Speaker Identification (SID) in Low-Rate Coded Speech

Andrew Catellier and Stephen Voran
{acatellier,svoran}@its.bldrdoc.gov
Institute for Telecommunication Sciences
Telecommunications Theory Division
Effect of Transmission on Multimedia Quality of Service
17-19 June 2008 – Prague, Czech Republic
SID: Motivation

- New equipment for first responders
- Anecdotal complaints about system performance
 - Speaker emotional state, and speaker identity obscured
- Legitimate concerns!
SID: Motivation

• To help improve the platform, these problems must be measured
• Two experiments were designed to measure the problem
• We’ll be talking about SID today
SID: Experiment Design

- **Specifications:**
 - Unfamiliar talkers
 - Clips with and without prosodic information (short and long clips)
 - Six simulated communication systems
 - Manageable experiment length
SID: Experiment Design

• Realization:
 – Tactical Speaker Identification Database
 • Used three males and three females
 – Three clip lengths: sentence, four digits, two digits
 – MELP, IMBE 7.2, 3.6 kbps (with and without impairments), MNRU
 – 360 total clips, experiment length around one hour
SID: Experiment Design

- **C1** clips produced by resampling at 8 kHz, filtering (160-3640 Hz bandpass), and then normalized to -26 dB below clipping.

- Low-rate vocoders in **C2**, **C3**, **C5** and **C6** are similar to those used in Public Safety communication systems.

- **C5** and **C6** have additional transmission impairments.

<table>
<thead>
<tr>
<th>Condition (C)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Null (no further processing)</td>
</tr>
<tr>
<td>C2</td>
<td>IMBE Codec, 7.2-kbps gross 4.4-kbps net</td>
</tr>
<tr>
<td>C3</td>
<td>MELP Codec, 1.2-kbps net</td>
</tr>
<tr>
<td>C4</td>
<td>MNRU, $Q = 6$ dB SNR</td>
</tr>
<tr>
<td>C5</td>
<td>IMBE Codec, 3.6-kbps gross 2.45-kbps net 7% BER, random</td>
</tr>
<tr>
<td>C6</td>
<td>C5+Packet Impairments+C5 Packet Impairments: create 60 ms packets, delete 10% of packets at random, insert the same number of empty packets at random and apply PLC to them</td>
</tr>
</tbody>
</table>

Table 1. Six conditions used in the experiment.
SID: Experiment Design

• Problems:
 – Training listeners to accurately recognize any given speaker
 – False confidence in training
 – Mid-test mistraining
SID: Experiment Design

• Training:
 – Used set of clips where speakers were giving directions (semi-spontaneous)
 – Allowed listeners to assign appropriate memory aids: a name and a face
SID: Experiment Design

Please push a button to begin playing speech, then select an appropriate picture and name.
SID: Experiment Design
SID: Experiment Design

Please pick an appropriate picture and select or type an appropriate name for the current speaker.
SID: Experiment Design

![Experiment Design System](image_url)
SID: Experiment Design

Choose a name...

Speaker 1
Speaker 2
Speaker 3
Speaker 4
Speaker 5
Speaker 6

Please pick an appropriate picture and select or type an appropriate name for the current speaker.
SID: Experiment Design
SID: Experiment Design
SID: Experiment Design

Please pick an appropriate picture and select or type an appropriate name for the current speaker.
SID: Experiment Design

Please pick an appropriate picture and select or type an appropriate name for the current speaker.
SID: Experiment Design

Please pick an appropriate picture and select or type an appropriate name for the current speaker.
SID: Experiment Design

• Quiz:
 – Undistorted speech
 – Provided feedback to listener about state of training
 – Familiarized listener with test process
SID: Experiment Design

Please select the person who is speaking.
SID: Experiment Design

Please select the person who is speaking.
SID: Experiment Design
SID: Experiment Design

Please select the person who is speaking.
SID: Experiment Design

Please select the person who is speaking.
Test sessions
- Similar to the quiz session, but with no feedback
- Three test sessions
- Each clip length had its own session (sentences were first, then four digit clips, then two digit clips)
- Same interface for all three clip lengths
SID: Experiment Design

Please select the person who is speaking.
SID: Experiment Design

Please select the person who is speaking.
SID: Experiment Design

Please select the person who is speaking.
SID: Experiment Design
SID: Experiment Design

• Reminder sessions
 – Designed to keep the effects of mid-test mistraining from tainting results of next session
 – Clips representative of those to be heard in the next session were used
 – Listeners had to listen to each speaker at least once
SID: Experiment Design

You may now remind yourself which face you associated to each voice. Please listen to each speaker by clicking on their picture. When you have listened to all six speakers, please click "Next Session".
SID: Experiment Design

You may now remind yourself which face you associated to each voice. Please listen to each speaker by clicking on their picture. When you have listened to all six speakers, please click “Next Session”.

