Combining Cognitive Radio and Software Radio Approach for Low Complexity Receiver Architecture

27. February 2007

Edmund Coersmeier
Overview

• Motivation

• Cognitive Radio Enhancement

• Software Radio Complexity

• Conclusion
Motivation
Requirement when combining Cognitive and Software Radio

• Cognitive Radio for spectrum efficiency
 • analyzing user application
 • definition of wireless requirements
 • spectrum scanning
 • definition of radio characteristics

• Software Radio
 • adjusts transmitter and receiver algorithms
 • transforms algorithms to an applicable architecture
 • maps the architecture on available processor platform
 • balances between different, parallel operating radios

• To achieve efficient receiver implementations Software Radio requires
 • strong flexibility in terms of
 • algorithm complexity
 • power consumption
 • support from Cognitive Radio
Processor load as measure for algorithms complexity

Receiver algorithms utilizing the processor

- Freq. Sync
- Decoding
- Channel Estimation
- Timing Sync
Cognitive Radio Enhancement
Channel-State Estimation

- Channel-State Estimate to judge about channel capacity

- Semi-blind training
 - Supervised training mode via short training sequence
 - Tracking via data feedback

- Rate feedback to transmitter to setup
 - data rate
 - transmit-power control
Transmit Power Control

• Power initialization

• Inner Loop
 • Allocation of a number of channels

• Outer Loop investigates achieved data rate
 • exceeding
 • matching
 • undershooting

• Outer Loop adjusts the transmit power of each transmitter
 • All transmitters run from data-rate perspective with optimal transmit power
 • *What is about the receiver complexity?*
Cognitive Radio Enhancement

- Each receiver includes an option to ask for low receiver complexity
 - Transmit-power increase
 - High quality channel selection

- Transmit-power increase
 - Other transmitters reduce power
 - Other receivers increase complexity

- High quality channel selection
 - Find a better fitting free channel
 - Exchange already allocated channels
Software Radio Complexity
Receiver Algorithms with different Complexities

- Different receiver complexities based on channel-state estimation
- Receiver complexities can change at any time

Diagram:

- Channel State Estimation
 - Nearly ideal channel:
 - simple filters -> short FIRs
 - Channel estimation -> Least Squares
 - Simple channel decoder -> direct decision
 - Time variant channel:
 - improve filters -> longer FIRs
 - Channel estimation -> Least Squares + Linear interpolation
 - Channel decoder -> few, parallel RNNs with very few iterations
 - Strong interference, fast time varying channel:
 - steep filters -> long FIRs
 - Channel estimation -> Wiener
 - Channel decoder -> Viterbi
 - Increase number of receive antennas -> SIMO
Receiver Scaling through Multi-Processor Platforms

• Pure hardware-optimized design can be replaced by multi-processor platform
• Several radios and their algorithms run in parallel

For parallel programming a significant change of mathematics for radio algorithms might be required
Example of Parallel Radio Algorithms – Channel Decoding

• Viterbi
 • high signal processing performance
 • optimal for hardware implementation
 • sub-optimal for software radio approach
 • difficult to parallelize

• Recurrent Neural Networks
 • do not outperform Viterbi signal processing performance
 • similar mathematics as adaptive filters
 • easy to parallelize several networks

\[
\min_{w(n)} \|e(n)\|_2^2 = \min_{w(n)} \|X(n)w(n) - \tilde{y}(n)\|_2^2
\]

Adaptive Filter

\[
\min_{a} \|e\|_2^2 = \min_{a} \|r - c\|_2^2 = \min_{a} \|r - G^T a\|_2^2
\]

Recurrent Neural Network
N Parallel Channel Decoders

- Run several networks in parallel
- The more networks, the higher the channel decoding performance
- Research topic – optimize complexity of each channel decoder network
Simulation Results

- Number of RNN networks can be adjusted to channel quality
Conclusion

• Software Radio needs to handle several radios in parallel

• Cognitive Radio should support receiver complexity reduction

• Parallel processor platform should be able to replace optimized hardware

• Mathematics for radio algorithms might change to enable parallel programming