, but everybody wants the reliability offered by clear spectrum!
How do you share spectrum?

- Power
- Frequency
- Time
- Code
- Space

The goal? To make every transmission from A to B reliable.
We have made some advances....

- **UWB?**
 - Maybe it’s not really an advance – it’s Marconi’s spark gap generator!
 - Radical change in regulatory policies required

- **OFDM**
 - Currently the favorite for emerging WLAN/WWAN systems
 - Works well with long delay spread
 - Combined with QAM, gets high data rates with good spectral efficiency

- Shannon always gets in the way....

Moore’s Law doesn’t apply to spectrum!!
The Highly Adaptive Radio (HAR)

- Combines
 - Multiple standards (WPAN/WLAN/WWAN)
 - Power control (closed loop)
 - Smart antennas (SDMA)
 - Coding (FEC + CDMA)
 - Frequency adaptation (FDMA + DFS)
 - Time coordination (TDMA)
HAR in a current environment

HAR optimizes:
- Cost of connection
- Data rate
- Error rate

By controlling:
- Protocol (if multiple available)
- Power levels
- Antenna beamforming
- Frequency
- Coding
- Timing

OS Support
- (Policy rules, Load Indicators, Wireless State Indicators, Application Indicators, QoS Indicators, Usage Profiles, User Profiles)
Technologies needed for HAR

- **Software defined radio**
 - Adapts protocol, modulation, and packets
- **Smart antennas – cheap**
- **Research in optimization of link quality management**
 - Optimize data rate and quality of service (delay and/or latency) under the constraints of:
 - Packet size
 - Coding
 - Modulation
 - Eb/N0
 - Antenna beamwidth
Example

- Device scans environment (DETECT phase)
 - Could be WPAN, WLAN, WWAN
- Makes decision about wireless system to use based on policy (SELECT phase)
 - One policy: always use highest speed untariffed
 - Another: Prefer WLAN, then WPAN, then WWAN
- Use all tools available to establish robust link (CONNECT phase)
 - Use smart antenna to form beam to tower/AP
 - Use minimum power to maintain BER/FER/QoS
 - Change data rate/FEC to maintain BER/FER/QoS
 - Adaptive coding (if possible)
 - Vary packet size to suit interference/QoS needs
 - Best available channel selection (AFH/DFS/spectral shaping)
Summary

- Users don’t care about radio – they want information
 - The layers below the application should deliver the information in the “best way possible” that meets bandwidth and QoS requirements
 - Users don’t care about alphabet soup…they only see applications

- Spectrum is a precious resource
 - Not being managed as well as it could be
 - Much smarter radios can manage the spectrum better and deliver better service
 - Relaxed regulations allow better “micro” area wireless service while providing lower “macro” area interference

“Real estate” management means “zoning” + consumer focus
For more info:

Detailed white papers at:
www.mobilian.com/whitepaper_frame.htm

Other information available at:
www.bluetooth.com
www.wi-fi.org
End