Bibliography and Synopsis of Literature Concerned with Microwave and Millimeter Wave Propagation Effects

E.J. Dutton
F.K. Steele

U.S. DEPARTMENT OF COMMERCE
Malcolm Baldrige, Secretary
Bernard J. Wunder, Jr., Assistant Secretary for Communications and Information

September 1982
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1.</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>SYNOPSIS OF DOCUMENTS CONCERNED WITH SHF-EHF MODELING</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>BIBLIOGRAPHY</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>3.1 Ray Tracing Effects</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.1.1 Refractive Index</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>3.1.2 Ray Tracing and General Wave Equation Solutions of Interest</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>3.1.3 Angle of Arrival</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>3.2 Transfer Function Effects</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>3.2.1 Line-of-Sight and Terrain Multipath</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>3.2.2 Vegetation</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>3.2.3 Diffraction</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>3.2.4 Gaseous Absorption, Delay, and Dispersion</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>3.2.5 Unstable and Stable Clear Air</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>3.2.5.1 Turbulence</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>3.2.5.2 Stratification and Ducting</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>3.2.6 Inclement Weather</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>3.2.6.1 Rain, Clouds, and Other Hydrometeors</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>3.2.6.2 Sand, Dust, and Smoke</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>3.2.7 Depolarization</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>3.3 Atmospheric Noise Effects</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>3.4 Miscellaneous Articles</td>
<td>71</td>
</tr>
</tbody>
</table>
BIBLIOGRAPHY AND SYNOPSIS OF LITERATURE CONCERNED WITH
MICROWAVE AND MILLIMETER WAVE PROPAGATION EFFECTS
E. J. Dutton and F. K. Steele*

This report presents an extensive bibliography, categorized by
effect, of radio propagation through the atmosphere, for the frequency
region of 10 to 300 GHz. Preceding the bibliographic presentation is
an article-by-article synopsis of that literature which is particularly
pertinent to the prospective atmospheric propagation effects
modeler. Thus, it should tend to serve as a bridge between
earlier modeling efforts (done on a worldwide basis at these frequen-
cies) and needs of future modelers searching for background material for
a model foundation.

Key Words: atmospheric effects, bibliography, microwave, millimeter wave,
modeling, propagation, radio

1. INTRODUCTION

The direction of use of the frequency spectrum resource has generally been
upward in frequency in recent years, primarily because of the relative availability
of bandwidth and the requirement of digital systems for wider bandwidths. This has
led to considerable interest both here at the National Telecommunications and Infor-
mation Administration and elsewhere in the usage potential of microwave and
millimeter wave systems. The lower atmosphere, sometimes called the troposphere,
has a considerable influence in this frequency region if existing and/or intended
systems must communicate through the atmosphere. However, the surrounding terrain,
and even the ionosphere, can exert an influence as well.

In order to aid the prospective user and, in particular, the prospective
modeler, with background material on atmospheric and terrain effects of the propaga-
tion medium at these frequencies, we have undertaken this bibliography and article
synopsis. Our literature research began with the discovery that approximately 2900
articles and reports could be candidates for the bibliography, based on key word
searches conducted both manually and automatically. This number reduced eventually
to the present 933 papers, reports, and books that are actually incorporated in the
bibliography. All of the papers, reports, and books included in the bibliography
were surveyed to determine their potential value to a propagation effects modeler,
on the basis of their titles and abstracts. If those appeared promising, we obtained
the paper, report, or book, and examined it. Even some of these were not

* The authors are with the U. S. Dept. of Commerce, National Telecommunications and
Information Administration, Institute for Telecommunication Sciences, Boulder,
Colorado 80303.
adjudged to be as valuable as others, so that finally only 60 papers and reports were selected for the brief commentary and review given in the next section.

It is hoped that this report will be of use to those who are concerned with the microwave and millimeter wave effects of the atmospheric and geographic propagation medium. In order to further accommodate the user, we have subdivided the bibliography in Section 3 into the individual atmospheric effect that we feel was most representative of the particular document (see the Table of Contents of Section 3 for the actual categorization). The authors realize, however, that as with any other effort of this kind, time will relegate it to some degree of obsolescence.

2. SYNOPSIS OF DOCUMENTS CONCERNED WITH SHF-EHF MODELING

This is an extensive review and bibliography of work done to this point in time (1978) in the millimeter-submillimeter wave frequency region. Not only is there a separate discussion of the work done in the area in general (presented with assorted summary graphs), but there is a sizeable bibliography and a brief discussion of each article in the bibliography presented with the article. Some of the material presented is not especially pertinent to the SHF-EHF propagation modeling problem, but there is other material that could be valuable to the prospective modeler.

A discussion of the distribution of atmospherically-caused noise temperature across Europe observed by radiometer is presented. Although not a dominating feature of microwave and millimeter wave performance degradation, it is one of the few discussions seen of the "noise" part of "carrier-to-noise" assessment. The results presented are directly applicable to earth-satellite performance and modeling.

This paper presents power budget calculations with emphasis on time-division-multiple-access. If this aspect of earth-satellite communications at microwave frequencies is of interest to a modeler, then a detailed look at this paper may be warranted. It does not appear that all the details are included in this particular short contribution; however, it would be necessary to consult with the authors independently.

This is an interesting paper which covers microwave attenuation and delay due to sandstorms or duststorms as a function of the most commonly observed parameters in such storms—visibility. Similar work has been presented before, and much of the work is comparable to that done at ITS in connection with the work on the Solar Power Satellite rectenna assessment.

This is a thorough review of depolarization on earth-space paths at SHF-EHF. It should be noted that the author uses the terminology "depolarization" to mean the same thing as "cross-polarization discrimination" (XPD), used by other authors. The balance of the article, however, is devoted to experimental results rather than modeled or theoretical results, and, as such, may not therefore be of quite as much use to the prospective modeler, except as a check on proposed models. There is a very extensive section on ice-crystal depolarization, which is a very important aspect of earth-space propagation at SHF-EHF. It is especially important because of the largely unattenuated quadrature component that ice-crystal depolarization produces, which rain apparently does not.

