
NTIA Technical Memorandum TM-10-463

A Full Reference (FR) Method Using
Causality Processing for Estimating

Variable Video Delays

Stephen Wolf

NTIA Technical Memorandum TM-10-463

A Full Reference (FR) Method Using
Causality Processing for Estimating

Variable Video Delays

Stephen Wolf

U.S. DEPARTMENT OF COMMERCE
Gary Locke, Secretary

Lawrence E. Strickling, Assistant Secretary

for Communications and Information

October 2009

iii

DISCLAIMER

Certain commercial software is identified in this report to specify adequately the technical
aspects of the reported results. In no case does such identification imply recommendation or
endorsement by the National Telecommunications and Information Administration (NTIA), nor
does it imply that the software identified is necessarily the best available for the particular
application or use.

This document contains software developed by NTIA. NTIA does not make any warranty of
any kind, express, implied or statutory, including, without limitation, the implied warranty
of merchantability, fitness for a particular purpose, non-infringement and data accuracy.
NTIA does not warrant or make any representations regarding the use of the software or the
results thereof, including but not limited to the correctness, accuracy, reliability or usefulness of
the software or the results. You can use, copy, modify, and redistribute the NTIA-developed
software upon your acceptance of these terms and conditions and upon your express agreement
to provide appropriate acknowledgments of NTIA's ownership of and development of the
software by keeping this exact text present in any copied or derivative works.

v

CONTENTS

Page

1. INTRODUCTION .. 1

2. ALGORITHM DESCRIPTION .. 3

2.1. Stage 1: Compute MSEs Between Processed Frames and Original Frames 3

2.2. Stage 2: Compute Initial Set of Rank-Sorted Fuzzy Time Alignments 7

2.3. Stage 3: Determine Time Segments that Exhibit “Normal Causality” 8

2.4. Stage 4: Fill in Normal Causal Segments from Longest to Shortest 9

2.5. Stage 5: Fill in Remaining Holes ... 11

2.6. Stage 6: Expand Set of Fuzzy Time Alignments from Stage 2 12

3. SUMMARY .. 13

4. REFERENCES .. 14

APPENDIX: MATLAB CODE..15

A FULL REFERENCE (FR) METHOD USING CAUSALITY PROCESSING

FOR ESTIMATING VARIABLE VIDEO DELAYS

Stephen Wolf 1

Digital video transmission systems consisting of a video encoder, a digital
transmission method (e.g., Internet Protocol – IP), and a video decoder can
produce pauses in the video presentation, after which the video may continue with
or without skipping video frames. This time varying delay of the output (or
processed) video frames can present a challenge for some video quality
measurement systems. The reason is that time alignment errors between the
output video sequence and the input (or reference) video sequence may produce
measurement errors for full reference measurements like Peak Signal to Noise
Ratio (PSNR) that greatly exceed the perceptual impact of the time varying video
delays. This document presents a Full Reference (FR) method for estimating
variable video delays. The algorithm can optionally execute a sophisticated
causality processing algorithm to improve the robustness of the delay estimates.
The delay estimates produced by this algorithm can be utilized by a FR quality
measurement system to remove variable video delay as a calibration step before
computing the quality measurement.

Key words: calibration; causality; delay; dropped frames; Full Reference (FR); pausing;
skipping; video quality

1. INTRODUCTION

Digital video transmission systems consisting of a video encoder, a digital transmission method
(e.g., Internet Protocol – IP), and a video decoder can produce pauses in the video presentation,
after which the video may continue with or without skipping video frames. There are several
possible reasons for this behavior. One reason is that the video encoder may decide to reduce the
video frame transmission rate momentarily in order to save bits. For example, an original video
stream with a frame rate of 30 frames per second (fps) may be reduced to 15 fps by dropping
every other video frame. Another reason is that the video decoder may decide to freeze the last
good video frame when the digital transmission is interrupted or when errors such as IP packet
loss are detected. This is a simple error concealment algorithm that is used by many video
decoders. After the interruption, output video frames may be displayed without loss (e.g.,
pausing without skipping) or with some loss (e.g., pausing with skipping). Another option might
be to display the output video frames in fast forward motion to make up for the lost time.

1 The author is with the Institute for Telecommunication Sciences, National Telecommunications and Information
Administration, U.S. Department of Commerce, 325 Broadway, Boulder, CO 80305.

2

Whatever the case, there are many reasons why output video frames from modern video
compression systems have time varying video delays.

This time varying delay of the output (or processed) video frames can present a challenge for
some video quality measurement systems. The reason is that time alignment errors between the
output video sequence and the input (or reference) video sequence may produce measurement
errors for full reference measurements like Peak Signal to Noise Ratio (PSNR) that greatly
exceed the perceptual impact of the time varying video delays. For example, a one-frame video
freeze without skipping will result in either the prior or later output segment being shifted by one
video frame with respect to the original reference segment. While this is barely noticeable to
viewers, the PSNR measurement will detect a large impairment for the output segment that is off
by one video frame with respect to the original.

This document presents a Full Reference (FR) method for estimating variable video delays. The
best matching original (or input) video frame is determined for each processed (or output) video
frame. For some video sequences, estimating the best matching original video frames is
difficult. This is true for still or nearly still video, video with repetitive motion, highly distorted
processed video, or processed video that has partial frame updates (e.g., the foreground updates
while the background does not update). For these difficult sequences, sophisticated causality
processing (i.e., the processed video cannot go backwards in time) that assembles the time
aligned sequence using a set of heuristic rules can improve the video delay estimates. This
algorithm can also produce a list of rank sorted matching original video frames for each
processed video frame (sorted from most likely match to least likely match).

One possible application for the results from this algorithm is to remove variable frame delays
from the processed sequence as a calibration step before computing a full reference quality
measurement. A second application is to compute a video quality parameter that only measures
the perceptual effects of variable frame delays. Combining this video quality parameter with the
full reference quality measurement (with variable video delay removed) should produce a more
accurate overall estimate of video quality.

3

2. ALGORITHM DESCRIPTION

The FR algorithm for determining the best matching original video frame2 for each processed
video frame was developed using sequences of captured video frames (often called video clips)
that ranged from 8 to 15 seconds in length. The behavior of the algorithm for shorter or longer
video sequences should be analyzed before being applied. This section provides a step by step
description of the algorithm as applied to one video clip. The algorithm only utilizes the
luminance images of the video clip (e.g., the Y channel in an ITU-R Recommendation BT.601
sampled video stream), which will be denoted in this document as Y(i, j, t), where t = 0, 1, 2, ...,
N-1 (where N is the total number of frames in the video clip) and i and j are the row and column
indices of the individual pixels, respectively. A subscript of “p” on the luminance image will
denote a processed video frame while a subscript of “o” will denote an original video frame.

The full algorithm that includes the causality processing can be partitioned into 6 stages. Stage 1
(described in Section 2.1) involves computation of the Mean Squared Errors (MSEs) between
each processed frame and the set of original frames that are within a user-specified temporal
search window. This computationally intensive step produces the information utilized by the rest
of the algorithm (Stages 2 to 6). Stage 2 (described in Section 2.2) performs a threshold
procedure on the original MSEs for each processed frame to produce a set of rank-sorted fuzzy
time alignments for each processed frame (rank sorted from most likely to least likely). Stage 3
(described in Section 2.3) examines the list of minimum MSE alignments to determine time
segments that exhibit “normal causality,” where “normal causality” imposes a user-specified
limit on the magnitude of the frame-by-frame forward jumps in time (backward jumps in time
are not allowed for causal processing). Stage 4 (described in Section 2.4) begins the generation
of the causal time alignment for the processed video clip by starting with the longest normal
causal segment (from Stage 3) and filling in the shorter normal causal segments. Stage 5
(described in Section 2.5) fills in the remaining holes using either interpolation or the rank-sorted
MSEs generated from Stage 2 (which includes an expanded list of likely time alignments for
each processed frame in addition to the most likely minimum MSE time alignment). At the end
of Stage 5, a best guess of the causal time alignment is obtained. Stage 6 (described in Section
2.6) expands the list of rank-sorted fuzzy alignments generated from Stage 2 to include the points
in the causal time alignment found at the end of Stage 5.

2.1. Stage 1: Compute MSEs Between Processed Frames and Original Frames

This stage of the algorithm computes the MSE between each processed video frame and all
original video frames that are within plus or minus a temporal uncertainty search window. The
processed video clip is assumed to have been spatially aligned to match the original video clip.
References [1] and [3] present methods for performing this spatial shift estimation and

2 For progressive scan video systems, the algorithm presented here uses frames. For interlaced video systems, the
algorithm uses fields. Some interlaced video systems might reframe the output video and this complicates the time
alignment algorithm considerably. For a definition and explanation of reframing, please see Section 3.1.2 of [1].
For simplicity, this document will generally use the term “frame” or “frames” to describe the algorithm, but
processing details that are specific to fields in interlaced systems will be described where relevant.

4

correction. The processed video clip might also have gain and level offset errors with respect to
the original clip. Gain and level offset errors can be accommodated by pre-normalizing the
original and processed video clips to have zero mean and unit variance. Here is the procedure to
compute the MSEs3:

Step 1) Normalize the processed video clip to have zero mean and unit variance.

 () () .1...,,2,1,0,),(,/),,(,, −=∈−= NtSROIjimtjiYtjiY ppppppp σ (1)

Here SROI is the Spatial Region of Interest, which may be selected to be the central portion of
the image to eliminate image border pixels that do not contain valid picture (e.g., some cameras
may not fill the entire ITU-R Recommendation BT.601 frame, encoders may not transmit the
entire frame). The mean (mp) and standard deviation (σp) of the processed video clip are
calculated using all the image pixels within the SROI and the time duration of the video clip
(tp = 0, 1, 2, ..., N-1).

Step 2) Similar to Step 1 above, normalize the original video clip to have zero mean and unit
variance.

() ()

.1_...,,2_,1_,_
,),(

,/),,(,,

−+++=
∈

−=

Nalignfirstalignfirstalignfirstalignfirstt
SROIji

mtjiYtjiY

o

oooooo σ
 (2)

Here, first_align4 is the best guess for the original video frame that aligns with the first processed
video frame (i.e., tp = 0 in the equation for Step 1 above). The mean (mo) and standard deviation
(σo) of the original video clip are calculated using all the image pixels within the SROI and the
time duration of the video clip (to = first_align, first_align+1, first_align+2, ..., first_align+ N-1).

Step 3) For each processed frame tp, compute the MSE between this frame and all original
frames within plus or minus the temporal uncertainty (t_uncert), which is the maximum expected
time alignment offset error between processed frames and original frames (when using the single
time alignment point given by first_align).

() []{ }

.__...,,_...,,__
,1...,,2,1,0

,),,(),,(, 2

,

pppo

p

ppoojioverpo

tuncerttalignfirsttalignfirsttuncerttalignfirstt
Nt

tiiYtjiYmeanttMSE

++++−=

−=

−=

(3)

3 In order to make this algorithm available for researchers, the Appendix provides MATLAB® code that fully
implements the ideas presented in this document. The variable names used in this description are the same as those
used in the MATLAB code. The MATLAB code for Stage 1 begins on page 33.

4 There are a number of parameters (e.g., first_align) that control the behavior of the algorithm presented herein.
The user can specify values for these parameters, or accept the default values given either here or in the MATLAB®
code that implements the algorithm (see the Appendix).

5

This formulation assumes an extra t_uncert original frames before frame first_align and after
frame first_align+N-1. If some of these frames are not available, then the maximum number of
original frames that are available are searched.

Step 4) Rank sort (from low to high) each column of MSE(to, tp). This sorting is performed over
the row index to. Thus for each value of tp, all the to MSE values are sorted from minimum to
maximum.

 () { }.),(,_ potoverpos ttMSEsortttSortMSE
o

= (4)

Keep track of the original frame numbers that correspond to the MSE_Sort values in a separate
variable Orig_Index_Sort (tos, tp). The first row of Orig_Index_Sort (i.e., tos = 1) contains the
original frame numbers that minimize MSE for the processed frames (tp = 0, 1, 2, ..., N-1), with
their corresponding MSEs given by the first row of MSE_Sort.

For interlaced video systems, the above MSE computations are performed on fields rather than
frames. If the processed video has the possibility of being reframed with respect to the original
video, then extra MSE computations are required where the processed field is shifted vertically
by up to one video line with respect to the original field.

