Regulatory Framework(s) for Facilitating New Spectrum Sharing Schemes

Session IV: Validating and Regulating New Sharing Schemes

26 July 2012
Presentation Overview & Questions

- Survey of U.S. and International Regulatory Efforts to Promote “Shared” Access to Spectrum Resources
- Various Perspectives for “Regulatory” Frameworks
 - References, where available, listed on last slide.

Key questions to consider:
- What do we mean by “shared” access?
- Are long-term visions becoming clouded by short-term reality?
- What are the nearer-term opportunities and the regulatory challenges to them?
- Are regulators trying to fit DSA round pegs into square holes of legacy regulatory models?
- What is/are the missing ingredient(s) for effective co-existence model(s)?
Some Recent Regulatory Efforts to Promote “Shared” Access (overview)

• U.S. Efforts
 – FCC: Broadband Plan & DSA Notice of Inquiry
 – President Obama’s Spectrum Memo & NTIA Implementation
 – NTIA: “Redbook” Authorization of SDR, CR and DSA*

• International Efforts (primarily in Europe)
 – U.K. OFCOM cog. devices in TVWS/interleaved bands, secondary trading initiative
 – EU COST-TERRA Initiative
 – ITU-R/WRC-12 Agenda Item 1.19 on CRS and SDR
 – Industry Canada TVWS Consultation
 – Asia/Pacific Rim TVWS Trials (Singapore, Japan, Korea)

* Slightly deeper dive next 2 slides
U.S. Efforts (for example)

NTIA: “Redbook” Authorization of CR and DSA
• September 2008 revisions added SDR and CR
• May 2011 changes added DSA

6.1.1 Special Terms (General)
Cognitive Radio System: A radiocommunication system that is aware of its environment and internal state and can make decisions about, and adjust, its operating characteristics based on information and predefined objectives.

Dynamic Spectrum Access: The real-time adjustment of spectrum utilization in response to changing circumstances and objectives.

8.4 Cognitive Radio System, Dynamic Spectrum Access, and Software Defined Radio
Radiocommunication systems using Cognitive Radio, Dynamic Spectrum Access, or Software Defined techniques in any radiocommunications service shall operate in accordance with the provisions of NTIA rules governing those services.
International Efforts (for example)

- November 2011: Report on collective use of spectrum and other sharing approaches
- May 2012: (Draft) Request for Opinion on increasing opportunities for shared use of spectrum
 - Defining shared spectrum access right (SSAR): authorization that allows individual user or application to access same range of frequencies as another user or application on basis of a defined sharing arrangement
 - Focus on Licensed Shared Access (LSA) concept as form of shared use
 - Seeking to: (1) identify best practices on LSA; (2) look into details/definitions of LSA concept; and (3) investigate how to promote LSA to reap benefits from European perspective.
Some Perspectives*

- EU-RSPG Proposed Regulatory Framework for CUS/CR
- Peha Spectrum Sharing Models
- Zhao et. al DSA Taxonomy and OSA approach
- FCC SPTF Interference Temperature Approach
- Tenhula’s Interdisciplinary/Cross-Layer Regulatory Approach(es)
- DISA Spectrum Management/Access Transformation
- PCAST 3-Tier Hierarchy

* Not necessarily endorsed by presenter, except maybe one.
EU-RSPG Proposed Framework

Terminology

• “vertical sharing” – cognitive radios share spectrum with existing users
• “horizontal sharing” – cognitive radio technologies have same rights to access spectrum as existing users
• “collective use of spectrum” (CUS) – allows undetermined/unlimited number of independent users and/or devices to access spectrum in same range of frequencies at same time and place under “well-defined set of conditions”
• “Licensed Shared Access” (LSA) – individual licensed regime of limited number of licensees in a frequency band already allocated to incumbent users for which additional users allowed to use spectrum in accordance with sharing rules thereby allowing all licensees to provide a “certain level of QoS”
5.3 Summary of Regulatory Intervention