This is probably the only article that was found to discuss bandwidth characteristics (i.e., transfer function characteristics) of rain in the 20- to 30-GHz region. At lower elevation angles the problem of multipath and frequency selective fading has been rather extensively covered. The results reported here are from a Bell Labs technique for sampling upper and lower sideband attenuation and phase delay, as well as for the carrier frequency. The dispersion results for amplitude are especially interesting, since the authors found the dispersion to be "less than 3 dB in 30 to 40 dB over a 1-GHz bandwidth at 28 GHz"—implying that microwave amplitude dispersion for wideband communications due to rain is relatively small.

This is a condensed version of one of the more widely used and accepted engineering models for rain attenuation distribution prediction on earth-satellite links, which is presented in considerably more detail in Crane's 1980 IEEE paper. The significance of this paper is that it was the first time the Global Model was presented.

This is a detailed version of Crane's 1978 introduction of the Global Model for prediction of rain attenuation distributions. Although the model contains U. S. rainfall zone maps, based on limited data, in some parts of the United States, it is a succinct model that is readily usable for engineering purposes. It is presumably applicable on earth-space links up to 100 GHz. The terrestrial-link modeling does not appear to work well, however, for paths much beyond 10 km in length, at frequencies much beyond 20 GHz, and moderate rain rate conditions (0.1% of a year). The prospective modeler is advised to concentrate on the earth-satellite aspects of the modeling.

This paper condenses the Bello troposcatter model to as simplified a form as is probably possible, thus making it a candidate for model incorporation. However, the paper has two drawbacks: First, the microwave and millimeter wave regions are not generally regions in which troposcatter propagation (a long-haul mechanism) is likely to be used. Second, omission of some symbol definitions in the article does not add to its clarity.

Although this paper presents a detailed modeling effort, the principal features of interest are the rain and ice crystal depolarization models and their combination. This seems to be a well thought-out paper, with just enough detail to satisfy the modeler's curiosity about the origin of modeled results.

This appears to contain a useful engineering approach, although the extensive material and very large number of graphs make it somewhat confusing and tend to obfuscate the major modeling developments. Numerical examples, however, alleviate this situation, and they are worth examining in detail by the prospective modeler. Much of the material contained in this report could probably be automated, which would tend to make the model less formidable in appearance. The major aspect of the model is a detailed examination of the depolarizing effects of transmission from an earth station to a satellite and then back to another (different) earth station. So far this is the only report reviewed that contains this important consideration.

The authors consider various lower atmospheric effects that change the attenuation and phase of a signal as it is propagated in the atmosphere. The report considers the 10 to 45 GHz region and the 45 to 350 GHz region of the spectrum separately. Graphs and summary equations that should be useful to the prospective modeler are presented in connection with each of the effects considered. The report is somewhat lacking in rain effects modeling at EHF because it uses a Marshall-Palmer distribution that does not properly account for small droplet populations.

Various schemes for maximizing use of the resource spectrum by using time-division multiplexing are discussed and results presented. This paper is actually a fairly good tutorial work relating the pragmatics of resource allocation to performance degradation in the presence of rain at SHF and EHF and may as a consequence be a valuable tool in helping the prospective modeler connect propagation effects to resource allocation.

Falcone, V. J., Jr., and L. W. Abreu, Atmospheric Attenuation of Millimeter and Submillimeter Waves, EASCON '79 Conference Record, IEEE, 1979, pp. 36-41.

This model covers the range 1-1000 GHz, and is based on earlier AFGL models. Its usefulness is limited because it does not attempt to model the distribution (time and location variability) of millimeter wave effects along a given path. Since the model appears to be intended primarily for engineering application, this seems to be a major limitation. It is not likely then, that this model could be used exclusive of other models, and would probably have to be incorporated as a subroutine in a larger computer model. There is no consideration of depolarization effects, nor of dispersion effects in the model as well; nevertheless, what the model does cover should be given due consideration by the prospective modeler.

Here is an older model for earth-satellite performance prediction that seems to have received very little attention. Possibly this is due to some weakness in the model that has been more recently perceived because the analysis is too formidable. The model is presented in matrix algebra format, with concomitant approximations to reduce the difficulty of the model's use as much as possible. The model should be carefully considered by a prospective modeler, with the attitude, perhaps, of more closely examining its strengths and weaknesses, which cannot be determined by cursory inspection. The model does not consider system availability.

This paper introduces considerably more multipath components into the transfer function modeling than does Rummler. Consequently, the complexity of the mathematics is greatly magnified. This, in addition to the length of this article, tends to make it difficult to extract the useful modeling material from the development material. However, since this is a relatively important area (the area of selective fading due to multipath), a close examination of the material by prospective modelers may be worthwhile to assess changes from the simpler Rummler model.

A microwave application of the Rummler model to 45-Mbit/s QPSK systems and 90-Mbit PSK systems is presented. Although it is presumably a digital application, cursory review did not detect any readily usable modeling results. However, some of the figures are very interesting (Figures 3 and 4 in particular), and it may be worthwhile for prospective modelers to examine this report in more detail.

This paper is principally concerned with the power budget (C/N) calculations on earth-satellite up- and down-links. The method of calculation is presented in a simplified, straightforward manner that could make it useful for the engineering modeler.

Although the abstract does not clearly state the purpose of the report, it is intended to produce predictions of bit-error-rate in the 1 to 40 GHz range. In the process, multipath, gaseous absorption, and rain attenuation are considered. Because of this, it would seem logical that a prospective modeler should consider this model in his work, particularly for terrestrial links.

This paper provides some earlier background for the modeling presented above (Dissanayake et al., 1980), concentrating on the ice-crystal depolarization modeling problem. The description is brief and possibly useful to the prospective modeler.

This paper reports on an interesting experimental tool used to obtain very short distance multipath and backscatter from snow at 35, 98, and 140 GHz. Multipath results appear to indicate two clearly distinct components. Results, however, were obtained for only a short period of time at one location.

Since frequency scaling of rain attenuation is an important aspect of any rain attenuation modeling at SHF-EHF, this paper is of interest because it compares various frequency scaling procedures, develops one of its own, and compares the procedures with some experimental results. Differences among the various procedures do not appear to be all that large between 10 and 100 GHz, but they do tend to diverge with increasing frequency.

