

5G NR Channel Coding

Ajit Nimbalker

Next Generation & Standards (NGS)

Acknowledgements

Dmitry Dikarev Fatemeh Hamidi-Sepehr Gregory Ermolaev Seunghee Han Eddy Kwon

3GPP 5G Requirements (TR 38.913)

Key requirements (to be met by either or both of LTE-evolution and New Radio)

- Extreme peak rates
- Ultra-high network capacity
- Uniform user experience

- Massive connectivity
- Ultra-reliable and low-latency communication (URLLC)
- Improved cost & energy efficiency

	5G	LTE-Advanced (4.5G)	LTE (4G)
Peak data rate	20 Gbps for DL, 10 Gbps for UL	1 Gbps for DL, 500 Mbps for UL	100Mbps for DL, 50Mbps for UL
Peak Spectral Efficiency	30 bps/Hz for DL and 15 bps/Hz for UL	30 bps/Hz for DL and 15 bps/Hz for UL	5 bps/Hz for DL, 2.5 bps/Hz for UL
Control Plane Latency (IDLE->ACTIVE)	10 ms	50 ms	100ms
User Plane Latency*	eMBB: 4 ms for DL, 4 ms for UL. URLLC: 0.5 ms for DL, 0.5 ms for UL	Lower than LTE	5ms in unload condition
Reliability	Support up to 10^-5 packet error rate within 1ms	Not defined	Not defined
Connection density	1 Million device/km^2 in urban environment	300 UEs/cell per 5MHz	200 UEs/cell per 5MHz
Target mobility	500km/h	up to 350km/h (or perhaps even up to 500km/h depending on the frequency band)	Optimized for 0 to 15km/h Support with high perf for 15 to 120 km/h Support up to 350km/h

* The time it takes to successfully deliver an application layer packet/message from the radio protocol layer 2/3 SDU ingress point to the radio protocol layer 2/3 SDU egress point via the radio interface in both uplink and downlink directions.

Some Key Features of Rel-15 5G NR

EMBB Data channel

Target ~20 Gbps peak rate on DL (10 Gbps on UL) and low latencies

Candidate considered in 3GPP

LDPC

- Turbo code
- Polar Code

Dual-Code solution (e.g. LDPC for large block sizes +Polar code for small block sizes)

□ Coding schemes for URLLC, etc. is TBD in RAN1

State of the art implementations (e.g. IEEE)

Code	Peak Data rate (Gbps)	Area (sq.mm)	Throughput/Area (Gbps/sq.mm)
Turbo	1.7	2.00 @45nm	0.81
LDPC	3	0.81 @45nm	3.70
Polar SC**	1.9	0.69 @65nm	2.70

Turbo is LTE turbo,

LDPC is 802.11n WiFi LDPC

Note ** : Polar SC decoder has inferior performance compared to Turbo/LDPC, List decoding improves Polar code performance

- List decoding of Polar code is an active area of R&D
- Performance of all three schemes comparable at least at large block sizes
- LDPC can deliver superior throughput and reduced latency

LDPC Key Benefits

- Flexible and tailored design
 - □ Hardware friendly and parallelizable encoding/decoding
 - Base graph construction, and selection of shift sizes (or lift sizes)
 - Row-orthogonality to further reduce latency and increase throughputs
- Flexible decoder implementations based on layered belief propagation
 - □ Faster information flow
 - Scope for differentiation (Single Block, Multi-Block, etc)
 - Finer iteration control (e.g. Stop decoding after any CNU)

An Iteration of layered schedule BP or layered BP

Acknowledgement: Motorola, "LDPC Decoding for 802.22 Draft Standard", 2007

Key LDPC features

□ Flexible LDPC design – code rates/block lengths

 \Box An LDPC code is defined by a parity check matrix H, (H. x^{T} =0)

H is derived from

- □ Base graph (BG) smaller BG => lower latency
- Shift size (Z) larger Z => higher throughput
- Shift coefficients
- Encoding based on dual-diagonal structure (similar to 11n) and Single parity-check (SPC) based extension for lower rate
- LTE-like circular buffer rate-matching for IR-HARQ and LBRM
- Two base graphs
 - □ BG1 covers 8/9~2/3 coding rate and small to larger block sizes
 - □ BG2 covers 2/3~1/5 coding rate and very small to medium block sizes
 - □ Smaller BG2 => better decoding latency