Step 5) Define a Boolean row vector Edge that is 1 when the best matching original frame (for a
given processed frame) has hit the edge of the search range (otherwise Edge is set to 0).5

 ()
⎪⎩

⎪
⎨

⎧
++=
+−=

=
otherwise

tuncerttalignfirsttSortIndexOrigif
tuncerttalignfirsttSortIndexOrigif

tEdge pp

pp

p

0
__),1(__1
__),1(__1

 (5)

The Edge vector will be used in the selection of the causal segments in Stage 3 of the algorithm
(Section 2.3). Frame alignments that are “on the edge” of the search range will not be included
in a causal segment on the presumption that a better alignment might exist that is outside of the
temporal search window. In addition, when the search goes awry, it commonly hits the edge of
the search window. Thus, the robustness of the algorithm is improved by not including the edge
points.

Figure 1 gives an example plot of the MSE function (3) for one processed frame. The original
frame with the smallest MSE (i.e., closest match to the processed frame) is shown as a red circle
on the plot. Figure 1 gives one slice of the three dimensional MSE function shown in Figure 2
(at processed frame 50). In Figure 2, higher MSE values are hotter colors (with red being the
highest) while lower MSE values are cooler colors (with blue being the lowest), except for the
best matching original frame, which is shown as a red circle like Figure 1.

5 As mentioned in Step 3, this mathematical formulation assumes an extra t_uncert original frames before frame
first_align and after frame first_align+N-1. If these extra original frames are not available, and the search hits the
beginning or end of the original frames that are available, then an Edge (set equal to 1) is declared in these cases.

6

20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Original Frame

M
ea

n
Sq

ua
re

d
Er

ro
r (

M
SE

)

Processed Frame 50

Figure 1. Example MSE plot for one processed frame.

Figure 2. Example three dimensional view of the MSE function.

7

2.2. Stage 2: Compute Initial Set of Rank-Sorted Fuzzy Time Alignments

For a given processed video frame, the MSE function shown in Figure 1 will be a minimum at
the best matching original video frame. However, this minimum might not be the correct time
aligned original video frame. For instance, if the processed video frame is distorted, the wrong
original video frame might be chosen. This stage of the algorithm uses a dynamic threshold
scheme to select a set of closely matched original video frames for each processed video frame.
In Figure 2, the amplitude of the MSE waveform for a given processed frame (Figure 1) changes
significantly as you move along the processed frame axis. By using a dynamic threshold that is
based upon the MSE values at each processed frame, one can obtain a fuzzy set of original time
alignments that depend upon the shape of the Figure 1 MSE function. Shapes with a well defined
minimum dip produce a few (or just one) time alignments while shapes with a broad minimum or
multiple dips produce more time alignments.

We continue with the step by step numbering used in Section 2.1 to specify the algorithm
description (the MATLAB code for Stage 2 begins on page 34).

Step 6) For each processed frame tp, compute a fuzzy set of matching original frame indices as:

{ }

).),*95.0((_*005.0),1(_),(_
),(__)(.,

pppos

posp

tLfloorSortMSEtSortMSEttSortMSE
thatsuchttSortIndexOrigtFuzzy

+≤

=
 (6)

Here, L is the total number of tos samples present for each processed frame tp, and floor performs
an integer round down. Since L varies for each processed frame tp, the first index of the array
Fuzzy is given a ‘.’ in (6). This equation basically sets a threshold on the acceptable original
MSE values such that all those points less than or equal to the minimum MSE plus 0.005 (or
0.5%) of the 95% rank sorted MSE value are included in the set of likely time alignments. The
95% rank sorted value is used rather than the maximum MSE for greater robustness. Equation
(6) provides the desired dynamic thresholding scheme.

Step 7) Create a bigger fuzzy array that expands the set of frame indices found in (6) to include
the full range of original frames that were found (from the earliest to the latest in time). This
bigger fuzzy array will include additional original frames if the Figure 1 MSE function has
multiple dips and these dips were captured by (6) but some points in between the dips were not
captured. Sort each column of this array according to MSE (from lowest to highest) to create a
final fuzzy array of original frame indices Final_Fuzzy_Index(tos,tp), with a corresponding MSE
array Final_Fuzzy_MSE(tos,tp). After this step, the variable used to access the original frames
(tos) can have a different number of elements for each processed frame tp. The first row of
Final_Fuzzy_Index(tos,tp), tos = 1, gives the original frames that have the minimum MSE with
respect to the processed frames. Original frames given by higher tos values have higher MSEs.

Figure 3 gives the result from Step 7 for processed frame 117 of Figure 2. The original frames
shown with a red circle met the dynamic threshold scheme given by (6). The original frame
shown with a green square was included in the bigger set from Step 7 since it fell between the
red circles.

8

80 90 100 110 120 130 140 150
0

0.5

1

1.5

2

2.5

3

3.5

Original Frame

M
ea

n
Sq

ua
re

d
Er

ro
r (

M
SE

)

Processed Frame 117

Figure 3. Example MSE plot demonstrating the expanded fuzzy set from Step 7.

2.3. Stage 3: Determine Time Segments that Exhibit “Normal Causality”

For progressive video, a normal causal time segment is defined as a contiguous time segment
where frame n jumps forward in time with respect to frame n-1 by 0 to cjump (causality jump)
frames. Here cjump provides a mechanism to limit forward jumps in time. The idea is that
normal causal time segments are perceived as natural-looking video (which also includes still
video). Stage 4 (Section 2.4) uses the longest such time segment in the processed video clip to
anchor the causality estimation of the entire clip. This is based on the observation that the
longest normal causal segment normally has fewer time alignment errors (e.g., forward jumps by
more than cjump can be indicative of noisy and unreliable MSE information for various reasons).
However, for low frame rate systems that repeat many frames and then jump forward by more
than cjump frames, this type of categorization will declare each period of frame repetition as a
new normal causal segment (i.e., in this case, one normal causal segment will not include both
the frame repetitions and the frame update that follows the frame repetitions).

For interlaced video, a normal causal time segment is defined as a contiguous time segment
where field n jumps forward in time with respect to field n-1 by 0 to 2*cjump fields. In addition,
a backward jump of 1 field is allowed for the case of an interlaced video system that repeats
frames.

We continue with the step by step numbering used in Section 2.2 to specify the algorithm
description (the MATLAB code for Stage 3 begins on page 36).

9

Step 8) Using the closest matching original frame for each processed frame (i.e.,
Final_Fuzzy_Index(1,tp) from Step 7 of Section 2.2), search through the processed frames (from
earliest to latest) using the jumps in the matching original frame indices to determine the
beginning of each normal causal segment i in the processed video clip, Run_Beg(i), and its
length, Run_Length(i). For this search, use cjump = 2 with the added constraint that processed
frames that aligned with original frame indices on the edge of the search window (as given by
the Edge(tp) vector from Step 5 of Section 2.1) are not included.6 Edge points are excluded from
the normal causal segments because a better alignment with lower MSE might exist beyond the
edge.

Step 9) Sort the Run_Length vector from Step 8 (from longest to shortest) to produce a new
vector Run_Length_Sort. Apply the same sort order to the Run_Beg vector to produce
Run_Beg_Sort. After this sort, the normal causal time segment with the longest length is given
by Run_Beg_Sort(1) and Run_Length_Sort(1).

This stage of the algorithm only categorizes normal causal time segments in the processed video
clip. There might be some processed frames that do not belong to a normal causal time segment.
In addition, consecutive normal causal time segments might not be causal when taken together,
as the end of one normal causal time segment might be later in time than the beginning of the
next normal causal time segment.

2.4. Stage 4: Fill in Normal Causal Segments from Longest to Shortest

Stage 4 of the algorithm assembles the information from Step 9 of Section 2.3 (i.e.,
Run_Length_Sort and Run_Beg_Sort) in such a manner as to preserve causality for the processed
video clip. We continue with the step by step numbering used in Section 2.3 to specify the
algorithm description (the MATLAB code for Stage 4 begins on page 38).

Step 10) Start with the normal causal time segment with the longest length as given by
Run_Beg_Sort(1) and Run_Length_Sort(1). This time segment will be used as the initial anchor
point for assembling all the other normal causal time segments. The longest time segment
contains the most consistent time alignments and is less prone to containing time alignment
errors, so it forms a natural anchor point for the entire processed video clip. Initialize a vector
Causal of length N (the total number of processed frames) with zeros. This vector will contain
the causal time alignments of the processed video frames. For the longest normal causal
segment, simply assign their Causal vector elements to the corresponding original frame
alignments taken from the array Final_Fuzzy_Index(1,tp) (from Step 7 of Section 2.2). Now,
step through the successively shorter normal causal time segments, testing each one to see if
causality would be preserved if that segment was inserted into the Causal vector.7 If so, fill in
the Causal vector elements for that time segment. If not, proceed to the next shorter normal

6 For example, if when examining the time sequence of matching original frame indices they are observed to jump
forward in time by 3 frames, then that would end one normal causal segment and begin a new one.

7 For progressive video, jumps backward in time are not permitted. For interlaced video, a one-field jump back in
time is permitted to allow for the frame repetition case.

10

causal segment. Continue until all the normal causal time segments have been considered that
are longer than min_length8 frames.

Figure 4 demonstrates the Step 10 procedure for the processed clip whose MSE function is
shown in Figure 2. The thin blue lines plot Final_Fuzzy_Index(1,tp) for all processed frames tp,
which gives the original frames that minimize MSE for each processed frame (plotted on the x-
axis). As can be seen from the dips in the thin blue lines around processed frame 150, the
minimum MSE alignment does not produce a causal alignment for this processed clip. The thick
red lines plot Causal(tp) for all processed frames tp after each iteration for the first four iterations
(top-left, top-right, bottom-left, bottom-right, in that order). The first iteration (top-left) is after
the longest normal causal time segment has been inserted into the Causal vector and this serves
as an anchor point for the successive iterations. Causal values that are zero in these plots have
not yet been set (i.e., the Causal vector was initialized with zeros). After four iterations (bottom-
right), some obvious non-causal time segments remain (e.g., around processed frame 150).

0 50 100 150 200 250
0

50

100

150

200

250

Processed Frame

O
rig

in
al

 F
ra

m
e

0 50 100 150 200 250
0

50

100

150

200

250

Processed Frame

O
rig

in
al

 F
ra

m
e

0 50 100 150 200 250
0

50

100

150

200

250

Processed Frame

O
rig

in
al

 F
ra

m
e

0 50 100 150 200 250
0

50

100

150

200

250

Processed Frame

O
rig

in
al

 F
ra

m
e

Figure 4. Assembling the causal alignment from normal causal segments (four iterations).

8 The recommended value for min_length is 2, which eliminates causal time segments that are a single point. This
eliminates a single mis-aligned frame from consideration, a somewhat common occurrence.

11

2.5. Stage 5: Fill in Remaining Holes

After filling in all the normal causal time segments, the Causal vector may still contain holes (or
zero values) for some processed video frames. Hole segments (i.e., segments preceded and
followed by valid causal alignments) are filled as they are encountered from early time to late
time in the following manner (the MATLAB code for Stage 5 begins on page 40):

Step 11) The earliest point in the hole is filled by the value in the Final_Fuzzy_Index(1,tp)
vector, if this is allowed by the causality rules. Then the latest point in the hole is filled by the
value in the Final_Fuzzy_Index(1,tp) vector, if this is allowed by the causality rules. This
process alternates back and forth until no other extensions are possible for the hole segment
being filled. After this, if unfilled points remain in the hole segment, and the Final_Fuzzy_Index
array has valid next best alignments for these unfilled points (e.g., Final_Fuzzy_Index(2,tp)
would be the next best alignment for processed frame tp if it exists, then Final_Fuzzy_Index(3,tp),
etc.), these are examined in turn to see if causality can be achieved using them. Before these
secondary insertions are made, they are compared to what linear interpolation (using the closest
valid Causal points before and after the hole) would have produced to fill in the hole, and the
choice that produces the minimum Root Mean Squared Error (RMSE) with respect to the
Final_Fuzzy_Index(1,tp) vector is chosen.

In the above manner, holes are filled in as they are encountered from early to late time. When
the hole segment occurs at the beginning or end of the time sequence, then the holes are filled by
the Final_Fuzzy_Index(1,tp) alignments (if they are causal), or the optimum choice between the
next best Final_Fuzzy_Index(*,tp) alignments (if available and if causal) and the last good causal
alignment which is replicated/extended over the hole segment. The last good causal alignment is
replicated/extended over the hole segment if no other options are available.

Figure 5 demonstrates the output of the hole filling algorithm for the processed video clip in
Figure 4. The left plot is before and the right plot is after filling of the hole segments. The final
Causal time alignment (thick red line) is obtained after this stage of the algorithm.