Larry

Hannah/Session
SID: Experiment Design

You may now remind yourself which face you associated with each voice. Please listen to each speaker by clicking on their picture. When you have listened to all six speakers, please click “Next Session”.
SID: Experiment Design
SID: Administrivia

- 25 listeners
 - 15 male
 - 10 female
 - Ages 37-64, Mean: 49
 - Scientists, mathematicians, IT professionals, desk workers
 - Native languages: English (22), Spanish (1), German (1), Russian (1)
SID: Results

- Per Listener Results
 - Mean fraction of correct identifications: .662
 - 20 listeners fall between fractions .59 and .81
 - Two hearing aid users (14, 16), one subject deaf in one ear (20)
 - Experiment administrator achieved a fraction correct of .98 (not included in analysis)
SID: Results

- Per Speaker Results
 - Dotted lines = males
 - Solid lines = females
 - One female very recognizable (also has Ecuadorian accent)
 - Males more often confused
SID: Results

• Confusion Matrix
 – Male-female confusion is very low
 – Males 2 and 3 most often confused
 – Females 2 and 3 most easily recognized

<table>
<thead>
<tr>
<th></th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>0.67</td>
<td>0.22</td>
<td>0.11</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>M2</td>
<td>0.15</td>
<td>0.57</td>
<td>0.22</td>
<td>0.01</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>M3</td>
<td>0.12</td>
<td>0.34</td>
<td>0.54</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>F1</td>
<td>0.00</td>
<td>0.003</td>
<td>0.001</td>
<td>0.65</td>
<td>0.19</td>
<td>0.16</td>
</tr>
<tr>
<td>F2</td>
<td>0.00</td>
<td>0.004</td>
<td>0.001</td>
<td>0.17</td>
<td>0.74</td>
<td>0.08</td>
</tr>
<tr>
<td>F3</td>
<td>0.001</td>
<td>0.003</td>
<td>0.005</td>
<td>0.07</td>
<td>0.12</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Table 2. Confusion Matrix: rows indicate the actual speaker, columns indicate the speaker selected by listeners. “M” indicates male, “F” indicates female. Shaded cells indicate a fraction of correct SID, unshaded cells indicate a fraction of confused SID.
SID: Results

• Per Length Results
 – Interesting outcome: no length is significantly easier!
 – Consistent with prior research, but unintuitive
 – Experimental order (sentence, four digits, two digits) may have had an effect
SID: Results

- SID Vs. Intelligibility and Stress Detection
 - SID is not as robust as dramatized urgency (DU) detection
 - About 3 times more robust than intelligibility
 - Light gray: SID, medium gray: intelligibility, dark gray: DU detection
We had these questions while we were conducting the test:

- Is an “event” causing temporary mistraining?
- How often does a “confusion” result in a more permanent mistraining?
- How often is a speaker assigned a similar memory aid?
- How often are clips replayed?
SID: Post-Hoc Work

- Many listeners showed a slight tendency towards “bursty” errors
- Clearly not enough data
- Can’t say anything about permanent mistraining either
SID: Post-Hoc Work

M1
3 listeners 3 listeners 3 listeners 3 listeners

M2
5 listeners 4 listeners 3 listeners

M3
3 listeners 2 listeners 2 listeners
SID: Post-Hoc Work

F1
- 7 listeners
- 4 listeners
- 2 listeners

F2
- 5 listeners
- 4 listeners
- 4 listeners
- 4 listeners

F3
- 5 listeners
- 3 listeners
- 3 listeners
- 3 listeners
SID: Post-Hoc Work

- C1 replayed 20-30% of the time, on average
- C6 replayed 70-90% of the time, on average
- Number of replays goes up with difficulty
- Amount of prosodic information might have been a source of listener confusion
SID: Open Questions

- Consult with experts in psychology and neurology to design lab tests that more closely model real world situations
- Attempt an experiment with better controlled recordings and familiar speakers
SID: In depth