This is one of the most important pieces of literature uncovered in this survey. It is a large handbook covering an extensive amount of material and presents the material in a form readily usable for the application oriented individual. It contains 7 chapters. The first chapter is an introduction. The second chapter, entitled "Characteristics of Rain and Rain Systems," discusses, in essence, the nature of rain and storms, with emphasis on those characteristics important to telecommunications. The third chapter, entitled "An Overview of Several Rain and Attenuation Models," discusses the many models in use today for the purpose of prediction of rain and attenuation for satellite-earth telecommunications purposes. The fourth chapter, entitled "Depolarization on Earth-Space Links," gives a condensed version of the considerably complicated problem of ascertaining depolarization effects, particularly as related to the use of dual orthogonally polarized transmissions. The fifth chapter, entitled "Propagation Data Bases," covers experimental results obtained over the years of attenuation and depolarization data and statistics. The sixth chapter is entitled "Prediction Techniques," but it differs from Chapter 3 in that the emphasis is on system application of models; i. e., availability, diversity, etc. The seventh chapter is entitled "Application of Propagation Predictions to Earth/Space Telecommunications Design," and as such completes the final step in connecting the propagation models to the system parameters such as carrier-to-noise ratio and bit error rate. The prospective modeler can probably shortcut the reading of many papers and reports by using this handbook directly, at least as a starting point.

Since work in this area done in the Soviet Union is relatively sparsely reported in this country and often suffers from inaccurate translation, this article takes on added interest. This is because it seems fairly clearly presented. The author
describes an exponential shower model, and then develops an effective distance model from it, resulting in modeled earth-satellite attenuation due to rain. It would seem important that the prospective modeler give this article serious consideration to become aware of what his or her Soviet counterparts are doing in this area.

This work postulates short-term variation of rain depolarization analogous to procedures sometimes taken in analyzing other tropospheric loss mechanisms (multipath, etc.) by assuming a Rayleigh distribution and finding a 4.34 dB standard deviation about the mean. Since the prospective modeler may be concerned with "worst case" situations in designing fade margins, this type of analysis could prove useful.

The author presents a simple straightforward method of getting desired results. Albeit the frequency region is a bit low for our purposes, the author states: "The restriction of the model to 4 and 6 GHz reflects the assumption that differential attenuation effects are small compared with those of phase. This restriction could be lifted with some penalty in complexity." The most interesting feature of the model is that it presents a new inverse formulation for the Rice-Holmberg model.

This is a review effort, primarily, which should be useful to the prospective modeler. There is the attendant commentary and discussion of those articles that the author feels are most important, as well as tables and graphs that show many of the results of various authors working in this frequency range. It will serve as a good epitomization of much of the work that has been done at SHF and EHF to date.

Here is a short article that compares the Crane Global Model and Lin Model effective path length values. The results, however, are generally inconclusive, with correspondingly few conclusions of use to a prospective modeler.

This is not the version of the terrestrial-link attenuation model that is extensively used today, but a predecessor that seems to have been made almost totally obsolete by the current method. Furthermore, because it is so long and detailed, it is relatively hard to follow.

Much of the concern on links employing dual orthogonal linear polarizations to increase channel capacity has been with rain depolarization effects. Here is a somewhat unique treatise on depolarization caused by multipath. It postulates a distribution model, using the Nakagami-Rice distribution and claims confirmation of the hypothesized distribution. This appears to be a worthwhile model to consider, especially at microwave frequencies on terrestrial links, since so much dual-polarization is in use today.

Although this short contribution nominally discusses earth-satellite paths, it also reiterates Lin's most recent effective path length scheme for terrestrial microwave links. Only results are presented in this paper, with detailed derivations omitted. Hence, this paper is in very useful form for the prospective modeler. Since both models (earth-satellite and terrestrial) are well known, and the terrestrial-link model is particularly widely accepted, the prospective modeler should give both due consideration.

An extensive article summarizing the massive amount of data taken by Bell Labs. at SHF on earth-satellite links is presented. It also summarizes the modeling done at Bell Labs. during the ten-year period, in particular by S. H. Lin. As a consequence, the modeling results are relatively briefly presented, mentioning his major contributions (particularly the log-normal conditional distribution of rain rates and attenuations) and his effective distance models. The bulk of the paper is devoted to data results. Unfortunately, for all the data taken, the most usable data (taken directly from satellites) is still rather restricted in time and geographical location. Some aspects of path diversity are also discussed and experimental results shown.

This is a brief article that discusses relatively limited data from the U. K., but it is useful because it shows the range of scintillations (Figure 1) that would be expected at these frequencies—and they don't seem to be very large. One has a hard time conceiving what possible damage can be done by 0.15 dB at the most over 4.1 km. Even extrapolated to larger links, it isn't much. There may, however, be other implications of which these reviewers are unaware.

This model is very much an engineering-type model, which has been developed on the basis of a convective area or cell, surrounded by a weak stratiform storm. This model has since been confirmed as one of the more applicable techniques in Europe. Hence, it is one that the prospective modeler should consider very carefully.

In this paper, the author introduces his gamma-distribution model for rain rate distribution, which he extends to attenuation distributions elsewhere. The model fits several Japanese locations much better than log-normal distributions, but data from other countries are not examined.

This article is an extension of the terrestrial-link model to earth-satellite links. There is little that can be said about the modeling at this point, because no comparisons were made with data in the article. Given the reputation of the author in previous terrestrial-link modeling, however, the prospective modeler should probably give this model due consideration. There is also a brief discussion of diversity modeling for earth-satellite applications included in this article.

This is the original paper in which the gamma distribution for use in the prediction of rain rate and attenuation due to rain is introduced. The methodology is compared with data from both Japan and the United States, which gives it a little more universal credibility. It is not especially difficult to obtain the parameters of the gamma distribution, which in this case is entirely for use on terrestrial links. Hence, it is worthwhile for the prospective modeler to give this model due consideration.

In this paper, these two respected authors consider differential attenuation and spatial correlation of separated microwave or millimeter wave links. In the process they derive a spatial correlation function. This modeling is no doubt intended for, and applicable to, the route diversity problem that is important to earth-space communications.

This paper extends the single-link attenuation model during rain to a multi-link (long haul) situation. This circumvents the necessity to perform calculations link by link, and thus would constitute a worthwhile model to consider for engineering purposes.

This is a brief paper on the dielectric properties of various kinds of earth soils at microwave frequencies. Since so little material is published on this subject, even with increased interest in dust and sandstorm effects, Figure 1 of this paper is of especial interest.