0 50 100 150 200 250
0

50

100

150

200

250

Processed Frame

O
rig

in
al

 F
ra

m
e

0 50 100 150 200 250
0

50

100

150

200

250

Processed Frame

O
rig

in
al

 F
ra

m
e

Figure 5. Hole filling example, before (left) and after (right).

12

2.6. Stage 6: Expand Set of Fuzzy Time Alignments from Stage 2

This optional stage of the algorithm can be used to expand the set of fuzzy alignments given by
Stage 2 (Section 2.2) to include the causal time alignments at the end on Stage 5 (Section 2.5).
The MATLAB code for Stage 6 begins on page 52.

Step 12) The expanded Final_Fuzzy_Index array will be given by Final_Fuzzy_Causal_Index,
and the expanded Final_Fuzzy_MSE array will be given by Final_Fuzzy_Causal_MSE. The
Final_Fuzzy_Causal_Index array is generated by stepping through the processed frames tp and
expanding the set of fuzzy alignments for tp to include the Causal(tp) alignment point and all
points in between this point and the points in Final_Fuzzy_Index(*,tp). The array
Final_Fuzzy_Causal_MSE gives the corresponding MSEs of Final_Fuzzy_Causal_Index. The
Final_Fuzzy_Causal_MSE array is then sorted together with Final_Fuzzy_Causal_Index such
that the most likely alignments (i.e., those with minimum MSE) are first and the least likely
alignments (i.e., those with maximum MSE) are last. Finally, the Causal alignments are moved
into the most likely positions in these arrays, regardless of their MSEs.

Figure 6 gives an example plot for processed frame 147 of the video clip whose MSE function is
shown in Figure 2. Figure 6 is similar to Figure 1 and Figure 3 except that this figure
demonstrates that the solid black diamond points to the right of the solid red circle point were
added to the fuzzy set of alignments during Step 12. The actual causal alignment point that was
chosen by the algorithm is also plotted as a solid black diamond point but it is overlaid with a
larger open black diamond.

110 120 130 140 150 160 170 180
0

0.5

1

1.5

2

2.5

3

Original Frame

M
ea

n
Sq

ua
re

d
Er

ro
r (

M
SE

)

Processed Frame 147

Figure 6. Example MSE plot demonstrating the expanded causal fuzzy set from Step 12.

13

3. SUMMARY

This document has described a full reference method for calculating variable frame delays that
might be present in processed video sequences that are output from modern video coding and
transmission systems. The full reference method uses the mean squared error (MSE) between
normalized processed video frames and their corresponding original video frames (before coding
and transmission). The algorithm imposes an additional causality constraint to reduce processed-
to-original video frame alignment errors that would result from algorithms which rely solely on
minimum MSE values. These alignment errors become more likely for still or nearly still video,
video with repetitive motion, highly distorted processed video, or processed video that has partial
frame updates (e.g., the foreground updates while the background does not update).

Possible applications for the algorithm presented here include removing variable frame delays
from the processed sequence as a calibration step before computing a full reference quality
measurement, and computing a video quality parameter that only measures the perceptual effects
of variable frame delays.

14

4. REFERENCES

[1] S. Wolf and M. Pinson, “Video quality measurement techniques,” NTIA Technical Report
TR-02-392, Jun. 2002.

[2] ITU-R Recommendation BT.601, “Studio encoding parameters of digital television for
standard 4:3 and wide screen 16:9 aspect ratios,” Recommendations of the ITU,
Radiocommunication Sector.

[3] M. Pinson and S. Wolf, “Reduced reference video calibration algorithms,” NTIA Technical
Report TR-08-433b, Nov. 2007.

15

APPENDIX: MATLAB Code

The function variable frame delays (vfd) can be compiled (using the MATLAB compiler) and run from a DOS prompt. If compilation is performed,
the routine is called as given in the below examples. For instance, the user would type the following at the DOS prompt:

vfd 'proc.yuv' 'orig.yuv' 'interlaced_lff' 'results.csv' 'yuv' 486 720 'reframe' 'causal' 'verbose'

However, if vfd is run from the MATLAB prompt, the user would need to type the following at the MATLAB prompt:

vfd '''proc.yuv''' '''orig.yuv''' '''interlaced_lff''' '''results.csv''' '''yuv''' 486 720 '''reframe''' '''causal''' '''verbose'''

Also please note that the causal option must be specified as a command line argument in order to activate the causal processing described in this
document.

function vfd(proc_file, orig_file, scan_type, results_file, varargin)
% VFD 'proc_file' 'orig_file' 'scan_type' 'results_file' options
%
% Estimate the variable frame delays (VFD) of all frames (or fields) in
% the user specified processed video file ('proc_file') that is in either
% uncompressed UYVY AVI file format (default) or raw big-YUV file format
% (optional). The original video file is given by 'orig_file'. The user
% must specify the 'scan_type' of the video files as either
% 'progressive', 'interlaced_uff' (interlaced upper field first), or
% 'interlaced_lff' (interlaced lower field first), since this information
% is not available in the AVI file format. VFD results are appended to
% the file 'results_file' (see the RESULTS section below for a complete
% description of the results output file).
%
% This routine does not perform any spatial registration so the original
% and processed clips are assumed to have been spatially registered
% beforehand. The original and processed video files can have a
% different number of frames but ideally, there should be a matching
% original frame (or field) for every processed frame (or field).
%
% SYNTAX
% vfd 'proc_file' 'orig_file' 'scan_type' 'results_file' options
%

16

% DESCRIPTION
% For each frame (or field) in the processed file, this algorithm finds
% the frame (or field) in the original file that minimizes the mean
% squared error, subject to the constraints imposed by the optional
% arguments. See the RESULTS section below for the results output file
% format.
%
% Any or all of the following optional properties may be requested (the
% 'yuv' option is required for yuv files, but not for avi files since
% this information is read from the avi header).
%
% 'yuv' rows cols Specifies the number of rows and cols of the
% big-YUV files.
%
% 'sroi' top left bottom right Only use the specified spatial region
% of interest (sroi) for the vfd
% calculation. By default, all of the
% image is used. The sroi is inclusive,
% where top/left start at 1.
%
% 'troi' fstart fstop Only calculate vfd for the specified temporal
% region of interest (troi) of the processed video
% clip, where fstart and fstop are included and
% given in frames. By default, the vfd of the
% entire processed video clip is calculated
% (fstart = 1, fstop = number of frames in file).
%
% 'first_align' a Specifies the best guess for the original
% file frame number that corresponds to the
% first frame in the processed troi. By
% default, this is set to fstart, which is set
% to 1 when troi is not specified.
%
% 't_uncert' t Specifies the temporal uncertainty (plus or
% minus t frames) over which to search. The
% processed remains fixed and the original is
% shifted. The center (zero shift) point for
% the first frame (or field) is given by
% first_align. By default, temporal
% uncertainty is set to 30 frames. It can have
% a minimum value of 1 frame. When the
% original cannot be shifted by the temporal
% uncertainty (e.g., perhaps near the ends of
% the sequence), the original will be shifted
% up to the maximum extent possible.

17

%
% 'reframe' Allow for the possibility that the processed video clip has
% been reframing. This option is only valid for a scan_type
% of 'interlaced_uff' or 'interlaced_lff'. Reframing can vary
% throughout the processed clip, although this should be rare.
% This option will increase the runtime substantially since
% extra spatial shifts must be examined, but it should be used
% if there is any possibility of reframing existing in the
% processed video clip. See Section 3.1.2 of NTIA Report
% TR-02-392 for a definition of reframing.
%
% 'causal' Impose causality constraint so that later frames (fields) in
% the processed clip cannot align to original frames (fields)
% that are earlier in time than found for the proceeding
% processed frames (fields). For interlaced video, a
% one-field jump back in time is allowed since this is
% indicative of a frozen frame. By default, causality is
% turned off (yes, codecs can output non-causal sequences).
% But specifying the causal option is usually recommended.
%
% 'verbose' Display output and plots during processing.
%
% RESULTS
% The output results file is in Comma-Separated Values (CSV format):
%
% 'proc_file', proc_indices
% 'orig_file', orig_indices
%
% proc_indices and orig_indices are row vectors of length equal to the
% number of frames in the processed temporal region of interest (for
% scan_type = 'progressive') or of length equal to 2 * the number of
% frames in the processed temporal region of interest (for scan_type =
% 'interlaced_uff' or 'interlaced_lff'). For each processed frame (or
% field) index, the best matching original frame (or field) index is
% given, where 1 is the first frame (or field) in the file.
%
% EXAMPLES
% vdf 'proc.avi' 'orig.avi' 'progressive' 'results.csv'
% vfd 'proc.yuv' 'orig.yuv' 'interlaced_lff' 'results.csv' 'yuv' 486 720 'reframe' 'causal' 'verbose'
%

if nargin == 0,
 fprintf(' vfd ''proc_file'' ''orig_file'' ''scan_type'' ''results_file'' options\n');
 fprintf('\n');
 fprintf(' Estimate the variable frame delays (VFD) of all frames (or fields) in\n');

18

 fprintf(' the user specified processed video file (''proc_file'') that is in either\n');
 fprintf(' uncompressed UYVY AVI file format (default) or raw big-YUV file format\n');
 fprintf(' (optional). The original video file is given by ''orig_file''. The user\n');
 fprintf(' must specify the ''scan_type'' of the video files as either\n');
 fprintf(' ''progressive'', ''interlaced_uff'' (interlaced upper field first), or\n');
 fprintf(' ''interlaced_lff'' (interlaced lower field first), since this information\n');
 fprintf(' is not available in the AVI file format. VFD results are appended to \n');
 fprintf(' the file ''results_file'' (see the RESULTS section below for a complete\n');
 fprintf(' description of the results output file). \n');
 fprintf('\n');
 fprintf(' This routine does not perform any spatial registration so the original\n');
 fprintf(' and processed clips are assumed to have been spatially registered\n');
 fprintf(' beforehand. The original and processed video files can have a\n');
 fprintf(' different number of frames but ideally, there should be a matching\n');
 fprintf(' original frame (or field) for every processed frame (or field).\n');
 fprintf('\n');
 fprintf(' SYNTAX\n');
 fprintf(' vfd ''proc_file'' ''orig_file'' ''scan_type'' ''results_file'' options\n');
 fprintf('\n');
 fprintf(' DESCRIPTION\n');
 fprintf(' For each frame (or field) in the processed file, this algorithm finds\n');
 fprintf(' the frame (or field) in the original file that minimizes the mean\n');
 fprintf(' squared error, subject to the constraints imposed by the optional\n');
 fprintf(' arguments. See the RESULTS section below for the results output file\n');
 fprintf(' format.\n');
 fprintf('\n');
 fprintf(' Any or all of the following optional properties may be requested (the\n');
 fprintf(' ''yuv'' option is required for yuv files, but not for avi files since\n');
 fprintf(' this information is read from the avi header).\n');
 fprintf('\n');
 fprintf(' ''yuv'' rows cols Specifies the number of rows and cols of the \n');
 fprintf(' big-YUV files. \n');
 fprintf('\n');
 fprintf(' ''sroi'' top left bottom right Only use the specified spatial region \n');
 fprintf(' of interest (sroi) for the vfd\n');
 fprintf(' calculation. By default, all of the\n');
 fprintf(' image is used. The sroi is inclusive,\n');
 fprintf(' where top/left start at 1. \n');
 fprintf('\n');
 fprintf(' ''troi'' fstart fstop Only calculate vfd for the specified temporal\n');
 fprintf(' region of interest (troi) of the processed video\n');
 fprintf(' clip, where fstart and fstop are included and\n');
 fprintf(' given in frames. By default, the vfd of the\n');
 fprintf(' entire processed video clip is calculated\n');
 fprintf(' (fstart = 1, fstop = number of frames in file).\n');

