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Future Propagation/Channel Modeling

Will see more... |
brid deterministic/stochastic)
models
— More data-laden, but still wirandom components
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e Models “developed/refmed as-you- go
. _ During deployment/operatlons w/continual up
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Demanding Future Cases

!

Challenges include

channels (as always!): particularly V2X, Air-X1
— Higher velocities (aircraft, high-speed rail...)
— Continuity

(low latency) comm systems
- Knowing worst-cases

Ultradense networks... will mean |
* Nodes in places they have never been before .
* More peer-to-peer links !

Path loss L=function(d, f, LoS, h’s, Env, BW)
Existing models c~10-15 dB




Challenging Cases (2)

* Mobile channels means models should
— Be spatially consistent (no discontinuities)

— Cover > desired area (volume)
— Incorporate time (typically via space) accurately

* Ultra Reliable (low latency) comm systems

— Require knowledge of UNlikely events
o To confidently quantify 1-in-a-million fade requires ~108 measurements

— Must deal w/“ultra-reflective” environments, e.g., factories,
warehouses, airport gates, etc.,
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UR Channel Challenges

e Overcoming shadowing
— Difficult to obtain diversity: use polarization

e Immobility: can locate node in fading null
— In UD case—>relaying (D2D)

— Omnidirectionality=interference broadcasting

e More data helrs, but will not eliminate o, yet
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Air-X Channel Challenges ==

e Faster, and moblllty

e Nearly locations
— Indoors (dark factories?), outdoors...
- h4,, hp, from  to... of m

— SD varies w/Ricean K, which varies w/abové#g

e Antenna constraints, airframe shado 5

e Large MPC delays (open areas)

e More data helps, but won’t eliminate o,
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Examples: Path Loss

OxnardCA***06-11-2013***Track1***L-band Rx1&2
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* V2V severe fading
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e mmWave shrubs, tropo

Worstggnonth rain attenuation comparison among different time periods in Columbia,
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Examples: Delay Dispersion

e Parking garage RMS-DS
e Airport surface RMS-DS
e V2V multipath component

RMS Delay Spread (ns)
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Questions?
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