The author is a most famous name in this field, principally because of his introduction of a solution to scattering from an oblate-spheroidal hydrometeor 20 years ago, leading to much work in the field of rain-caused depolarization. This is a very detailed review of the complicated scattering problem at SHF-EHF. Because, however, the survey is restricted to scattering from single drops, its engineering applicability is probably limited. Furthermore, the in-depth theoretical modeling described has been adapted to various engineering models, the examination of which would probably be more fruitful for the prospective modeler with telecommunications applications in mind.

This review is particularly interesting because it concerns cross-polarization effects on terrestrial links rather than the more commonly treated co-polar effects, such as multipath. As such, it is important that the prospective modeler give these aspects due consideration when using orthogonal polarizations at the same frequency, or even at nearby frequencies in the same bandwidth, either to increase channel capacity or to assure isolation on a long-haul link. The clear air cross-polarization effects are shown to behave similarly to multipath. Although no specific models are given, appropriate references are included, and the results of several experiments are tabulated. Clear air cross-polarization effects are not expected to be as severe a problem at EHF as at SHF, because path lengths would likely be shorter.

This is a very thorough review, which, along with the NASA Propagation Handbook (described previously), will provide the prospective modeler at microwave and millimeter wave frequencies with considerable background with only minimal mathematical entanglement by highlighting only the important equations. Oguchi's more recent models that incorporate canting angle distribution of raindrops into the equations are discussed as well as methodology for obtaining the attenuation of the quadrature fields and their differential phase shift. A log-normal distribution of cross-polarization discrimination (XPD) is also presented as well as a table and discussion of various experimental observations.

This is a very readable paper when one considers the complexity of the mathematics that the paper contains, resulting in coherence spectra for propagation through the hypothesized turbulent medium. The extensive mathematical formulations may turn out to be uninviting to the prospective modeler, but the paper's effort is concentrated in the SHF-EHF region, and thus may warrant further consideration.

The paper presents an evaluation of the modal solution for propagation in both ground-based and elevated ducts. The mathematics are kept to a minimum so that salient results, such as equation (5), are presented, rather than extensive derivations. This would be a help to the prospective modeler. Nevertheless, the potential difficulty is that most of these evaluations are for frequencies well below microwave. For microwave frequencies and above, the number of modes required for accurate evaluation of equation (5) increases dramatically. It is unlikely then that such an expression could be used at microwave and millimeter wave frequencies without refinement of unknown extent.

This paper presents a relatively simple model for the computation of attenuation at microwave and millimeter wave frequencies which divides the path trajectory into equal intervals, and then sums the attenuation computed in each interval to achieve total path attenuation. For the limited sample of data the authors present, the model seems reasonably justified; hence, the prospective modeler should not disregard this model as a candidate for attenuation analysis. Further data confirmation of this model would be highly desirable, however.

This is an older tutorial paper but because of the subject matter it is not particularly out of date. One difficulty is, however, that the paper discusses mostly radar applications and radar-derived models in this report. In recent years, there has been a tendency away from trying to model rain attenuation by using the traditional radar modeling approach; nevertheless, much of the background material in this paper is still valid.

This appears to be an extremely useful model which is reported here and elsewhere throughout the literature. This particular version is long and detailed and is contained, in essence, in an IEEE paper. It describes an estimation scheme for evaluating the coefficients for the amplitude of the medium transfer function based on several multipath models, the most prominent of which is the "three-path" model. Since this, and companion papers, are among the few reviewed that actually treat the medium transfer function, it could be a valuable modeling tool.

This is a more succinct version of Rummler's BSTJ article. It is especially helpful in demonstrating the depth and spacing of nulls in the frequency spectrum of his modeled transfer function, and shows its significance for wide-band applications, since the secondary path delay (assumed 6.3 ns) inserts a null every 158.4 MHz.

We debated including this paper because the descriptive material seems rather general, and the prospective modeler would have to augment it with other information in order to apply it. However, it may serve as a useful introduction to those concerned with digital link analysis.

Schlesak, J. J., and J. I. Strickland, Geographic and Elevation Angle Dependence of Rain and Ice-Cloud Depolarization in Canada Along Earth-Space Paths at 12 GHz, IEEE International Conference on Communications Record 3, 8-12 June 1980, pp. 40.2.1-40.2.4.

This paper presents an experimentally derived relationship between cross-polarization discrimination (XPD) and co-polarization attenuation (CPA) in the presence of inclement weather that may in the long run be one of the best ways to approach the problem, considering its theoretical complexity. At any rate, it should be of some interest to the prospective SHF-EHF modeler.

This article compares the log-normal and gamma distributions with a 10-year data distribution from Ottawa for various measurement intervals from "clock" 10-minute to "instantaneous" (which, incidentally, is not clock-1 minute rates as is so often assumed). The comparison loses some impact, because the author could have used annual distributions rather than a 10-year combined distribution. The log-normal distribution appears to be the superior fit to these data for rainfall exceedance percentages above 0.001% of the time.

This review covers clear-air effects above 1 GHz on LOS paths, in a succinct form, possibly useful for modeling purposes. It covers gaseous absorption, refractive index structure, multipath propagation, and ducting. The most useful material appears to be in the multipath and ducting areas.

Valentin, R., Attenuation Caused by Rain on Terrestrial Radio-Relay Links, Comparison between Theoretical Calculations and Measurements in the Frequency Range between 10 and 40 GHz, Nachrichtentechnische Zeitschrift 30, No. 6, 1976, pp. 509-512.

Ordinarily papers have not been reviewed in this survey that are restricted to results of a very localized experiment. Although this paper represents such a localized experiment, it does contain one pertinent result worthy of mention, and that is the fact that the classical Marshall-Palmer dropsize distribution used in connection with attenuation prediction on terrestrial links between 12 and 39 GHz still yields results that compare very well with observations. This could be an important modeling consideration, although it has not necessarily been confirmed elsewhere.

Most papers concerned with the subject of turbulence effects usually contain so much mathematical derivation and notation as to render them mostly useless to the engineering modeler. This paper, however, tends to be extremely concise in the presentation of pertinent formulae, thus making it potentially useful to the modeler. The drawback is, at least from these reviewers' aspect, that the amount of amplitude scintillations studied seems relatively negligible.