19

 fprintf('\n');
 fprintf(' ''first_align'' a Specifies the best guess for the original\n');
 fprintf(' file frame number that corresponds to the\n');
 fprintf(' first frame in the processed troi. By\n');
 fprintf(' default, this is set to fstart, which is set\n');
 fprintf(' to 1 when troi is not specified.\n');
 fprintf('\n');
 fprintf(' ''t_uncert'' t Specifies the temporal uncertainty (plus or\n');
 fprintf(' minus t frames) over which to search. The\n');
 fprintf(' processed remains fixed and the original is\n');
 fprintf(' shifted. The center (zero shift) point for\n');
 fprintf(' the first frame (or field) is given by\n');
 fprintf(' first_align. By default, temporal\n');
 fprintf(' uncertainty is set to 30 frames. It can have\n');
 fprintf(' a minimum value of 1 frame. When the\n');
 fprintf(' original cannot be shifted by the temporal \n');
 fprintf(' uncertainty (e.g., perhaps near the ends of \n');
 fprintf(' the sequence), the original will be shifted\n');
 fprintf(' up to the maximum extent possible.\n');
 fprintf('\n');
 fprintf(' ''reframe'' Allow for the possibility that the processed video clip has\n');
 fprintf(' been reframing. This option is only valid for a scan_type\n');
 fprintf(' of ''interlaced_uff'' or ''interlaced_lff''. Reframing can vary\n');
 fprintf(' throughout the processed clip, although this should be rare.\n');
 fprintf(' This option will increase the runtime substantially since\n');
 fprintf(' extra spatial shifts must be examined, but it should be used\n');
 fprintf(' if there is any possibility of reframing existing in the\n');
 fprintf(' processed video clip. See Section 3.1.2 of NTIA Report\n');
 fprintf(' TR-02-392 for a definition of reframing.\n');
 fprintf('\n');
 fprintf(' ''causal'' Impose causality constraint so that later frames (fields) in\n');
 fprintf(' the processed clip cannot align to original frames (fields)\n');
 fprintf(' that are earlier in time than found for the proceeding\n');
 fprintf(' processed frames (fields). For interlaced video, a\n');
 fprintf(' one-field jump back in time is allowed since this is\n');
 fprintf(' indicative of a frozen frame. By default, causality is\n');
 fprintf(' turned off (yes, codecs can output non-causal sequences).\n');
 fprintf(' But specifying the causal option is usually recommended. \n');
 fprintf('\n');
 fprintf(' ''verbose'' Display output and plots during processing.\n');
 fprintf('\n');
 fprintf(' RESULTS\n');
 fprintf(' The output results file is in Comma-Separated Values (CSV format):\n');
 fprintf('\n');
 fprintf(' ''proc_file'', proc_indices\n');

20

 fprintf(' ''orig_file'', orig_indices\n');
 fprintf('\n');
 fprintf(' proc_indices and orig_indices are row vectors of length equal to the\n');
 fprintf(' number of frames in the processed temporal region of interest (for\n');
 fprintf(' scan_type = ''progressive'') or of length equal to 2 * the number of \n');
 fprintf(' frames in the processed temporal region of interest (for scan_type =\n');
 fprintf(' ''interlaced_uff'' or ''interlaced_lff''). For each processed frame (or\n');
 fprintf(' field) index, the best matching original frame (or field) index is\n');
 fprintf(' given, where 1 is the first frame (or field) in the file.\n');
 fprintf('\n');
 fprintf(' EXAMPLES\n');
 fprintf(' vdf ''proc.avi'' ''orig.avi'' ''progressive'' ''results.csv''\n');
 fprintf(' vfd ''proc.yuv'' ''orig.yuv'' ''interlaced_lff'' ''results.csv'' ''yuv'' 486 720 ''reframe'' ''causal'' ''verbose'' \n');
 fprintf('\n');
 return;
end

% strip off the extra single quotes ''
proc_file = eval(proc_file);
orig_file = eval(orig_file);
scan_type = eval(scan_type);
results_file = eval(results_file);

% Validate the scan_type
if (~strcmpi(scan_type,'progressive') && ~strcmpi(scan_type,'interlaced_lff') && ~strcmpi(scan_type,'interlaced_uff'))
 error('Invalid scan_type');
end

% Validate input arguments and set their defaults
is_yuv = 0; % default file type, uncompressed UYVY AVI
is_whole_image = 1;
is_whole_time = 1;
first_align = 0;
t_uncert = 30;
reframe = 0;
causal = 0;
verbose = 0;
cnt=1;
while cnt <= length(varargin),
 if ~ischar(varargin{cnt}),
 error('Property value passed into vfd is not recognized');
 end
 if strcmpi(eval(char(varargin(cnt))),'yuv') == 1
 rows = str2double(varargin{cnt+1});
 cols = str2double(varargin{cnt+2});

21

 is_yuv = 1;
 cnt = cnt + 3;
 elseif strcmpi(eval(char(varargin(cnt))),'sroi') == 1
 top = str2double(varargin{cnt+1});
 left = str2double(varargin{cnt+2});
 bottom = str2double(varargin{cnt+3});
 right = str2double(varargin{cnt+4});
 is_whole_image = 0;
 cnt = cnt + 5;
 elseif strcmpi(eval(char(varargin(cnt))),'troi') == 1
 fstart = str2double(varargin{cnt+1});
 fstop = str2double(varargin{cnt+2});
 is_whole_time = 0;
 cnt = cnt + 3;
 elseif strcmpi(eval(char(varargin(cnt))),'first_align') == 1
 first_align = str2double(varargin{cnt+1});
 cnt = cnt + 2;
 elseif strcmpi(eval(char(varargin(cnt))),'t_uncert') == 1
 t_uncert = str2double(varargin{cnt+1});
 cnt = cnt + 2;
 elseif strcmpi(eval(char(varargin(cnt))),'reframe') == 1
 reframe = 1;
 cnt = cnt + 1;
 elseif strcmpi(eval(char(varargin(cnt))),'causal') == 1
 causal = 1;
 cnt = cnt + 1;
 elseif strcmpi(eval(char(varargin(cnt))),'verbose') == 1
 verbose = 1;
 cnt = cnt + 1;
 else
 error('Property value passed into vfd not recognized');
 end
end

% Validate reframing option
if (reframe && strcmpi(scan_type,'progressive'))
 error('Reframe option not allowed for progressive video');
end

% Get the processed and original file information
if (~is_yuv) % AVI file

 % Get processed file information
 [avi_info] = read_avi('Info',proc_file);
 rows = avi_info.Height;

22

 cols = avi_info.Width;
 tframes = avi_info.NumFrames; % total frames in processed file

 % Get original file information
 [avi_info_orig] = read_avi('Info',orig_file);
 rows_orig = avi_info_orig.Height;
 cols_orig = avi_info_orig.Width;
 tframes_orig = avi_info_orig.NumFrames;

else % big-YUV file

 % Get the processed file information
 [fid, message] = fopen(proc_file, 'r');
 if fid == -1
 fprintf(message);
 error('Cannot open processed big-YUV file %s', proc_file);
 end
 % Find last frame.
 fseek(fid,0, 'eof');
 tframes = ftell(fid) / (2 * rows * cols);
 fclose(fid);

 % Get the original file information
 rows_orig = rows;
 cols_orig = cols;
 [fid, message] = fopen(orig_file, 'r');
 if fid == -1
 fprintf(message);
 error('Cannot open original big-YUV file %s', orig_file);
 end
 % Find last frame.
 fseek(fid,0, 'eof');
 tframes_orig = ftell(fid) / (2 * rows * cols);
 fclose(fid);

end

% Verify that the processed and original are the same resolution
if (rows ~= rows_orig || cols ~= cols_orig)
 error('Processed and original files have different image resolutions.');
end

% Set/Validate the SROI
if (is_whole_image)

23

 top = 1;
 left = 1;
 bottom = rows;
 right = cols;
elseif (top<1 || left<1 || bottom>rows || right>cols || top>bottom || left>right)
 error('Invalid spatial region of interest (SROI) for the processed file.');
end

% Set/Validate the TROI of the processed file
if (is_whole_time)
 fstart= 1;
 fstop = tframes;
elseif (fstart<1 || fstop>tframes || fstart>fstop)
 error('Invalid temporal region of interest (TROI) for the processed file.');
end

% Assign the original first alignment point and validate
if (~first_align) % a value for first_align was not input by the user so assign default
 first_align = fstart;
end
if (first_align<1 || first_align>tframes_orig)
 error('Invalid first_align for the original file.');
end

% Validate t_uncert
if (t_uncert<1 || t_uncert>tframes_orig)
 error('Invalid search uncertainty t_uncert.');
end

% Find the original time segment to read
offset_orig = first_align-fstart; % search offset of the orig file with respect to the proc file
fstop_orig = min(tframes_orig, fstop+offset_orig+t_uncert); % the last original frame to read

% Read extra orig frames at the beginning to allow for search range.
% Calculate a new first_align point that is referenced to the first
% original frame that is read rather than to the first frame in the original file.
fstart_orig = max(1, fstart+offset_orig-t_uncert);
new_first_align = first_align-fstart_orig+1; % no change if I start reading the first frame of orig

% Read in the original and processed S-T segments
if (~is_yuv) % AVI file

 % Read in video and clear color planes to free up memory
 [yp, cb, cr] = read_avi('YCbCr',proc_file,'frames',fstart,fstop,'sroi',top,left,bottom,right);
 clear cb cr;

24

 [yo, cb, cr] = read_avi('YCbCr',orig_file,'frames',fstart_orig,fstop_orig,'sroi',top,left,bottom,right);
 clear cb cr;

else % big-YUV file

 % Read in video and clear color planes to free up memory
 [yp] = read_bigyuv(proc_file,'frames',fstart,fstop,'size',rows,cols,'sroi',top,left,bottom,right);
 [yo] = read_bigyuv(orig_file,'frames',fstart_orig,fstop_orig,'size',rows,cols,'sroi',top,left,bottom,right);

end

% Generate the function call with all the desired options
func_call = 'est_var_frame_delays(yp,yo,''normalize'','; % always use the normalize option as it seems to work the best

if (reframe)
 func_call = strcat(func_call,'''reframe'',');
end

if (causal)
 func_call = strcat(func_call,'''causal'',');
end

if (verbose)
 func_call = strcat(func_call,'''verbose'',');
end

if (strcmpi(scan_type,'interlaced_lff'))
 func_call = strcat(func_call,'''interlaced'',1,');
end

if (strcmpi(scan_type,'interlaced_uff'))
 func_call = strcat(func_call,'''interlaced'',2,');
end

func_call = strcat(func_call,'''first_align'',',num2str(new_first_align),',','''t_uncert'',',num2str(t_uncert),')');

% Call the est_var_frame_delays function to get results
[results results_rmse results_fuzzy results_fuzzy_mse] = eval(func_call);

% Translate results to use the orig and proc file indexing
if (strcmpi(scan_type,'progressive'))
 proc_indices = (fstart-1) + (1:length(results));
 orig_indices = (fstart_orig-1) + results;
else % interlaced
 proc_indices = 2*(fstart-1) + (1:length(results));

25

 orig_indices = 2*(fstart_orig-1) + results;
end

% Save results
fid_results = fopen(results_file,'a'); % open results file for appending

if (strcmpi(scan_type,'progressive'))
 fprintf(fid_results,'File Name, Matching Frame Indices\n');
else % interlaced
 fprintf(fid_results,'File Name, Matching Field Indices\n');
end

npts = length(proc_indices);

fprintf(fid_results,'%s, ',proc_file);
for i = 1:npts-1
 fprintf(fid_results,'%f, ',proc_indices(i));
end
fprintf(fid_results,'%f\n',proc_indices(i+1));

fprintf(fid_results,'%s, ',orig_file);
for i = 1:npts-1
 fprintf(fid_results,'%f, ',orig_indices(i));
end
fprintf(fid_results,'%f\n',orig_indices(i+1));
fclose(fid_results);

close all;

end

function [results, results_rmse, results_fuzzy, results_fuzzy_mse] = est_var_frame_delays(proc, orig, varargin)
% EST_VAR_FRAME_DELAYS
% Estimate the variable delays of each frame in a processed video clip
% (i.e., proc) given an original video clip (i.e., orig). The processed
% and original clips are three dimensional (rows x cols x frames) Y (luma)
% matrices that may have a different number of frames. The results row
% vector gives the best matching frame number in the original clip for each
% frame in the processed clip, where original frame indices start from 1.
% The user may optionally specify interlaced format, and then the results
% vector gives the best matching field number (i.e., the results vector
% will be twice the frame-length of the processed clip). Note that this
% routine does not perform spatial registration and/or gain and level
% offset so the orig and proc clips are assumed to have been fully

