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Communication through Diffuse Multipath 
Environments   

Part I: Introduction & Overview

Confined systems:
Indoor communication and 

navigation

Naval ship compartments

Open environments:
Wireless channels in urban environments

Radar systems and SAR imaging

http://www.uclight.ucr.edu



Communication through Diffuse Multipath Environments

Part I: Introduction & Overview

http://wamoresearch.org Chaos: Classical and Quantum

Chaotic ray dynamics:
• Extreme multiple path
• Exponential sensitivity
• Ergodicity
• Broadband spectra of 

dynamics in phase space

Advanced applications:
• MIMO communications
• Time-reversal systems
• Wavefront shaping and 

focusing
• Sensing and targeting



Overview of Proposed Work

Part I: Introduction & Overview

Objective: first-principles mathematical model which statistically replicates the 
multipath, ray-chaotic interactions between transmitters and receivers

Stochastic Green’s Function

The fundamental 
solution of wave 

equations in wave-
chaotic media

Stochastic Integral Equation

The statistical 
characterization of 
complex multipath 

environments

Hybrid Formulation

Incorporation of the 
component-specific 

information  

Methodology and contributions:
• Physics-oriented statistical representations of complex multipath environments
• Quantitative statistical analysis of EM systems exhibiting chaotic dynamics
• Encoding the governing physics into the mathematical information theory



Motivation for Stochastic Green’s Function

Part II: Theoretical & mathematical foundations
Motivation for Stochastic Green’s Function (SGF)

Multi-antenna information theory:

I = log2 det I + G+ G/ N

Free-space environment

Free-space Green’s Function

Ray-chaotic environment

Chaotic Green’s Function

G0 =
e− j k|r 0− r |

4⇡ |r 0− r |
GS?
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Stochastic Green’s Function for Wave Chaotic 
Media

Part II: Theoretical & mathematical foundations

Stochastic Green’s Function (SGF)

Two theoretical tools:

Random Plane Wave Hypothesis and Random Matrix Theory (RMT)
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! i and ! 0
i : two independent

Gaussian random variables

ki : eigenvalues dist ributed based on

random matrix theory (RMT)

∆ : mean-spacing between adjacent

eigenvalues (Weyl Formula)
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Stochastic Green’s Function for Wave Chaotic 
Media

Part II: Theoretical & mathematical foundations

3D SGF
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Correlated Gco :

spatial correlat ion function

decay as the distance|r 0− r |

increases

coherent propagat ion

Uncorrelated Gu c :

independent of the spatial

distance|r 0− r |

ergodicity

Gaussian di↵use energy propagator

|r 0− r | % =) correlated:
sin k i |~r 0− ~r |

|~r 0− ~r |
& =) uncorrelated
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Stochastic Integral Equation

Part II: Theoretical & mathematical foundations



Experimental Validation

Mode stirrer

Receiving 

Transmitting 

(a) Internal view of the 3D box (b) Computational setup  
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(c) Probability density function  

(a) WG & aperture are modeled in first-principle using finite element method

(b) Plate is big enough to capture the near-field effects (deterministic)

(c) Incorporate the universal statistical chaotic effects in ABI at aperture

(d) Solve the stochastic matrix equation with random parameter g

Part III: Experiment Validation & Verification



Experimental ValidationExperimental Validation-Open system

two decoupled monopoles

Rayleigh fading

(without line-of-sight signal)

P (R;σ) = R

σ 2 e− R 2 / 2σ 2

two coupled monopoles

Rician fading

(with strong line-of-sight signal)

P (R;σ,⌫) = R
σ 2 e− (R 2 + ⌫2 ) / 2σ 2

I 0
R⌫
σ 2
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SGF on the outer surface of antennas 
representing multipath interaction

Part III: Experiment Validation & Verification



Experimental Verification

Part III: Experiment Validation & Verification



Experimental Verification

Part III: Experiment Validation & Verification



Remarks and Conclusion

Part IV: Summary & Overview