This report represents an advance in the diffraction state-of-the-art over the use of classical single and double knife edges to represent diffraction obstacles. It is pertinent at microwave and millimeter wave frequencies because most obstacles can be represented as knife edges. The drawback to the modeling is that it applies to obstructed paths which generally only occur in mobile, interference, and secure applications.

This is primarily a review paper of the many aspects of rain attenuation at microwave and millimeter wave frequencies. This is a good, but old, review paper on the subject, and it discusses many of the aspects of measurement. It is, however, probably of limited use to a prospective modeler for two reasons. First, it is now six years old. Second, it concentrates on measurements rather than models. The first reason is relatively serious, because most of the nonradiometric measurements have been made since 1976. The paper is probably best utilized as tutorial.

There are some interesting results in this paper for propagation through various distinct cloud types, but the frequencies are probably too high to be of particular interest at this time.

This paper gives an apparently rather cumbersome "engineering method" for calculating gaseous absorption, similar to the other paper by the same author (below). However, it does appear that there are some differences (to what extent it is hard to say) between this procedure and those of Dr. H. J. Liebe at the Institute for Telecommunication Sciences. Thus, it is suggested that this paper should be given some further consideration.

Although this paper claims to present an "engineering method" that would be applicable in the microwave and millimeter wave regions, the method seems unduly cumbersome. Furthermore, it is suspected that it contains much material that is familiar to the gaseous absorption and dispersion modelers, but still may be worth a second look.
3. BIBLIOGRAPHY

3.1 Ray Tracing Effects

3.1.1 Refractive Index

Gallop, M. A., Jr., and L. E. Telford (1975), Use of atmospheric emission to estimate refractive errors in a non-horizontally stratified troposphere, Radio Sci. 10, No. 11, pp. 935-945.

3.1.2 Ray Tracing and General Wave Equation Solutions of Interest

3.1.3 Angle of Arrival

Hamaker, J. P. (1978), Atmospheric delay fluctuations with scale sizes greater than one kilometer observed with a radio interferometer array, Radio Sci. 13, No. 5, pp. 873-891.

Rufenach, C. L. (1975), Coherence properties of wideband satellite signals caused by ionospheric scintillation, Radio Sci. 10, No. 11, pp. 973-977.

3.2 Transfer Function Effects

Emery, R. J., and A. M. Zavody (1979), Atmospheric propagation in the frequency range 100-1000 GHz, Radio and Electronic Engineer 49, pp. 370-380.

22

Strickland, J. I., R. L. Olsen, and H. L. Werstiuk (1977), Measurements of low angle fading in the Canadian Arctic, Annales des Telecom. (France) 32, Nos. 11-12, pp. 530-535.

Iabolotniy, V. F., I. A. Iskhakov, A. V. Sokolov, and E. V. Sukhonin (1978), Attenuation of radiation at wavelengths of 1.25 and 2.0 mm, Infrared Phys. 18, Nos. 5-6, pp. 815-817.
3.2.1 Line-of-Sight and Terrain Multipath

Dudzinsky, S. J., Jr. (1975), Atmospheric effects on terrestrial mm wave communications, Microwave J. 18, pp. 39-42.

Glushnev, V. G., B. D. Slutsker, and M. I. Finkelshtein (1976), Measurement of the fading of radio waves in the eight-millimeter range in sea and fresh water, ice and snow, Radiofizika 19, No. 9, pp. 1305-1307 (Russian).

Inoue, T., O. Sasaki, S. Sakagami, and T. Akiyama (1975), Some microwave propagation characteristics on an oversea path, Rev. Elect. Comm. Lab. 23, Nos. 5-6, pp. 605-611.

Muller, H., and H. Weber (1980), The analysis of records on a 6.2 GHz radio field with angle diversity and the correlation between fading, phase and refraction, NTG-Fachber (Germany) 70, pp. 159-166.

Okamoto, Y. (1977), Space diversity reception for ocean microwave communication systems, Rev. of the Elect. Comm. Labs. 25, Nos. 1-2, pp. 149-162.

Pilgrim, R. S., Swain, B. C. Barnes, and S. A. Mohammed (1981), Local network microwave links at 29 GHz, IEE Second Intern'l Conf. on Telecom. Trans. into the digital era (report section), pp. 225-228.

Rummler, W. D. (1979), Extensions of the multipath fading channel model, Int'l Conf. on Comm. Record, Boston, MA, 10-14 June 1979 (IEEE, Piscataway, NJ) 2, pp. 32.2.1-32.2.5.

Sinitskii, V. B. (1976), Experimental investigation of millimeter wave multipath propagation, Radiofizika 19, No. 9, pp. 1285-1295 (Russian).

Sollfrey, W. (1979), Nomograms for the calculation of propagation effects on tactical millimeter-wave radio links, RAND Corp., Santa Monica, CA (NTIS Acces. No. AD-A073 900/3).

3.2.2 Vegetation

3.2.3 Diffraction

3.2.4 Gaseous Absorption and Dispersion

Butt, R. J., H. L. Bradley, and D. J. Harris (1974), Measurement of attenuation and change of refractive index due to water vapour in the atmosphere at 890 GHz, Electronics Letters 10, No. 23, pp. 470-471.

Drobychevich, V. I., and A. P. Naumov (1978), Examples of optimal orthogonal systems of functions for the microwave absorption coefficient and refractive index, Radiophys. and Quantum Electron. 21, No. 12, pp. 1211-1218.

Kopilovich, L. E., L. I. Sharapov, and I. KH. Vakser (1976), Emission and absorption of the earth's atmosphere near the 2.53 mm oxygen absorption line, Atmospheric and Oceanic Phys. 11, pp. 999-1007.

Liebe, H. J. (1975), Studies of oxygen and water vapor microwave spectra under simulated atmospheric conditions, OT Report 75-65 (NTIS Acces. No. COM-75-11096/AS).

Riadov, V. Ia., and N. I. Furashov (1976), Absorption by atmospheric water vapor in the 0.87 mm atmospheric window, Radiofizika 19, No. 9, pp. 1308-1314 (Russian).

Troitskii, A. V. (1978), Measurements of atmospheric radio wave absorption on the slope of the O2 band lambda about 5.6 mm, Radiophysics and Quantum Electronics 20, No. 8, pp. 861-863.