26

% calibrated.
%
% SYNTAX
% [results, results_rmse, results_fuzzy, results_fuzzy_mse] = est_var_frame_delays (proc, orig, options)
%
% DESCRIPTION
% For each frame in the processed clip, this algorithm finds the frame in
% the original clip that minimizes the mean squared error, subject to the
% constraints imposed by the optional inputs. The following output
% arguments can be requested:
%
% results A row vector of the same length as the processed clip in
% frames (or fields) that gives the best matching original
% frame (or field) for each processed frame (or field).
% The original frame (or field) indices are assumed to
% start at one. If the 'causal' option is NOT specified, this
% is merely the original frame (or field) with the smallest
% Mean Squared Error (MSE) when compared to the processed
% frame. If the 'causal' option is specified, then the
% results row vector contains the results from the causal
% filtering algorithm (see below).
%
% results_rmse If two output arguments are requested, the second one
% will contain the Root Mean Squared Error (RMSE) between
% the causal alignment and the unfiltered and possibly
% non-causal alignment (in frames or fields). The higher
% the value, the more difference there is between the
% the two algorithms, which probably indicates that the
% scene is difficult to align (e.g., a scene with a small
% amount of motion or repetitive motion), or that not
% enough temporal uncertainty (t_uncert) was used.
%
% results_fuzzy If three output arguments are requested, the third one
% will contain the fuzzy alignment results. This is a
% matrix where each column gives a set of rank sorted fuzzy
% original frame (or field) alignments, sorted from most
% likely to least likely. The first element of each column
% vector gives the most likely alignment for that processed
% frame (field) and is the same as the first output
% argument (results). The number of rows in each column is
% equal to how many frames (or fields) were searched, which
% depends upon t_uncert. But only likely alignments are
% included and the remainder of the rows are filled in by
% 'NaN' (Not-a-Number). The fuzzy matrix is influenced by
% the 'causal' option since the range of possible

27

% alignments may be expanded to include the causal
% alignments.
%
% results_fuzzy_mse If four output arguments are requested, the fourth one
% will contain the Mean Squared Error of each fuzzy
% frame (or field) alignment, so this matrix is the
% same size as results_fuzzy.
%
% OPTIONS
% Any or all of the following optional inputs may be requested to control
% the behavior of the algorithm.
%
% 'interlaced',first_field Specifies interlaced format, where first_field
% specifies which field is first in time,
% first_field = 1 if the lower field is first,
% first_field = 2 if the upper field is first.
% The orig and proc clips must have an even
% number of rows for this option.
%
% 'sroi',top,left,bottom,right Only use the specified spatial region
% of interest (sroi) for the frame delay
% calculation. sroi is referenced to the
% original frame, where the (top, left)
% corner of the image is (1, 1). For
% interlaced video, top must be odd and
% bottom must be even. By default, sroi
% is the entire image.
%
% 'first_align',a Specifies the best guess for the original
% frame (or field) number that corresponds to
% the first frame (or field) in the processed
% clip. Set to 1 by default. Note that for
% interlaced video, this value must be in
% fields, not frames!
%
% 't_uncert',t Specifies the temporal uncertainty (always
% plus or minus t frames, NOT fields) over which
% to search. The processed remains fixed and
% the original is shifted. The center (zero
% shift) point for the first frame (or field)
% is given by first_align. By default,
% temporal uncertainty is set to 30. When the
% original cannot be shifted by the
% temporal uncertainty (e.g., near the ends of
% the sequence), the original will be shifted

28

% by the maximum possible.
%
% 'normalize' Perform a normalization on the original and processed
% clips such that the processed and original clips have
% zero mean, unit variance. All frames in the processed
% clip are used to estimate its mean and variance. For
% the original clip, the first_align point is used to
% select an equal number of frames from the original clip
% upon which to base its mean and variance (provided
% these corresponding frames are available, if not, the
% number of frames for the original's mean and variance
% estimate will be reduced). By default, no
% normalization is performed. However, normalization is
% a recommended option unless the processed video is
% perfectly calibrated wrt gain and level offset.
%
% 'causal' Impose causality constraint so that later frames (fields) in
% the processed clip cannot align to original frames (fields)
% that are earlier in time than found for the proceeding
% processed frames (fields). For interlaced video, a
% one-field jump back in time is allowed since this is
% indicative of a frozen frame. By default, causality is
% turned off (yes, codecs can output non-causal sequences).
% But specifying the causal option is usually recommended.
%
% 'reframe' Allow for the possibility that the processed video clip has
% been reframing. Must also specify the 'interlaced' option.
% Reframing can vary throughout the processed clip, although
% this should be rare. This option will increase the
% runtime substantially since extra spatial shifts must be
% examined.
%
% 'verbose' Display output during processing. verbose mode is turned
% off by default.
%
% EXAMPLES
%

% Return values of function if failure
results = 0;
results_rmse = 0;
results_fuzzy = 0;
results_fuzzy_mse = 0;

% Set input arguments to their defaults and assign optional inputs

29

interlaced = 0;
is_whole_image = 1;
first_align = 1;
t_uncert = 30;
normalize = 0;
is_causal = 0;
reframe = 0;
verbose = 0;
% Assign optional inputs
cnt=1;
while cnt <= length(varargin),
 if strcmpi(varargin(cnt),'interlaced') == 1
 interlaced = 1;
 first_field = varargin{cnt+1};
 if (first_field~=1 && first_field~=2)
 error('first_field must be 1 or 2.');
 end
 cnt = cnt + 2;
 elseif strcmpi(varargin(cnt),'sroi') == 1
 is_whole_image = 0;
 top = varargin{cnt+1};
 left = varargin{cnt+2};
 bottom = varargin{cnt+3};
 right = varargin{cnt+4};
 cnt = cnt + 5;
 elseif strcmpi(varargin(cnt),'first_align') == 1
 first_align = varargin{cnt+1};
 cnt = cnt + 2;
 elseif strcmpi(varargin(cnt), 't_uncert') == 1
 t_uncert = varargin{cnt+1};
 cnt = cnt + 2;
 elseif strcmpi(varargin(cnt), 'normalize') == 1
 normalize = 1;
 cnt = cnt + 1;
 elseif strcmpi(varargin(cnt), 'causal') == 1
 is_causal = 1;
 cnt = cnt + 1;
 elseif strcmpi(varargin(cnt), 'reframe') == 1
 reframe = 1;
 cnt = cnt +1;
 elseif strcmpi(varargin(cnt),'verbose') == 1
 verbose = 1;
 cnt = cnt +1;
 else
 error('Property value passed into est_frame_delays not recognized');

30

 end
end

% Temporal uncertainty search bound check
if(t_uncert < 1)
 error('t_uncert must be at least 1 frame.');
end

% Find image resolution and number of frames in orig and proc clips
[nr, nc, nf] = size(proc);
[nr_o, nc_o, nf_o] = size(orig);
if (nr ~= nr_o || nc ~= nc_o)
 error('Orig and proc clips must have the same number of rows and cols.');
end

% Validate the SROI
if (is_whole_image) % make ROI whole image
 top = 1;
 left = 1;
 bottom = nr;
 right = nc;
elseif (top<1 || left<1 || bottom>nr || right>nc || top>bottom || left>right)
 error('Requested SROI incompatible with image size.');
end

% Additional checks on SROI for interlaced video
if (interlaced && (mod(nr,2)~=0))
 error('Number of rows must be even.')
end
if (interlaced && (mod(top+1,2)~=0 || (mod(bottom,2)~=0)))
 error('Requested SROI invalid for interlaced video.');
end
if (reframe && ~interlaced)
 error('For the reframe option, you must also specify the interlaced option.')
end

% Split into fields from the get-go if this is interlaced video
if (interlaced)

 % This is the normal split (not reframing)
 if (first_field == 2) % upper field is first
 origf = reshape(orig(top:bottom,left:right,:), 2, (bottom-top+1)/2, right-left+1, nf_o);
 orig = reshape(permute(origf, [2 3 1 4]), (bottom-top+1)/2, right-left+1, 2*nf_o);
 clear origf;
 procf = reshape(proc(top:bottom,left:right,:), 2, (bottom-top+1)/2, right-left+1, nf);

31

 proc = reshape(permute(procf, [2 3 1 4]), (bottom-top+1)/2, right-left+1, 2*nf);
 clear procf;
 else % lower field is first
 origf = flipdim(reshape(orig(top:bottom,left:right,:), 2, (bottom-top+1)/2, right-left+1, nf_o),1);
 orig = reshape(permute(origf, [2 3 1 4]), (bottom-top+1)/2, right-left+1, 2*nf_o);
 clear origf;
 procf = flipdim(reshape(proc(top:bottom,left:right,:), 2, (bottom-top+1)/2, right-left+1, nf),1);
 proc = reshape(permute(procf, [2 3 1 4]), (bottom-top+1)/2, right-left+1, 2*nf);
 clear procf;
 end

 % Adjust t_uncert and number of fields in orig and proc
 t_uncert = 2*t_uncert;
 nf = 2*nf;
 nf_o = 2*nf_o;

 % Number of samples used for mse calculation, field based
 nrows = (bottom-top+1)/2;
 ncols = right-left+1;
 nsamps = nrows*ncols;

else % Progressive sequence

 % Window out desired SROI
 orig = orig(top:bottom, left:right, :);
 proc = proc(top:bottom, left:right, :);

 % Number of samples used for mse calculation
 nrows = bottom-top+1;
 ncols = right-left+1;
 nsamps = nrows*ncols;

end

% Check on alignment of first frame (or field) before we start searching
if (first_align<1 || first_align>nf_o)
 error('Requested first_align is not valid for orig clip.');
end

%%%%%%%%%%
% Stage 1
% Normalize video sequences and compute the Mean Squared Error (MSE)
% between each processed frame (or field) and the set of original frames
% (or fields) within the temporal search window.
%%%%%%%%%%

32

% Perform the normalization on the orig and proc clips (if requested)
if (normalize)

 % Compute mean and stdev of the proc clip and normalize
 proc_mean = sum(reshape(proc, nsamps*nf, 1))/(nsamps*nf);
 proc_std = sqrt(sum(reshape(proc, nsamps*nf, 1).^2)/(nsamps*nf) - proc_mean^2);
 proc = (proc-proc_mean)/proc_std;

 % Compute the mean and stdev of the orig clip and normalize
 nf_o1 = first_align; % The first frame (or field) in the orig to use
 nf_o2 = min(first_align + nf -1, nf_o); % The final frame (or field) in the orig to use
 orig_mean = sum(reshape(orig(:,:,nf_o1:nf_o2), nsamps*(nf_o2-nf_o1+1), 1))/(nsamps*(nf_o2-nf_o1+1));
 orig_std = sqrt(sum(reshape(orig(:,:,nf_o1:nf_o2), nsamps*(nf_o2-nf_o1+1), 1).^2)/(nsamps*(nf_o2-nf_o1+1)) - orig_mean^2);
 orig = (orig-orig_mean)/orig_std;

end

% Find the best matching orig frame (field) for every proc frame (Field)
if (verbose)
 fprintf('proc frame/field orig frame/field mse\n');
 fprintf('---------------- ---------------- ---\n');
end
max_size = 2*t_uncert+1; % the max size of the alignment results
mse = NaN(max_size,nf); % holds the mse alignment results
offsets = []; % holds the orig index offsets
for t = 1:nf % Loop over all processed frames

 this_align = first_align+t-1; % when t = 1, this is the reference alignment
 neg = max(this_align-t_uncert,1); % the negative most orig index to search
 pos = min(this_align+t_uncert,nf_o); % the positive most orig index to search
 this_proc = repmat(squeeze(proc(:,:,t)),[1 1 pos-neg+1]); % Create replicas of this processed frame

 if(~reframe) % Progressive or interlaced with no reframing

 this_mse = sum(reshape((orig(:,:,neg:pos)-this_proc).^2, nsamps, pos-neg+1), 1) / nsamps;
 [best_mse best_ind] = min(this_mse);
 best_ind = best_ind + neg - 1;

 else % Must do extra comparisons shifted by 1 line, but all comparisons use the same lines from orig

 origt = orig(2:nrows-1,:,neg:pos);

 % First comparison, proc is not shifted
 this_mse1 = sum(reshape((origt-this_proc(2:nrows-1,:,:)).^2, nsamps-2*ncols, pos-neg+1), 1) / (nsamps-2*ncols);

33

 % Second comparison, proc shifted down by one line wrt orig
 this_mse2 = sum(reshape((origt-this_proc(1:nrows-2,:,:)).^2, nsamps-2*ncols, pos-neg+1), 1) / (nsamps-2*ncols);

 % Third comparison, proc shifted up by one line wrt orig
 this_mse3 = sum(reshape((origt-this_proc(3:nrows,:,:)).^2, nsamps-2*ncols, pos-neg+1), 1) / (nsamps-2*ncols);

 % Combine comparisons and take min overall
 this_mse = min([this_mse1;this_mse2;this_mse3]);
 [best_mse best_ind] = min(this_mse);
 best_ind = best_ind + neg - 1;

 end

 % Save the offset indices; the mse row indices plus this offset
 % is the original frame (field) indices
 offsets(t) = neg-1;