<table>
<thead>
<tr>
<th>Regulatory Intervention</th>
<th>Vertical Sharing</th>
<th>Horizontal Sharing</th>
</tr>
</thead>
</table>
| Collective Use of Spectrum (CUS) Model (license-exempt use, light licensing and private commons) | • Designate the frequency band where cognitive radio could share spectrum with existing users on an opportunistic basis.
• Define the appropriate technical conditions for the cognitive devices. | • Designate the frequency band to allow usage on a cognitive basis which does not interfere with existing users;
• Define technical conditions for the block of spectrum where cognitive radio will operate within. |

• Cognitive Technology (CT) devices will need to be able to adapt to new sharing conditions in line with evolution of other radio systems;
• Sharing between cognitive radios could be set between themselves through industry standardisation or negotiated access between the spectrum users;
• Ensure equitable and non-discriminatory access to spectrum for all the cognitive users and to ensure competition.
5.3 Summary of Regulatory Intervention (ctd.)

<table>
<thead>
<tr>
<th>Regulatory Intervention</th>
<th>Vertical Sharing</th>
<th>Horizontal Sharing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rights of spectrum usage could be tradable or leased</td>
<td>• Define the framework for trading or leasing of rights of spectrum usage (including, where needed, QoS requirements);</td>
<td>• Define the framework for trading and leasing of rights of spectrum usage;</td>
</tr>
<tr>
<td></td>
<td>• Assess the results of negotiations between market parties and their effects on e.g., competition and approve them.</td>
<td>• Provide defined mechanisms in case of disputes and interferences issues and in case of not fulfilling the conditions of use.</td>
</tr>
<tr>
<td></td>
<td>• Ensure that the rights of spectrum usage are tradable or could be leased and are flexible</td>
<td></td>
</tr>
</tbody>
</table>

Identification of spectrum for cognitive access lies with the existing licensed holders and not with regulators.
Figure 1: Examples of spectrum-sharing models of each type.

(References to Sections of Paper) [EU RSPG Terminology Match?]

<table>
<thead>
<tr>
<th>Sharing Among Equals [Horizontal]</th>
<th>Primary-Secondary Sharing [Vertical]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coexistence</td>
<td></td>
</tr>
<tr>
<td>- All devices share unlicensed bands. (3.1)</td>
<td>- Secondary devices use cognitive radio to opportunistically share with primary spectrum users. (3.2)</td>
</tr>
<tr>
<td>- Unlicensed secondary devices share with each other when & where not used by primary users. (3.3)</td>
<td>- Secondary devices use GPS and a database of transmitter locations to access spectrum where primary uses do not operate. (3.2)</td>
</tr>
<tr>
<td>- LMR public safety systems share through distributed [decentralized] trunking. (3.4)</td>
<td>- Secondary devices use ultrawideband technology to share spectrum with primary users. (3.2)</td>
</tr>
<tr>
<td>Cooperation</td>
<td></td>
</tr>
<tr>
<td>- Unlicensed devices all use prescribed common protocols and carry each other’s traffic in a cooperative commons managed by a regulator or license-holder. (3.1)</td>
<td>- Secondary devices explicitly request permission from a license-holder whenever they wish to transmit in a real-time secondary market. (3.2)</td>
</tr>
<tr>
<td>- Unlicensed secondary devices all communicate and cooperate to prevent interference to primary spectrum users and each other. (3.3)</td>
<td>- An interruptible system has exclusive rights to spectrum until or unless a primary user (such as public safety) temporarily preempts this system. (3.2)</td>
</tr>
<tr>
<td>- LMR public safety communications systems share spectrum through centralized trunking (3.4)</td>
<td>- One cellular carrier experiencing excessive call volume coordinates with another to briefly use the latter’s spectrum for a fee. (3.4)</td>
</tr>
</tbody>
</table>
Figure 2: Examples of licensed and unlicensed secondary systems

<table>
<thead>
<tr>
<th>Coexistence between primary and secondary</th>
<th>Secondary is unlicensed</th>
<th>Secondary is licensed</th>
</tr>
</thead>
</table>
| **Primary system:** Licensed TV broadcasters.
Secondary systems: Opportunistic devices with no quality of service guarantees | **Primary System:** Licensed TV broadcasters
Secondary system: Microcellular or cellular network which defers to primary, but does not share with other secondaries. |