Zheltonog, K. S., and L. E. Kopilovich (1976), On the possibility of investigating the altitude profile of the atmospheric absorption coefficient at a wavelength of 2.53 mm by a radiometric method, Radio Engineering and Electronic Physics 21, pp. 110-112.

Zrazhevskiy, A. Yu., and J. A. Iskhakov (1978), Absorption of radio waves by water vapor within the atmosphere at wavelengths of 0.8-20 mm, Radio Eng. and Elect. Phys. 23, No. 7, pp. 3-12.

Zrazhevskiy, A. Yu., and V. G. Malinkin (1977), An engineering method for calculating the rotational part of the dielectric constant of water vapor for $\lambda > 0.33$ mm, Radio Eng. and Elect. Phys. 22, No. 1, pp. 128-130.

3.2.5 Unstable and Stable Clear Air

3.2.5.1 Turbulence

Mishin, A. M. (1977), Fluctuations in the phase difference and its derivative where radio waves propagate through a turbulent atmosphere, Telecom. and Radio Eng. 31/32, No. 9, pp. 72-76.

Ott, R. H., and M. C. Thompson, Jr. (1977), Coherence bandwidth in turbulence, Annales des Telecom. (France) 32, Nos. 11-12, pp. 536-540.

3.2.5.2 Stratification and Ducting

Gerst, H. G. (1980), Measurement of the level of the received signal during transmission in the 8 GHz range from stations beyond the horizon, NTG-Fachber. 70, pp. 167-175 (German).

Hitney, H. V. (1980), Evaporation duct effects on maximum intercept range for 18- and 37.5-GHz emitters, A theoretical analysis of expected frequency distributions of intercept range for five oceanic areas, NOSC/TR-582, NOSC, San Diego, CA (NTIS Acces. No. AD-A091 724/5).

3.2.6 Inclement Weather

3.2.6.1 Rain, Clouds, and Other Hydrometeors

Albrecht, W., and J. Sander (1977), The relationship between the short- and long-term intensity of rain as a basis for the planning of radio links, Frequenz 31, pp. 341-343 (German).

Allnutt, J. E. (1976), Slant-path attenuation and space-diversity results using 11.6 GHz radiometers, IEE Proc. 123, pp. 1197-1200.

Austin, L. B., and G. L. Austin (1975), Techniques for the calculation of attenuation from precipitation for single station and path diversity satellite communication systems from digital radar data, Radio Sci. 10, No. 12, pp. 1019-1024.

Boselli, P., C. Capsoni, and G. Drufuca (1977), Selection of rain gauge data for rain attenuation studies, Alta Frequenza 46, pp. 86-90.

Brussaard, G. (1977), Rain attenuation on satellite-earth paths at 11.4 and 14 GHz, Annales des Telecom. (France) 32, Nos. 11-12, pp. 514-518.

Capsoni, C. M. Mauri, and A. Paraboni (1979), Cumulative attenuation of statistics at 11.6 and 17.8 GHz SIRIO satellite link, Alta Freq., (Italy) 48, No. 6, pp. 377-383.

Chadra, R., and J. A. Lane (1977), Effect of scattering in measurements of rain attenuation by passive radiometry, Electronics Letters 13, No. 17, pp. 177-178.

Damoso, E. (1978), Specific attenuation and phase shift due to rain in the frequency range from 10 to 30 GHz, Elettron. and Telecom. (Italy) 27, No. 2, pp. 87-93.

Davies, P. G. (1975), Attenuation by cloud and rain on earth-sun paths at 12 to 71 GHz, Electronics Letters 11, No. 22, pp. 547-548.

Dintelmann, F. (1979), Attenuation measurements during the first year of SIRIO reception at the Deutsche Bundespost experimental earth station at Leeheim, Alta Freq. (Italy) 48, No. 6, pp. 355-357.

Dosch, C. (1979), Satellite broadcasting evaluation of the propagation measurements carried out in 1978, using the satellite SIRIO, Rundfunktech., MTT (Germany), 23, pp. 135-140.

Dosch, C. (1979), Propagation measurements in Munich using the 11.6 GHz beacon of the SIRIO satellite, Alta Freq. (Italy) 48, No. 6, pp. 363-367.

Engelbrecht, R. S. (1979), The effect of rain on satellite communications above 10 GHz, RCA Rev. 40, No. 2, pp. 191-229.

Fang, D. J., and F. J. Lee (1978), Tabulations of raindrops induced forward and backward scattering amplitudes, COMSAT Tech. Rev. 8, No. 2, pp. 455-486.

Fimbel, J., and M. Juy (1977), Differential attenuations at 13 GHz on 53 km compared to simultaneous measurements at 20.5 GHz, Ann. de Telecom. (France) 32, Nos. 11-12, pp. 454-458.

Fimbel, J., M. Juy, and L. Boithas (1976), High values of rain-induced differential attenuation measured on a 53 km path at 13 GHz, Electronics Letters 12, No. 5, pp. 119-120.

Harris, D. J., and T. M. Teo (1981), Extinction cross-section measurements on single falling water drops at 100 GHz, Electronics Letters 17, No. 1, pp. 7-8.

Hong, S. T., and A. Ishimaru (1976), Two-frequency mutual coherence function, coherence bandwidth, and coherence time of millimeter and optical waves in rain, fog, and turbulence, Radio Sci. 11, No. 6, pp. 551-559.

Juy, M., and M. Rooryck (1980), A first analysis of oblique propagation measurements made at Gometz-La-Ville (France) on the signal of the satellite Sirio 1, Ann. des Telecom. 35, Nos. 1/2, pp. 3-14 (French).

Konrad, T. G. (1978), Statistical models of summer rain showers derived from fine-scale radar observations, J. Appl. Met. 17, pp. 171-188.

Kuhn, U., and H. Klose (1981), First experience gained with a 18 GHz measurement set used for propagation investigation, Tech. MITT. RFZ 25, No. 1, pp. 5-11.

Macchiarella, G., and M. Mauri (1981), Statistical results on the centimetric wave propagation after two years of activity with the Italian satellite Sirio, Annales des Telecom. 36, Nos. 1/2, pp. 54-59.

