Institute for Telecommunication Sciences
the research laboratory of the National Telecommunications and Information Administration

Hans J. Liebe

Abstract: A practical atmospheric Millimeter-Wave Propagation Model (MPM) is formulated that predicts attenuation. delay, and noise properties of moist air for frequencies up to 1000 GHz. Input variables are height distributions (0-30 km) of pressure, temperature, humidity, and suspended droplet concentration along an anticipated radio path. Spectroscopic data consist of more than 450 parameters describing local O2 and H2O absorption lines complemented by continuum spectra for dry air, water vapor, and hydrosols. For a model (MPM*) limited to frequencies below 300 GHz, the number of spectroscopic parameters can be reduced to less than 200. Recent laboratory measurements by us at 138 GHz of absolute attenuation rates for simulated air with water vapor pressures up to saturation allow the formulation of an improved, though empirical water vapor continuum. Model predictions are compared with selected (2.5-430 GHz) data from both laboratory and field experiments. In general, good agreement is obtained.

Keywords: radio propagation; atmospheric propagation; millimeter-wave propagation model; MPM


To request a reprint of this report, contact:

Lilli Segre, Publications Officer
Institute for Telecommunication Sciences
(303) 497-3572
LSegre@ntia.gov

For technical information concerning this report, contact:

Michael G. Cotton
Institute for Telecommunication Sciences
(303) 497-7346
mcotton@ntia.doc.gov


Disclaimer: Certain commercial equipment, components, and software may be identified in this report to specify adequately the technical aspects of the reported results. In no case does such identification imply recommendation or endorsement by the National Telecommunications and Information Administration, nor does it imply that the equipment or software identified is necessarily the best available for the particular application or uses.

Back to Search Results