 % save mse vector time history for later fuzzy processing
 mse(1:pos-neg+1,t) = this_mse';

 if (verbose)

 % Plot the correlation function for this processed frame
 figure(1)
 plot(offsets(t)+(1:pos-neg+1),this_mse,'LineWidth',2);
 hold on
 set(gca,'LineWidth',2)
 set(gca,'FontName','Ariel')
 set(gca,'fontsize',12)
 xlabel('Original Frame or Field');
 ylabel('Mean Squared Error (MSE)');
 this_title = ['Processed Frame or Field ' int2str(t)];
 title(this_title);
 grid on
 hold off
 pause(0.01);

 % Print out the best matching point
 fprintf(' %4i %4i %5.4e\n', t, best_ind, best_mse);

 end

end

34

%%
% Process the correlation results to compute the four output arguments.
% WARNING:
% This algorithm is a highly complicated heuristic multi-stage algorithm.
%%
[range num_frames] = size(mse);

% Generate matrix that provides the matching original frame/field for
% every MSE value in the matrix
orig_index = repmat((1:range)',1,num_frames) + repmat(offsets,range,1);

% Sort the MSE values and their orig indices for each proc frame/field
[mse_sort index_sort] = sort(mse);
orig_index_sort = [];
for j = 1:num_frames
 orig_index_sort(:,j) = orig_index(index_sort(:,j),j);
end

% Define a Boolean array that is 1 when the best alignment has hit the
% edge of the search range and zero otherwise (i.e., not enough
% temporal uncertainty or perhaps the correlation function has gone
% berserk). This array will be used as a filter later to de-weight
% these points in the causal alignment estimation. When the
% best aligned frame (first element of index_sort) is equal to 1 or
% range, you have hit the edge.
edge = zeros(1, num_frames);
edge(index_sort(1,:) == 1) = 1; % left search edge
edge(index_sort(1,:) == range) = 1; % right search edge

%%%%%%%%%%
% Stage 2
% Step thru the frames for this clip and find an initial set of fuzzy alignments
%%%%%%%%%%
final_fuzzy_index = NaN(range, num_frames); % The final fuzzy alignment from most to least likely at end of stage 1
final_fuzzy_mse = NaN(range, num_frames); % Their corresponding MSEs
for j = 1:num_frames

 % Since subtractive correlation is being used, the correlation function
 % will be a minimum at the best match and increase from there. This
 % code uses a thresholding scheme that sets a threshold at the minimum
 % correlation value + thres * maximum correlation value, but the
 % maximum correlation value used is the top (95%) rank sorted value
 % for robustness. All alignments within this threshold from the best
 % correlation value are considered possible alignments for later
 % processing by the algorithm.

35

 thres = 0.005; % Fraction of the maximum correlation level above the minimum for valid fuzzy
 top = 0.95; % Rank sorted fraction used to determine the max correlation level, for robustness
 this_mse = mse(:,j);
 this_mse_valid = find(~isnan(this_mse)); % array can contain NaN if orig frames did not exist
 range_valid = length(this_mse_valid);
 this_mse_sort = sort(this_mse);
 this_index = orig_index(:,j);
 this_index_sort = orig_index_sort(:,j);

 max_corr = this_mse_sort(floor(top*range_valid));
 min_corr = this_mse_sort(1);
 fuzzy = find(this_mse >= min_corr & this_mse <= min_corr+thres*max_corr);
 num_fuzzy = length(fuzzy); % will always be at least one
 fuzzy_sort = [];
 for k = 1:num_fuzzy
 fuzzy_sort(k) = find(this_index_sort == this_index(fuzzy(k)));
 end

 % Expand the fuzzy alignments to include the range of original indices
 % that are covered by the minimum MSE points. This will include extra
 % points that were not in the minimum MSE fuzzy set.
 bigger_fuzzy = (fuzzy(1):fuzzy(length(fuzzy)))';
 bigger_fuzzy_mse = this_mse(bigger_fuzzy);
 bigger_fuzzy_index = this_index(bigger_fuzzy);

 % Added fuzzy points that were not included in the original set
 added_fuzzy = setxor(fuzzy,bigger_fuzzy);
 added_fuzzy_mse = this_mse(added_fuzzy);
 added_fuzzy_index = this_index(added_fuzzy);
 num_added_fuzzy = length(added_fuzzy);
 added_fuzzy_sort = [];
 for k = 1:num_added_fuzzy
 added_fuzzy_sort(k) = find(this_index_sort == this_index(added_fuzzy(k)));
 end

 % Sort the bigger fuzzy information from the most likely alignment
 % to the least likely alignment, based on MSE. The array
 % final_fuzzy_index gives the best fuzzy alignments at this stage of
 % the algorithm without causal processing. So final_fuzzy_index and
 % final_fuzzy_mse will be assigned to results_fuzzy and
 % results_fuzzy_mse if causal output was not requested by the user.
 [bigger_fuzzy_mse_sort mse_order] = sort(bigger_fuzzy_mse);
 bigger_fuzzy_index_sort = bigger_fuzzy_index(mse_order);
 final_fuzzy_index(1:length(bigger_fuzzy_index_sort),j) = bigger_fuzzy_index_sort;
 final_fuzzy_mse(1:length(bigger_fuzzy_index_sort),j) = bigger_fuzzy_mse_sort;

36

end

% The array best holds the best alignments based on min MSE
best = final_fuzzy_index(1,:);

%%%%%%%%%%
% Stage 3
% Find normal causal segments
%%%%%%%%%%
% Find normal causal segments using only the best alignment point. A
% normal causal segment is defined as follows:
%
% For interlaced video: A segment where field n jumps forward in
% alignment by 0 to 2*cjump fields (a field repeating system will cause a
% 2 field jump) with respect to field n-1. A jump back of 1 field during
% the segment is allowed for the frame repeating case.
%
% For progressive video: A segment where frame n jumps forward in
% alignment by 0 to cjump frames with respect to frame n-1.
%
% A frame alignment that is on the edge will not be included in any
% normal causal segment.
run_beg = []; % Holds the beginning index of a run
run_length = []; % Holds the length of the run
ri = 1; % Index counter for the causal runs
cjump = 2; % Specifies the jump forward (in frames) that is allowed for 'normal' causal

k = 1; % begin search at the first frame
while(edge(k))
 k = k+1;
 if (k > num_frames)
 break;
 end
end

if(k <= num_frames) % Found at least one causal alignment
 run_beg(ri) = k; % Beginning of first causal run
 run_length(ri) = 1;
 k = k+1;

 while(k <= num_frames) % Complete search for causal runs

 if(~edge(k))
 if(~interlaced) % Progressive algorithm

37

 if((best(k)-best(k-1)>=0) && (best(k)-best(k-1)<=cjump))
 run_length(ri) = run_length(ri)+1;
 k = k +1;
 else
 % Skip ahead to the next valid causal alignment
 while(edge(k))
 k = k+1;
 if (k > num_frames)
 break;
 end
 end
 if (k <= num_frames)
 ri = ri + 1;
 run_beg(ri) = k;
 run_length(ri) = 1;
 k = k + 1;
 end
 end
 else % Interlaced algorithm
 if((min(repmat(best(k),1,run_length(ri))-best(k-run_length(ri):k-1))>=-1) && (best(k)-best(k-1)<=2*cjump))
 run_length(ri) = run_length(ri)+1;
 k = k +1;
 else
 % Skip ahead to the next valid causal alignment
 while(edge(k))
 k = k+1;
 if (k > num_frames)
 break;
 end
 end
 if (k <= num_frames)
 ri = ri + 1;
 run_beg(ri) = k;
 run_length(ri) = 1;
 k = k +1;
 end
 end
 end
 else % hit an edge alignment, close off this causal segment
 % Skip ahead to the next valid causal alignment
 while(edge(k))
 k = k+1;
 if (k > num_frames)
 break;
 end

38

 end
 if (k <= num_frames)
 ri = ri + 1;
 run_beg(ri) = k;
 run_length(ri) = 1;
 k = k +1;
 end
 end

 end

 % Sort the causal runs according to their length
 [run_length_sort length_order] = sort(run_length,'descend');
 run_beg_sort = run_beg(length_order);

end

%%%%%%%%%%
% Stage 4
% Fill normal causal segments from the longest to the shortest
%%%%%%%%%%
causal = zeros(1,num_frames); % Holds the non-fuzzy causal alignment

% This code will fill in the normal causal segments from the longest
% to the shortest. To qualify for a fill, a normal causal segment
% must have at least min_length points.
if(~isempty(run_length))

 min_length = 2;
 for k = 1:length(run_length_sort)

 if (run_length_sort(k) >= min_length)

 % See if there are any runs before or after the current run
 if (run_beg_sort(k)+run_length_sort(k) <= num_frames)
 after_index = find(causal(run_beg_sort(k)+run_length_sort(k):num_frames) ~= 0);
 else
 after_index = [];
 end
 if (run_beg_sort(k)-1 >= 1)
 before_index = find(causal(1:run_beg_sort(k)-1) ~= 0);
 else
 before_index = [];
 end

39

 % Determine the index of the nearest after and before for
 % progressive algorithm
 if(~isempty(before_index))
 before_orig = before_index(length(before_index));
 end
 if (~isempty(after_index))
 after_orig = run_beg_sort(k)+run_length_sort(k)+after_index(1)-1;
 end

 % If causal, fit this run's alignment into the existing
 if (~interlaced) % Progressive algorithm
 if (isempty(before_index) && isempty(after_index))
 causal(run_beg_sort(k):run_beg_sort(k)+run_length_sort(k)-1) = ...
 best(run_beg_sort(k):run_beg_sort(k)+run_length_sort(k)-1);
 elseif (isempty(before_index))
 if (best(after_orig)>=best(run_beg_sort(k)+run_length_sort(k)-1))
 causal(run_beg_sort(k):run_beg_sort(k)+run_length_sort(k)-1) = ...
 best(run_beg_sort(k):run_beg_sort(k)+run_length_sort(k)-1);
 end
 elseif (isempty(after_index))
 if (best(before_orig)<=best(run_beg_sort(k)))
 causal(run_beg_sort(k):run_beg_sort(k)+run_length_sort(k)-1) = ...
 best(run_beg_sort(k):run_beg_sort(k)+run_length_sort(k)-1);
 end
 elseif ((best(before_orig)<=best(run_beg_sort(k))) && (best(after_orig)>=best(run_beg_sort(k)+run_length_sort(k)-1)))
 causal(run_beg_sort(k):run_beg_sort(k)+run_length_sort(k)-1) = ...
 best(run_beg_sort(k):run_beg_sort(k)+run_length_sort(k)-1);
 end
 else % Interlaced algorithm allows for up to 1 field jump back in time for the segment you are adding into timeline
 if (isempty(before_index) && isempty(after_index))
 causal(run_beg_sort(k):run_beg_sort(k)+run_length_sort(k)-1) = ...
 best(run_beg_sort(k):run_beg_sort(k)+run_length_sort(k)-1);
 elseif (isempty(before_index))
 if (min(best(after_index+run_beg_sort(k)+run_length_sort(k)-1)) >= ...
 max(best(run_beg_sort(k):run_beg_sort(k)+run_length_sort(k)-1))-1)
 causal(run_beg_sort(k):run_beg_sort(k)+run_length_sort(k)-1) = ...
 best(run_beg_sort(k):run_beg_sort(k)+run_length_sort(k)-1);
 end
 elseif (isempty(after_index))
 if (max(best(before_index))<=min(best(run_beg_sort(k):run_beg_sort(k)+run_length_sort(k)-1))+1)
 causal(run_beg_sort(k):run_beg_sort(k)+run_length_sort(k)-1) = ...
 best(run_beg_sort(k):run_beg_sort(k)+run_length_sort(k)-1);
 end
 elseif ((min(best(after_index+run_beg_sort(k)+run_length_sort(k)-1)) >= ...
 max(best(run_beg_sort(k):run_beg_sort(k)+run_length_sort(k)-1))-1) && ...

