Identifying Dominant Multiple Scattering Paths for Propagation Model Evaluations and Improvements

F. S. Rotondo IDA

ISART '18

Model Classes

Simple physics models, most suitable in idealized geometries

Models that parametrize propagation to be accurate, on average, in specified --- conditions; abscissa typically $|R_{-} - R_{-}|$

 $|R_{Tx} - R_{Rx}|$

(Figure from Andersen, Rappaport, & Yoshida, IEEE Comm. Mag., Jan '95)

Models that compute losses based on detailed characteristics of the environment, such as digital surface models (DSMs); dependent on R_{Tx} , R_{Rx}

Evaluating Models

- Models typically evaluated by estimating the path loss between transmitter and receiver
- Models that account for DSMs consider detailed effects and multiple scattering paths, yet the evaluation is determined by a single path loss measurement
- 10db (or higher) errors are not surprising

If a model is not correctly identifying dominant multiple scattering sources, it will get the wrong answer or get right answer for the wrong reason

"Show your work"

- Evaluate models based on proper identification of the dominant scattering paths in a propagation estimate
- Will require additional measurements beyond path loss; possible approaches:
 - RF imaging techniques, such as those used by radio astronomers
 - Measurements of knife edge diffraction effects in appropriate terrain
- Provides insight into whether the propagation model is properly identifying multipath sources at a given R_{Tx} , R_{Rx}

NRAO image of M81 galaxy at 21 cm

