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Universal Approximation
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Let np() be a nonconstant, bounded, and monotonically-increasing continuous function. Let I,,, denote the
m-dimensional unit hypercube [0, 1]™. The space of continuous functions on I,,, is denoted by C'(1,, ).
Then, given any € > 0 and any function f € C(I,,,), there exist an integer IV, real constants v;, b; € R
and real vectors w; € R™, wherez = 1, - -, IN, such that we may define:

N
F(z) = Z vip (wlz + b;)
im1

as an approximate realization of the function f where f is independent of ¢; that is,
[F(z) — f(z)| <e

for all z € I,,,. In other words, functions of the form F'(x) are dense in C(L,;, ).




Universal Approximation W

“The theorem thus states that simple neural networks can represent
a wide variety of interesting functions when given appropriate
parameters; however, it does not touch upon the algorithmic
learnabllity of those parameters.”

https://en.wikipedia.org/wiki/Universal approximation theorem
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Machine Learning
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Figure 1: Deep learning training compared to inference. In training, many inputs, often in large batches, are used to train a deep neural
network. In inference, the trained network is used to discover information within new inputs that are fed through the network in
smaller batches.

S EERGE Image Credit: https://devblogs.nvidia.com/inference-next-step-gpu-accelerated-deep-learning/




Machine Learning for RF W

* Replacing signal processing with machine learning
*  Applying the concept of to RF systems

* |n all deep learning applications, the data is the key.
. — J. Huang, NVIDIA CEO

« Two primary product areas: sensing and learned physical layers
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https://medium.com/@karpathy/software-2-0-a64152b37c35
https://www.forbes.com/sites/nvidia/2018/04/24/your-data-will-be-your-companys-source-code/#6316e8d9ee84

Data for Sensing
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Learned Physical Layers

» Creating a learned physical layer
means training over a channel or
channel model.

» One of our techniques is learning
a channel model on which to
train a PHY.

 Put differently, we use Deep
Learning to approximate channel

models. -
» The machines outperform us. A
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Learned Channel Models

JaAe7 xe|\N oS

Jaheq Japooag

Jahe7 1apooag

uolsiaAuo) g/

[s]4ayijdwy

uoljesedoud

[s]euuajuy

Physical Channel: hy(x)

[s]4ax1N/O1

uoISIaAu0) v/Q

uoljezZijewionN

JaAeq Japooug

J2Aeq Japooug

Receiver

J9Ae Jeaun

JaAe1 N9y

12Ae7 N1oy

J9he71 N9y

31BU31BIUO)
3SION

Transmitter

ﬂh )

X,

Channel Approximation: h;(

DEEPSIG



Training over Simple Channel Models

Training a simple 32-QAM autoencoder for an AWGN channel
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Training over Insane Channel Models

Training a 32-QAM system over harsh TDRSS TWTA non-linearities

Tx Symbols QAM32 Rx Sym QAM32 (SNR 15 dB) Total Loss
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(Ballmer voice) Data, Data, Data!

We are using the Signal Metadata Format (SigMF) for
everything

Disclaimer: I'm the lead developer of SigMF, but I'm totally not biased.
Specification for describing recordings of digital samples with JSON

Based on our experience thus far, real data™ is critical

Actually making useful datasets with real/ data™ turns out to be rather difficult
We are collecting, processing, and labeling live captures
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https://sigmf.org/
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