40

 (max(best(before_index))<=min(best(run_beg_sort(k):run_beg_sort(k)+run_length_sort(k)-1))+1))
 causal(run_beg_sort(k):run_beg_sort(k)+run_length_sort(k)-1) = ...
 best(run_beg_sort(k):run_beg_sort(k)+run_length_sort(k)-1);
 end
 end

 end

 end

end

%%%%%%%%%%
% Stage 5
% Fill in the missing holes in the causal array - see algorithm description
%%%%%%%%%%

% At this point the causal array may still contain holes (zeros). The
% algorithm for filling in these segments is as follows: The earlier
% time point is extended later in time by the value in the best array
% if this is allowed by the causality rules, then the later time point
% is extended earlier in time by the value in the best array if this
% is allowed by the causality rules, alternating back and forth until
% no other extensions are possible. If causality cannot be achieved,
% and the final_fuzzy_index has valid next best alignments (i.e.,
% something other than 'NaN'), these are examined to see if causality
% can be achieved using them rather than the best array. If
% insertions are made from the final_fuzzy_index array, these are
% compared to what interpolation would have yielded to fill in the
% segment hole - and the choice that produces the minimum RMSE with
% respect to the best array is chosen.
%
% In this manner, missing segments are filled in as they are
% encountered from early to late time. When the missing segment occurs
% at the beginning or end of the time sequence, then the holes are
% filled by the best array alignments (if they are causal), or the
% optimum choice between final_fuzzy_index alignments (if available
% and if causal) and the last good causal alignment which is
% replicated/extended. The last good causal alignment is
% replicated/extended if no other options are available.

holes = find(causal==0);
while(~isempty(holes)) % keep filling hole segments from early to late time
 num_holes = length(holes);

41

 % Find the length of the first hole
 hole_start = holes(1);
 hole_stop = hole_start;
 if (num_holes > 1)
 for k = 2:num_holes
 if (holes(k)-holes(k-1) == 1)
 hole_stop = hole_stop+1;
 else
 break;
 end
 end
 end

 % Fill the hole segment - there are four cases
 % 1. Segment is at beginning of clip but is followed by valid causal
 % 2. Segment is at end of clip but is preceded by valid causal
 % 3. Segment is preceded and followed by valid causal (most likely)
 % 4. Segment is not proceeded or followed by valid causal (function aborts)

 % Do progressive filling algorithm first
 if(~interlaced)

 % Case 3, probably the most likely case
 if (hole_start > 1 && hole_stop < num_frames)

 % This code toggles from beg to end, starting at beg
 hole_pts = hole_stop-hole_start+1; % number of points in this hole segment
 valid_early = hole_start-1; % last valid causal point before time segment
 valid_late = hole_stop+1; % last valid causal point after time segment
 for k = 1:hole_pts
 if (mod(k,2)==1) % try to fill from the beginning first and then from the end if that fails
 if (best(valid_early+1)>=causal(valid_early) && best(valid_early+1)<=causal(valid_late))
 causal(valid_early+1) = best(valid_early+1);
 valid_early = valid_early + 1;
 elseif (best(valid_late-1)<=causal(valid_late) && best(valid_late-1)>=causal(valid_early))
 causal(valid_late-1) = best(valid_late-1);
 valid_late = valid_late - 1;
 else % see if other possible alignments exist besides the best array
 early_insert = 0; % tells if this is an early or late insert
 succeed = 0; % set to 1 when a causal substitution is made
 depth = 2; % the final_fuzzy_index level, depth = 1 is the best array
 while (~succeed && (~isnan(final_fuzzy_index(depth,valid_early+1)) || ...
 ~isnan(final_fuzzy_index(depth,valid_late-1))))
 if (~isnan(final_fuzzy_index(depth,valid_early+1)))
 if (final_fuzzy_index(depth,valid_early+1) >= causal(valid_early) && ...

42

 final_fuzzy_index(depth,valid_early+1)<=causal(valid_late))
 causal(valid_early+1) = final_fuzzy_index(depth,valid_early+1);
 valid_early = valid_early + 1;
 succeed = 1;
 early_insert = 1;
 end
 else
 if (final_fuzzy_index(depth,valid_late-1)<=causal(valid_late) && ...
 final_fuzzy_index(depth,valid_late-1)>=causal(valid_early))
 causal(valid_late-1) = final_fuzzy_index(depth,valid_late-1);
 valid_late = valid_late - 1;
 succeed = 1;
 end
 end
 depth = depth +1;
 if (depth > range)
 break;
 end
 end
 if (~succeed) % linear interpolation at beginning as last resort after all possible alignments exhausted
 causal(valid_early+1) = causal(valid_early) + ...
 round((causal(valid_late)-causal(valid_early))/(valid_late-valid_early));
 valid_early = valid_early + 1;
 else % see if interpolation yields better RMSE than the alignment from the final_fuzzy_index
 if (early_insert)
 interp_value = causal(valid_early-1) + ...
 round((causal(valid_late)-causal(valid_early-1))/(valid_late-(valid_early-1)));
 if (abs(causal(valid_early)-best(valid_early)) > abs(interp_value-best(valid_early)))
 causal(valid_early) = interp_value;
 end
 else % late insert
 interp_value = causal(valid_late+1) - ...
 round((causal(valid_late+1)-causal(valid_early))/(valid_late+1-valid_early));
 if (abs(causal(valid_late)-best(valid_late)) > abs(interp_value-best(valid_late)))
 causal(valid_late) = interp_value;
 end
 end
 end
 end
 else % try to fill from the end first and then from the beginning if that fails
 if (best(valid_late-1)<=causal(valid_late) && best(valid_late-1)>=causal(valid_early))
 causal(valid_late-1) = best(valid_late-1);
 valid_late = valid_late - 1;
 elseif (best(valid_early+1)>=causal(valid_early) && best(valid_early+1)<=causal(valid_late))
 causal(valid_early+1) = best(valid_early+1);

43

 valid_early = valid_early + 1;
 else
 early_insert = 0; % tells if this is an early or late insert
 succeed = 0; % set to 1 when a causal substitution is made
 depth = 2; % the final_fuzzy_index level, depth = 1 is the best array
 while (~succeed && (~isnan(final_fuzzy_index(depth,valid_early+1)) || ...
 ~isnan(final_fuzzy_index(depth,valid_late-1))))
 if (~isnan(final_fuzzy_index(depth,valid_late-1)))
 if (final_fuzzy_index(depth,valid_late-1)<=causal(valid_late) && ...
 final_fuzzy_index(depth,valid_late-1)>=causal(valid_early))
 causal(valid_late-1) = final_fuzzy_index(depth,valid_late-1);
 valid_late = valid_late - 1;
 succeed = 1;
 end
 else
 if (final_fuzzy_index(depth,valid_early+1)>=causal(valid_early) && ...
 final_fuzzy_index(depth,valid_early+1)<=causal(valid_late))
 causal(valid_early+1) = final_fuzzy_index(depth,valid_early+1);
 valid_early = valid_early + 1;
 succeed = 1;
 early_insert = 1;
 end
 end
 depth = depth +1;
 if (depth > range)
 break;
 end
 end
 if (~succeed) % perform linear interpolation at end as a last resort after all possible alignments exhausted
 causal(valid_late-1) = causal(valid_late) - ...
 round((causal(valid_late)-causal(valid_early))/(valid_late-valid_early));
 valid_late = valid_late - 1;
 else % see if interpolation yields better RMSE than the alignment from the final_fuzzy_index
 if (early_insert)
 interp_value = causal(valid_early-1) + ...
 round((causal(valid_late)-causal(valid_early-1))/(valid_late-(valid_early-1)));
 if (abs(causal(valid_early)-best(valid_early)) > abs(interp_value-best(valid_early)))
 causal(valid_early) = interp_value;
 end
 else % late insert
 interp_value = causal(valid_late+1) - ...
 round((causal(valid_late+1)-causal(valid_early))/(valid_late+1-valid_early));
 if (abs(causal(valid_late)-best(valid_late)) > abs(interp_value-best(valid_late)))
 causal(valid_late) = interp_value;
 end

44

 end
 end
 end
 end
 end

 % Case 1, always fill from the end
 elseif (hole_start == 1 && hole_stop < num_frames)
 hole_pts = hole_stop-hole_start+1; % number of points in this hole segment
 valid_late = hole_stop+1; % last valid causal point after time segment
 for k = 1:hole_pts
 % try to fill from the end
 if (best(valid_late-1)<=causal(valid_late))
 causal(valid_late-1) = best(valid_late-1);
 valid_late = valid_late - 1;
 else
 succeed = 0; % set to 1 when a causal substitution is made
 depth = 2; % the final_fuzzy_index level, depth = 1 is the best array
 while (~succeed && ~isnan(final_fuzzy_index(depth,valid_late-1)))
 if (final_fuzzy_index(depth,valid_late-1)<=causal(valid_late))
 causal(valid_late-1) = final_fuzzy_index(depth,valid_late-1);
 valid_late = valid_late - 1;
 succeed = 1;
 end
 depth = depth +1;
 if (depth > range)
 break;
 end
 end
 if(~succeed) % extend last good alignment
 causal(valid_late-1) = causal(valid_late);
 valid_late = valid_late - 1;
 else % see if extension yields better RMSE than the alignment from the final_fuzzy_index
 interp_value = causal(valid_late+1);
 if (abs(causal(valid_late)-best(valid_late)) > abs(interp_value-best(valid_late)))
 causal(valid_late) = interp_value;
 end
 end
 end
 end

 % Case 2, always fill from the beginning
 elseif (hole_start > 1 && hole_stop == num_frames)
 hole_pts = hole_stop-hole_start+1; % number of points in this hole segment
 valid_early = hole_start-1; % last valid causal point before time segment

45

 for k = 1:hole_pts
 % try to fill from the beginning
 if (best(valid_early+1)>=causal(valid_early))
 causal(valid_early+1) = best(valid_early+1);
 valid_early = valid_early + 1;
 else
 succeed = 0;
 depth = 2;
 while (~succeed && ~isnan(final_fuzzy_index(depth,valid_early+1)))
 if (final_fuzzy_index(depth,valid_early+1)>=causal(valid_early))
 causal(valid_early+1) = final_fuzzy_index(depth,valid_early+1);
 valid_early = valid_early + 1;
 succeed = 1;
 end
 depth = depth +1;
 if (depth > range)
 break;
 end
 end
 if (~succeed) % extend last good alignment
 causal(valid_early+1) = causal(valid_early);
 valid_early = valid_early + 1;
 else % see if extension yields better RMSE than the alignment from the final_fuzzy_index
 interp_value = causal(valid_early-1);
 if (abs(causal(valid_early)-best(valid_early)) > abs(interp_value-best(valid_early)))
 causal(valid_early) = interp_value;
 end
 end
 end
 end

 % Case 4, super rare case might be possible, no valid causal segments anywhere in the entire clip
 else
 error('Warning: No valid 2-pt causal alignment segments found in clip - aborting.\n');

 end

 else % Interlaced algorithm allows for 1 field jump back in time for segment you are adding

 % Case 3, probably the most likely case
 if (hole_start > 1 && hole_stop < num_frames)

 % This code toggles from beg to end, starting at beg
 hole_pts = hole_stop-hole_start+1; % number of points in this hole segment
 valid_early = hole_start-1; % last valid causal point before time segment

46

 valid_late = hole_stop+1; % last valid causal point after time segment
 for k = 1:hole_pts
 causal_temp = causal(valid_late:num_frames);
 min_valid_late = min(causal_temp(causal_temp~=0)); % don't include causal=0 points
 max_valid_early = max(causal(1:valid_early)); % causal=0 points don't affect this calculation
 if (mod(k,2)==1) % try to fill from the beginning first and then from the end if that fails
 if (best(valid_early+1)>=max_valid_early-1 && best(valid_early+1)<=min_valid_late+1)
 causal(valid_early+1) = best(valid_early+1);
 valid_early = valid_early + 1;
 elseif (best(valid_late-1)<=min_valid_late+1 && best(valid_late-1)>=max_valid_early-1)
 causal(valid_late-1) = best(valid_late-1);
 valid_late = valid_late - 1;
 else % see if other possible alignments exist besides the best array
 early_insert = 0; % tells if this is an early or late insert
 succeed = 0;
 depth = 2;
 while (~succeed && (~isnan(final_fuzzy_index(depth,valid_early+1)) || ...
 ~isnan(final_fuzzy_index(depth,valid_late-1))))
 if (~isnan(final_fuzzy_index(depth,valid_early+1)))
 if (final_fuzzy_index(depth,valid_early+1) >= ...
 max_valid_early-1 && final_fuzzy_index(depth,valid_early+1)<=min_valid_late+1)
 causal(valid_early+1) = final_fuzzy_index(depth,valid_early+1);
 valid_early = valid_early + 1;
 succeed = 1;
 early_insert = 1;
 end
 else
 if (final_fuzzy_index(depth,valid_late-1)<=min_valid_late+1 && ...
 final_fuzzy_index(depth,valid_late-1)>=max_valid_early-1)
 causal(valid_late-1) = final_fuzzy_index(depth,valid_late-1);
 valid_late = valid_late - 1;
 succeed = 1;
 end
 end
 depth = depth +1;
 if (depth > range)
 break;
 end
 end
 if (~succeed) % linear interpolation at beginning as last resort after all possible alignments exhausted
 causal(valid_early+1) = causal(valid_early) + ...
 round((causal(valid_late)-causal(valid_early))/(valid_late-valid_early));
 valid_early = valid_early + 1;
 else % see if interpolation yields better RMSE than the alignment from the final_fuzzy_index
 if (early_insert)