Shift size z=32

Shift Coefficients for z=32 (k = $z \cdot k_b$, n = $z \cdot n_b$)

24	+	0	-	-	-	1	0	-	-	-	-	-
-	14	-	-	6	-	-	0	0	-	-	-	-
-	-	2	-	-	9	0	-	0	0	-	-	-
23	-	-	8	-	-	-	-	-	0	0	-	-
-	15	-	-	3	-	-	-	-	-	0	0	-
-	+	-	13	-	5	1	-	-	-	-	0	-
16	-	10	-	14	-	-	-	-	-	-	-	0

- PCM for (k = 192, n = 416) obtained from shift coefficient matrix by replacing
 - Each non-negative entry (x) with a 32 x 32 Identity matrix shifted to the right by x
 - Each "-" is replaced with a 32 x 32 all zero-matrix

Example : LDPC Matrix

Example BG1 : k=8448, 46 x68, R-1/3, z=384, yellow highlight shows example row-orthogonality

EMBB Control Channel

For DL control, need to support several blind decodes, reduced power consumption, lower decoding latency, etc

□ Payload is typically 12~128 bits

Candidates considered in 3GPP

□ Tail-biting convolutional code

Polar Code

□ and LDPC, Turbo, Reed-Muller, Repetition and Simplex

3GPP agreed on Polar code for UL and DL control information (except for very short block sizes)

Polar code overview – encoding/decoding

- Encoding using a recursive structure for code size N=2ⁿ
 - Place data in K input positions and freeze the remaining input positions to 0
 - Reliability sequence identifies the locations of the data bits and frozen bits
 - □ Flexible information sizes/code rates

- Decoding based on Successive Cancellation
 - **SC** decoding : Track the best path
 - List decoding : Track *L* best paths and pick a "best" path at the end
 - E.g. Pick based on CRC (i.e. CA-Polar)
 - **E.g. Pick based on path metric (possibly less CRC checks)**
 - List size L and code size N affect complexity/latency
 - □ Simplified SCL algorithms to reduce latency

Polar Code description

In NR Polar Code discussion, polar codes will be described without bit reversal in the encoder, i.e.:

- The output of the polar encoder is: $x_0^{N-1} = u_0^{N-1}G_N$
- G_N is the generator matrix of size N

-
$$G_2 = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
.
- $G_N = F^{\otimes n}$ for any $N = 2^n, n \ge 1$, where
• $F = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$, and $F^{\otimes n}$ is the *n*-th Kronecker power of matrix *F*

Maximum Code size (N)

- Mother code length N is limited to reduce latency and complexity
 - □ For DL Control and PBCH, N_{max,DCI} = 512
 - \Box For UL, N_{max,UCI} = 1024
 - Optimising code design for K up to 200 is also being considered

From R1- 1702713, using bit-reverse shortening based rate-matching

Polar code construction with interleaver (DL)

- One potential candidate is Distributed CRC based design
 - CRC distribution (via interleaver) could be beneficial for early termination (ET)
 - A post-CRC interleaver can distribute information and CRC bits such that partial CRC checks can be performed during list decoding
 - Paths failing partial CRC could be pruned away, leading to early termination (ET) of decoding
 - Interleaver design is closely tied to the CRC generator polynomial
 - Select CRC polynomial so as to achieve better ET gains and maintain same False Alarm Rate
- CRC polynomial and interleaver design is under discussion in 3GPP RAN1

Example of distributed CRC

Concluding remarks

□ 3GPP NR is envisioned to deliver superior data rates at lower latencies

- □ Support of higher and wider frequency band
- □ Scalable numerology
- □ LTE-NR dual connectivity
- Advanced channel coding

Advanced channel coding schemes adopted in NR to facilitate implementations that can efficiently support NR data rates and latencies

Intel Communication and Devices Group