Maggiori, D., and A. Paraboni (1979), Influence of the space structure and physical properties of rain on the evaluation of the anisotropy and depolarizing properties, FUB-22-1979, Fondazione Ugo Bordoni, Rome, Italy (NTIS Acces. No. N80-31722/5) (Italian).

Malinkin, V. G., A. V. Sokolov, and Ye. V. Sukhonin (1976), Attenuation of signal at the wavelength $\lambda = 8.6$ mm in hydrometeors, Radio Eng. and Elect. Phys. 21, No. 4, pp. 1-4.

Marshall, J. S., and E. Chernia (1976), Shadow mapping to study attenuation by rain on satellite microwave links, Radio Sci. 11, No. 12, pp. 1019-1028.

Matricciani, E. (1981), Rate of change of signal attenuation from Sirio at 11.6 GHz, Electronics Letters 17, No. 3, pp. 139-141.

Menzel, R., and N. Abel (1976), Effects of precipitation and its parameters in the case of a transmission of information in the cm and mm wavelength range, Arbeits gemeinschaft Ionosphäre, URSI, and Nachrichtentechnische Gesellschaft, Gemeinsame Tagung, Kleinheubach, West Germany, 6-11 Oct 1975 (Kleinheubacher Berichte, Kleinheubach, West Germany) 19, pp. 187-214 (German).

Meyerhoff, H. J. (1975), 11.7 and 20 GHz radiometric measurements at a Brazilian equatorial site, COMSAT Tech. Rev. 5, pp. 399-411.

Mink, J. W. (1976), A technique for simultaneous measurement of attenuation and bistatic scatter due to rainfall at millimeter waves, Radio Sci. 11, No. 11, pp. 915-920.

Neessen, J., and M. Reinders (1979), The experimental earth station of the Netherlands PTT and results of propagation measurements with the SIRIO satellite, Alta Frequencza (Italy) 49, No. 6, pp. 399-407.
Ochs, A. (1979), Height dependence of the reflectivity of precipitation, Arbeitsgemeinschaft Ionosphäre, URSI and Nachrichtentechnische Gesellschaft, Gemeinsame Tagung, Kleinheubach, West Germany, 2-6 Oct 1978 (Kleinheubacher Berichte) 22, pp. 65-73 (German).

Ochs, A., and F. Rucker (1979), Measurement of precipitation scatter occurring along the SIRIO propagation path, Alta Freq. (Italy) 48, No. 6, pp. 358-362.

Okamura, S., and A. Sonohara (1977), Atmospheric attenuation by rain at 140 GHz, Electronics and Communication in Japan 60, pp. 94-100.

Paraboni, A. (1979), A study on algorithms and processing programs for data from interference due to hydrometeors at 17.8 GHz, FUB-1979, Fondazione Ugo Bordoni, Rome, Italy (NTIS Acces. No. N80-32036/9)(Italian).

Pozdnyakov, G. I. (1976), Fluctuations in the attenuation of radio waves along a path in rain, Telecom. and Radio Eng. 30/31, No. 6, pp. 88-93.

Ruecker, F., and F. Dintelmann (1977), Propagation measurements at 30 GHz with the ATS-6 satellite, Arbeitsgemeinschaft Ionosphäre, URSI, and Nachrichtentechnische Gesellschaft Gemeinsame, Tagung, Kleinheubach, West Germany, 4-7 Oct 1976 (Kleinheubacher Berichte, Kleinheubach, West Germany) 20, pp. 355-362 (German).

57

ilentin, R. (1976), Attenuation by rain at frequencies upwards of 10 GHz, Arbeitsgemeinschaft Ionosphäre, URSI, and Nachrichtentechnische Gesellschaft, Gemeinsame Tagung, Kleinheubach, West Germany, 6-11 Oct 1975 (Kleinheubacher Berichte, Kleinheubach, West Germany) 19, pp. 215-220 (German).

3.2.6.2 Sand, Dust, and Smoke

3.2.7 Depolarization

Dijk, J., and E. J. Maanders (1977), Copolar and cross-polar signals received at 30 GHz from ATS-6, Annales des Telecom. (France) 32, Nos. 11-12, pp. 502-507.

Dilworth, I. J. (1977), Depolarization at 11.6 GHz on a terrestrial radio link, Annales des Telecom. (France) 32, Nos. 11-12, pp. 469-477.

Dissanayake, A. W., and P. A. Watson (1977), Forward scatter and cross polarisation from spheroidal ice particles, Electronics Letters 13, No. 5, pp. 140-142.

Lau, Pey-Kee, and J. A. Allnutt (1979), Attenuation and depolarization data obtained on 12 GHz satellite-earth paths at four Canadian locations, Electronics Letters 15, No. 18, pp. 565-567.

Maggiori, D. (1976), Effect of the rain precipitation intensity profile on attenuation and depolarization at frequencies above 10 GHz, Fondazione Ugo Bordoni, Rome, Italy (NTIS Acces. No. N77-24349/1SL).

Martinon, R. (1977), Estimation of depolarization from the attenuation data for earth-satellite links at frequencies greater than 10 GHz, Annales des Telecom. (France) 32, Nos. 11-12, pp. 481-486.

McCormick, G. C., and A. Hendry (1976), Polarization-related parameters for rain: Measurements obtained by radar, Radio Sci. 11, Nos. 8/9, pp. 731-740.

Oguchi, T. (1975), Rain depolarization studies at centimeter and millimeter wavelengths, URSI General Assembly, Session on Theory and Experimental Results Relating to Depolarisation due to Rain, Lima, Peru, August 1975 (Radio Res. Labs. J.) 22, No. 109, pp. 165-211.

Ramat, P. (1979), Propagation measurements in circular polarization on a satellite-earth path through SIRIO experimental satellite, Alta Frequenza 48, pp. 172-E - 175-E.

Ramat, P. (1979), Propagation measurements in circular polarization along a satellite-earth trajectory with the aid of the SIRIO-1 satellite--preliminary results, Annales des Telecom. 34, pp. 41-44 (French).

Ruecker, F. (1980), Attenuation and depolarization measurements with the OTS-satellites, Arbeitsgemeinschaft Ionosphäre, URSI, Kleinheubach, West Germany, 8-12 October 1979, Kleinheubacher Berichte 23, pp. 33-40 (German).