<table>
<thead>
<tr>
<th>Cooperation between primary and secondary</th>
<th>Secondary is unlicensed</th>
<th>Secondary is licensed</th>
</tr>
</thead>
</table>
| **Primary system:** Cellular
Secondary systems: Devices that get temporary quality of service guarantees in a real-time secondary market | **Primary system:** Public safety
Secondary system: Cellular network with exclusive but interruptible access to spectrum |
Zhao et al DSA Taxonomy

cross-layer approach that integrates signal processing and networking with regulatory policy making
Zhao et. al Opportunistic Spectrum Access (OSA)

Basic Components of OSA Overlay Approach

• spectrum opportunity identification
 – module responsible for accurately identifying and intelligently tracking idle frequency bands that are dynamic in both time and space

• spectrum opportunity exploitation
 – module takes input from the opportunity identification module and decides whether and how a transmission should take place

• regulatory policy
 – defines the basic etiquette for secondary users to ensure compatibility with legacy systems
 • Fixed vs. Dynamic/Open
 • Centralized vs. Decentralized
 • Implemented on radio devices
FCC SPTF Interference Temperature Model

Licensee

2nd-ary User

2nd-ary User

Easement User

Not-to-Interfere Basis

Below the Acceptable “Interference Temperature”

Cognitive Radios
Tenhula’s Multi-Faceted Approach

Access rights governed by new “sharing” rules, private agreement & ex post remedies.

Externalities – OOB/Transaction Costs

OOB Interference/NIB Access

Industry Technical Standards

Network control/monitoring & diversity
DoD Spectrum Mgt/Access Transformation

SDS-Spectrum Dependent System

Baseline Architecture

Spectrum Access Transformation (NOTIONAL)

Static Frequency Assignments (no DSA SDSs)

Cleared Pool of Frequency Assignments Shared by DSA SDSs

Coordinated Spectrum Access; Shared Frequency Assignments between DSA SDS and non-DSA DoD SDSs

Autonomous, negotiated Spectrum Access; Shared Frequency Assignments between DSA SDS and non DSA SDS (beyond DoD)

Opportunistic Spectrum Access: Coexisting DSA SDSs

Target Architecture

Transition Architecture 1

Transition Architecture 2

Transition Architecture 3

Spectrum Management Transformation

Epoch 1

Epoch 2

Epoch 3

Epoch 4

Epoch 5

2007

2012

2016

2020

2025

• SM Web Services

• Standardized Applications

• SM Web-based Applications

• Stove-piped Systems, Man in the Loop

• Standardized Shared Data Environment

• Shared Spectrum Situational Awareness

Cognitive Self-synching Spectrum Use

Source: DoD/ DISA/ DSO Presentation at NTIA ISART (July 2010)
Yet Another DSA Taxonomy

DSA

Negotiated
- Prearranged
- Real-time

Opportunistic
- Restricted
- Unrestricted
PCAST 3-Tier Hierarchy

Federal Primary Access
- Incumbent
- Guaranteed Access
- Must not exclude spectrum use if spectrum isn’t in current need

Secondary Access
- Registers with database
- Might be high power
- Possible fee for spectrum use
- Possible allowance because of public good

General Authorized Access
- Low power
- Sensing and/or database use to determine access availability
- No fee to use spectrum

Source: PCAST Report Figure 2.4 (July 2012)
PCAST 3-Tier Hierarchy (ctd.)

- For Accessing Federal Spectrum
- Legacy Federal users have highest priority
- Secondary Access is lower in priority
 - secondary users register with database
 - may or may not pay for access
 - can transmit with high power and have some QoS provisions
- General Authorized Access Users
 - lowest prioritization
 - may access spectrum by sensing or registering with database, depending on policy
 - only low power transmission, but does not require a fee for use
Key Questions (revisited)

– What do we mean by “shared” access?

– Are long-term visions becoming clouded by short-term reality?

– What are the nearer-term opportunities and the regulatory challenges to them?

– Are regulators trying to fit DSA round pegs into square holes of legacy regulatory models?

– What is/are the missing ingredient(s) for effective co-existence model(s)?
References (embedded Word doc)

References for ISART 2012 Presentation

