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Part I: Introduction & Overview

Communication through Diffuse Multipath Environments

Chaotic ray dynamics:

 Extreme multiple path

* Exponential sensitivity

* Ergodicity

 Broadband spectra of
dynamics in phase space
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Advanced applications:

MIMO communications
Time-reversal systems
Wavefront shaping and
focusing

Sensing and targeting




Part I: Introduction & Overview

Overview of Proposed Work

Objective: first-principles mathematical model which statistically replicates the
multipath, ray-chaotic interactions between transmitters and receivers
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Stochastic Green’s Function

Stochastic Integral Equation

-

Hybrid Formulation

The fundamental
solution of wave
equations in wave-
chaotic media

The statistical
characterization of
complex multipath

environments

~

Incorporation of the
component-specific
information

Methodology and contributions:

. Physics-oriented statistical representations of complex multipath environments
* Quantitative statistical analysis of EM systems exhibiting chaotic dynamics

. Encoding the governing physics into the mathematical information theory




eoretical & mathematica oundations

Motivation for Stochastic Green’s Function

Multi-antenna information theory:

| = log, det (I + G" G/ N)

Free-space environment
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coretical 2 FrOCAEFSTICGreen’s Function tor Wave Chaotic

Two theoretical toaols:
Random Plane Wave Hypothesis and Random Matrix Theory (RMT)
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M ! and ! two independent
Gaussian random variables

B K;: eigenvalues distributed based on
Receiver random matrix theory (RMT)

M A: mean-spacing between adjacent
eigenvalues (Weyl Formula)
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Correlated Geo:
W spatial correlation function

W decay as the distance|r® - r|
Increases

M coherent propagation
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M independent of the spatial
distance|r® - r|

M ergodicity
B Gaussian di<use energy propagator
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eoretical & mathematical toundations

Stochastic Integral Equation
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M Z;*,Dg, Aj: Impedance matrix, Disaggregation matrix, Aggregation matrix

B T5*: Translation matrix (direct trajectory contributions)

B g..: Multipath chaotic rays with random phases (RMT)

Receiving array e s Transmitting array
Radiationof . ---~< _ — — Ditfusive multipath™ = ~ _

the clustgA ol (incoherent)
/
faq 7 S;
47

/ 1
/

Specular direct paths
(coherent)

-
~——”

Disaggregation Translation Aggregation



Part Ill: Experiment Validation & Veritication

Experimental Validation

PDF of S-parameters
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(a) Internal view of the 3D box (b) Computational setup (c) Probability density function

(a) WG & aperture are modeled in first-principle using finite element method
(b) Plate is big enough to capture the near-field effects (deterministic)
7 (c) Incorporate the universal statistical chaotic effectsin A;, at aperture
(d) Solve the stochastic matrix equation with random parameter g
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Xxperiment Validation & Veritication

Experimental Validation

two decoupled monopoles two coupled monopoles
Rayleigh fading Rician fading
(without line-of-sight signal) (with strong line-of-sight signal)
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© SGF
—Rician fading model
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SGF onthe outer surface of antennas

representing mulfipath interaction




Xxperiment Validation & Veritication

Experimental Verification

The information capacity for M7 transmitting (Tx) and M receiving
(Rx) antennas:

_ T P g+
C = log2 det (IMR -+ WH H)
Single-input-single-output (SISO)I: M7T =1
SNR: p =2 SNR: p =4
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Xxperiment Validation & Veritication

Experimental Verification

The information capacity for M* transmitting (Tx) and M* receiving
(Rx) antennas:
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Multi-input-single-output (MISO)!2l: M7 =2
SNR: p =2 SNR: p =4
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Part IV: Summary & Overview

Remarks and Conclusion

B A physics-oriented statistical wave model for predicting the performance
of wireless antennas in the multipath environment.

M SGF statistically replicates the propagation phenomena including both
direct orbits and uniform,isotropic multipath fading

The computational costs are comparable to the free-space environment,
since the SIE-SGF are placed only at the exterior surface of antennas

It doesn’t make the ansatz for special cases (isotropic fading, far-field
separations, etc.), and there are no semi-empirical fitting parameters
required.

The advancements will result in a reliable, reconfigurable, and repeatable
testbed for emerging wireless devices and systems in complex environments,
beyond the confines of the laboratory and measurements