Shkarofsky, I. P. (1977), Depolarization due to precipitation in satellite communications, RCA Rev. 38, pp. 257-309.

3.3 Atmospheric Noise Effects

Andreev, G. A., V. A. Golunov, and A. V. Sokolov (1980), Scattering and emission of millimeter waves by natural objects, Seriia Radioteckhnika 20, pp. 3-106 (Russian).

Borin, V. P., and A. P. Naumov (1979), On some features of atmospheric radio emission near the absorption resonances of H₂O at wavelength = 1.35 cm, Radio Eng. and Elect. Phys. 24, pp. 44-52.

Chadha, R., G. S. Uppal, and V. Dubey (1979), Atmospheric emission measurements at 18 and 22.235 GHz, Ind. J. of Rad. and Space Phys. 8, pp. 344-347.

Damosso, E. D., and S. DePadova (1976), Some considerations about sky noise temperature at frequencies above 10 GHz, Alta Frequenza 45, pp. 98-106.

Macchiarella, G., and M. Mauri (1979), Measured attenuation and estimated attenuation at 11.6 GHz from sky noise temperature during the SIRIO-SHF experiment, Alta Frequenza (Italy) 48, pp. 214E-217E.

Schanda, E., G. Schaerer, and R. Hofer (1976), Scatter and emission characteristics of natural media at 3 millimeter wavelength, Telecom. and Radio Eng. 31, No. 9, pp. 54-58.

3.4 Miscellaneous Articles

Berretta, G. (1979), Outlook for satellite communications at 20/30 GHz, European Space Agency J. 2, No. 1, pp. 61-71.

Carassa, F. (1978), The SIRIO programme and its propagation and communication experiment, Alta Frequenza (Italy) 47, No. 4, pp. 233-239.

Chang, A. T. C., and T. T. Wilheit (1979), Remote sensing of atmospheric water vapor, liquid water, and windspeed at the ocean surface by passive microwave techniques from the Nimbus 5 satellite, Radio Sci. 14, No. 5, pp. 793-802.

Cook, J. H., Jr. (1978), Expand system capacity with frequency reuse, Microwaves 17, pp. 94-96.

Dougherty, H. T., E. J. Dutton, and M. T. Ma (1975), On bandwidth limitations at 15 to 45 GHz for a satellite/ground link, OT Report 75-71 (NTIS Acces. No. COM-75-11392/AS).

Gutt1eberg, O (1978), Microwave transmission I, Telektronikk (Norway) No. 2, pp. 148-158.

Kjelaas, A. (1978), Microwave transmission II, Telektronikk (Norway) No. 2, pp. 159-164.

Kuhn, V., and H. Klose (1981), First experience gained with a 18 GHz measurement set used for propagation investigation, Tech. MITT, RFZ (Germany) 25, No. 1, pp. 5-11.

Magele, M. (1980), Direct broadcasting from satellites in the 12 GHz range, Nachrichten Elektron. (Germany) 34, No. 2, pp. 41-45.

Mundie, L., and N. Feldman (1978), The feasibility of employing frequencies between 20 and 300 GHz for earth-satellite communications links, RAND/R-2275/DCA, RAND Corp., Santa Monica, CA (NTIS Acces. No. AD-A056 100/1SL).

Preissner, J. (1980), The influence of the atmosphere on radiometric measurements in the frequency range of 10 GHz to 400 GHz, Deutsche forschungs und Versuchsanstalt fuer luft and Raumfahrt, E. V. Oberpfaffenhofen, West Germany (NTIS Acces. No. N81-22275/4) (German).

Rosen, P. (1979), Military satellite communications systems: Directions for improvement, Signal 34, No. 3, pp. 36-38.

Sandel, H. (1979), SIRIO propagation experiments in Finland, Alta. Frequenza (Italy) 48, No. 6, pp. 368-376.

Steele, F. K., and S. F. Van Horn (1975), A bibliography of recent work on propagation in the radio spectrum from 10 to 100 GHz, OT Report 75-57 (NTIS Acces. No. CO75-10785/AS).

Ulaby, F. T., and M. C. Dobson (1979), Soil texture effects on radar response to soil moisture, RSL, TR-264-30, Remote Sensing Lab., Center for Research, Kansas Univ., Lawrence, Kansas (NTIS Acces. No. E80-10131).

White, W., and M. Holmes (1978), The future of commercial satellite telecommunications, Quest 2, pp. 46-70.

BIBLIOGRAPHIC DATA SHEET

1. PUBLICATION NO.
NTIA Report 82-107

2. Gov't Accession No.

3. Recipient's Accession No.

4. TITLE AND SUBTITLE
BIBLIOGRAPHY AND SYNOPSIS OF LITERATURE CONCERNED WITH MICROWAVE AND MILLIMETER WAVE PROPAGATION EFFECTS

5. Publication Date
September 1982

6. Performing Organization Code
ITS3.4

7. AUTHOR(S)
E. J. DUTTON AND F. K. STEELE

8. PERFORMING ORGANIZATION NAME AND ADDRESS
U. S. DEPT OF COMMERCE
NTIA/ITS3.4
325 BROADWAY
BOULDER, CO 80303

9. Project/Task/Work Unit No.
910 8108

10. Contract/Grant No.

11. Sponsoring Organization Name and Address
NTIA
WASHINGTON, D. C.

12. Type of Report and Period Covered

13.

14. SUPPLEMENTARY NOTES

15. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here.)
This report presents an extensive bibliography, categorized by effect, of radio propagation through the atmosphere, for the frequency region of 10 to 300 GHz. Preceding the bibliographic presentation is an article-by-article synopsis of that literature which is particularly pertinent to the prospective atmospheric propagation effects modeler. Thus, it should tend to serve as a bridge between earlier modeling efforts (done on a worldwide basis at these frequencies) and needs of future modelers searching for background material for a model foundation.

16. Key Words (Alphabetical order, separated by semicolons)
atmospheric effects, bibliography, microwave, millimeter wave, modeling, propagation, radio.

17. AVAILABILITY STATEMENT
☐ UNLIMITED
☐ FOR OFFICIAL DISTRIBUTION.

18. Security Class. (This report)
UNCLASSIFIED

19. Security Class. (This page)
UNCLASSIFIED

20. Number of pages
80

21. Price:
FOR OFFICIAL DISTRIBUTION.