47

 interp_value = causal(valid_early-1) + ...
 round((causal(valid_late)-causal(valid_early-1))/(valid_late-(valid_early-1)));
 if (abs(causal(valid_early)-best(valid_early)) > abs(interp_value-best(valid_early)))
 causal(valid_early) = interp_value;
 end
 else % late insert
 interp_value = causal(valid_late+1) - ...
 round((causal(valid_late+1)-causal(valid_early))/(valid_late+1-valid_early));
 if (abs(causal(valid_late)-best(valid_late)) > abs(interp_value-best(valid_late)))
 causal(valid_late) = interp_value;
 end
 end
 end
 end
 else % try to fill from the end first and then from the beginning if that fails
 if (best(valid_late-1)<=min_valid_late+1 && best(valid_late-1)>=max_valid_early-1)
 causal(valid_late-1) = best(valid_late-1);
 valid_late = valid_late - 1;
 elseif (best(valid_early+1)>=max_valid_early-1 && best(valid_early+1)<=min_valid_late+1)
 causal(valid_early+1) = best(valid_early+1);
 valid_early = valid_early + 1;
 else
 early_insert = 0; % tells if this is an early or late insert
 succeed = 0; % set to 1 when a causal substitution is made
 depth = 2; % the final_fuzzy_index level, depth = 1 is the best array
 while (~succeed && (~isnan(final_fuzzy_index(depth,valid_early+1)) || ...
 ~isnan(final_fuzzy_index(depth,valid_late-1))))
 if (~isnan(final_fuzzy_index(depth,valid_late-1)))
 if (final_fuzzy_index(depth,valid_late-1)<=min_valid_late+1 && ...
 final_fuzzy_index(depth,valid_late-1)>=max_valid_early-1)
 causal(valid_late-1) = final_fuzzy_index(depth,valid_late-1);
 valid_late = valid_late - 1;
 succeed = 1;
 end
 else
 if (final_fuzzy_index(depth,valid_early+1)>=max_valid_early-1 && ...
 final_fuzzy_index(depth,valid_early+1)<=min_valid_late+1)
 causal(valid_early+1) = final_fuzzy_index(depth,valid_early+1);
 valid_early = valid_early + 1;
 succeed = 1;
 early_insert = 1;
 end
 end
 depth = depth +1;
 if (depth > range)

48

 break;
 end
 end
 if (~succeed) % perform linear interpolation at end
 causal(valid_late-1) = causal(valid_late) - ...
 round((causal(valid_late)-causal(valid_early))/(valid_late-valid_early));
 valid_late = valid_late - 1;
 else % see if interpolation yields better RMSE than the alignment from the final_fuzzy_index
 if (early_insert)
 interp_value = causal(valid_early-1) + ...
 round((causal(valid_late)-causal(valid_early-1))/(valid_late-(valid_early-1)));
 if (abs(causal(valid_early)-best(valid_early)) > abs(interp_value-best(valid_early)))
 causal(valid_early) = interp_value;
 end
 else % late insert
 interp_value = causal(valid_late+1) - ...
 round((causal(valid_late+1)-causal(valid_early))/(valid_late+1-valid_early));
 if (abs(causal(valid_late)-best(valid_late)) > abs(interp_value-best(valid_late)))
 causal(valid_late) = interp_value;
 end
 end
 end
 end
 end
 end

 % Case 1, always fill from the end
 elseif (hole_start == 1 && hole_stop < num_frames)
 hole_pts = hole_stop-hole_start+1; % number of points in this hole segment
 valid_late = hole_stop+1; % last valid causal point after time segment
 for k = 1:hole_pts
 causal_temp = causal(valid_late:num_frames);
 min_valid_late = min(causal_temp(causal_temp~=0)); % don't include causal=0 points
 % try to fill from the end
 if (best(valid_late-1) <= min_valid_late+1)
 causal(valid_late-1) = best(valid_late-1);
 valid_late = valid_late - 1;
 else
 succeed = 0; % set to 1 when a causal substitution is made
 depth = 2; % the final_fuzzy_index level, depth = 1 is the best array
 while (~succeed && ~isnan(final_fuzzy_index(depth,valid_late-1)))
 if (final_fuzzy_index(depth,valid_late-1)<=min_valid_late+1)
 causal(valid_late-1) = final_fuzzy_index(depth,valid_late-1);
 valid_late = valid_late - 1;
 succeed = 1;

49

 end
 depth = depth +1;
 if (depth > range)
 break;
 end
 end
 if (~succeed) % extend last good alignment
 causal(valid_late-1) = causal(valid_late);
 valid_late = valid_late - 1;
 else % see if extension yields better RMSE than the alignment from the final_fuzzy_index
 interp_value = causal(valid_late+1);
 if (abs(causal(valid_late)-best(valid_late)) > abs(interp_value-best(valid_late)))
 causal(valid_late) = interp_value;
 end
 end
 end
 end

 % Case 2, always fill from the beginning
 elseif (hole_start > 1 && hole_stop == num_frames)
 hole_pts = hole_stop-hole_start+1; % number of points in this hole segment
 valid_early = hole_start-1; % last valid causal point before time segment
 for k = 1:hole_pts
 max_valid_early = max(causal(1:valid_early)); % causal=0 points don't affect this calculation
 % try to fill from the beginning
 if (best(valid_early+1) >= max_valid_early-1)
 causal(valid_early+1) = best(valid_early+1);
 valid_early = valid_early + 1;
 else
 succeed = 0;
 depth = 2;
 while (~succeed && ~isnan(final_fuzzy_index(depth,valid_early+1)))
 if (final_fuzzy_index(depth,valid_early+1)>=max_valid_early-1)
 causal(valid_early+1) = final_fuzzy_index(depth,valid_early+1);
 valid_early = valid_early + 1;
 succeed = 1;
 end
 depth = depth +1;
 if (depth > range)
 break;
 end
 end
 if (~succeed) % extend last good alignment
 causal(valid_early+1) = causal(valid_early);
 valid_early = valid_early + 1;

50

 else % see if extension yields better RMSE than the alignment from the final_fuzzy_index
 interp_value = causal(valid_early-1);
 if (abs(causal(valid_early)-best(valid_early)) > abs(interp_value-best(valid_early)))
 causal(valid_early) = interp_value;
 end
 end
 end
 end

 % Case 4, very rare case might be possible, no valid 2-pt causal segments anywhere in the entire clip
 else
 error('Warning: No valid 2-pt causal alignment segments found in clip - aborting.\n');

 end

 end

 % Update the holes that are remaining
 holes = find(causal==0);

end

% Compute the average alignment RMSE between the causal alignment and the
% minimum MSE alignment, this is return argument number 2.
results_rmse = sqrt(mean((causal-best).^2));

if (verbose)

 % Plot final causal alignment
 figure(2)
 plot(best,'LineWidth',1.25)
 hold on
 set(gca,'LineWidth',2)
 set(gca,'FontName','Ariel')
 set(gca,'fontsize',12)
 plot(causal,'r','LineWidth',3)
 xlabel('Processed Frame or Field');
 ylabel('Original Frame or Field');
 title('Processed Clip Alignment Results');
 grid on
 hold off;
 pause(0.01);

 % Print out results for verbose mode.
 fprintf('results_rmse %f\n',results_rmse);

51

 pause(5);

end

% Compute the causal index and its MSE and put into an array for later use
causal_index = zeros(1,num_frames);
causal_mse = zeros(1,num_frames);
for j = 1:num_frames
 this_mse = mse(:,j);
 this_index = orig_index(:,j);
 causal_index(j) = find(this_index == causal(j));
 causal_mse(j) = this_mse(causal_index(j));
end

if (verbose)

 % Plot the 3d correlation function, x = proc frame, y = orig frame, z =
 % mse, where x is the second index and the y is the first index
 orig_last = max(max(orig_index)); % last orig frame index that has data
 [x, y] = meshgrid(1:num_frames, 1:orig_last);
 [ysize, xsize] = size(x);
 z = NaN(ysize, xsize); % missing values will be NaN
 for j = 1:num_frames % fill column by column
 for i = 1:range % row element
 z(orig_index(i,j),j) = mse(i,j);
 end
 end

 figure(3)
 mesh(x,y,z, 'EdgeColor', 'black');
 hold on
 hidden on
 set(gca,'LineWidth',2)
 set(gca,'FontName','Ariel')
 set(gca,'fontsize',12)
 xlabel('Processed Frame or Field');
 ylabel('Original Frame or Field');
 zlabel('MSE');
 title('3D MSE Function');
 shading interp

 % Now overlay the causal function MSE using a red line
 x_causal = 1:num_frames;
 y_causal = causal;

52

 z_causal = causal_mse;
 warning off
 alpha(0.9); % Sets some face transparency to see points
 scatter3(x_causal,y_causal,z_causal,'r','filled');
 hold off
 pause(5); % pause 5 sec to display plots properly

end

% Assign results array as requested by the user
if (~is_causal)

 results = best;
 results_fuzzy = final_fuzzy_index;
 results_fuzzy_mse = final_fuzzy_mse;

else % further processing is required for fuzzy alignments

 results = causal;

 %%%%%%%%%%
 % Stage 6
 % Expand the fuzzy alignments to include the causal alignments.
 % Some of this code is replicated from stage 1.
 %%%%%%%%%%

 % Step thru the frames for this clip and find the causal fuzzy
 % alignments. The causal fuzzy alignments expands the set of final
 % fuzzy alignments found previously to include the causal alignment
 % point and all points in-between this point and the prior set of final
 % fuzzy alignments.
 final_fuzzy_causal_index = NaN(range, num_frames); % The final fuzzy causal alignment from most to least likely
 final_fuzzy_causal_mse = NaN(range, num_frames); % The corresponding MSEs
 for j = 1:num_frames

% % Plot the correlation function
% figure(1)
% plot(orig_index(:,j),mse(:,j),'LineWidth',2);
% hold on
% grid on
% set(gca,'LineWidth',2)
% set(gca,'FontName','Ariel')
% set(gca,'fontsize',12)
% xlabel('Original Frame or Field');
% ylabel('Mean Squared Error (MSE)');

53

% this_title = ['Processed Frame or Field ' int2str(j)];
% title(this_title);
% hold off

 % Since subtractive correlation is being used, the correlation function
 % will be a minimum at the best match and increase from there. This
 % code uses a thresholding scheme that sets a threshold at the minimum
 % correlation value + thres * maximum correlation value, but the
 % maximum correlation value used is the top (95%) rank sorted value
 % for robustness. All alignments within this threshold from the best
 % correlation value are considered possible alignments for later
 % processing by the algorithm.
 this_mse = mse(:,j);
 this_mse_valid = find(~isnan(this_mse)); % array can contain NaN if orig frames did not exist
 range_valid = length(this_mse_valid);
 this_mse_sort = sort(this_mse);
 this_index = orig_index(:,j);
 this_index_sort = orig_index_sort(:,j);

 max_corr = this_mse_sort(floor(top*range_valid));
 min_corr = this_mse_sort(1);
 fuzzy = find(this_mse >= min_corr & this_mse <= min_corr+thres*max_corr);
 num_fuzzy = length(fuzzy); % will always be at least one
 fuzzy_sort = [];
 for k = 1:num_fuzzy
 fuzzy_sort(k) = find(this_index_sort == this_index(fuzzy(k)));
 end

% % Add the fuzzy alignments to the plot, red points meet threshold
% figure(1)
% hold on
% plot(this_index(fuzzy),this_mse(fuzzy),'r.','MarkerSize',15);
% hold off

 % Expand the fuzzy alignments to include the range of original indices
 % that are covered by the minimum MSE points. This will include
 % extra points that were not in the minimum MSE fuzzy set.
 bigger_fuzzy = (fuzzy(1):fuzzy(length(fuzzy)))';

 % Added fuzzy points that were not included in the original set
 added_fuzzy = setxor(fuzzy,bigger_fuzzy); % just the added points, for plotting
 added_fuzzy_mse = this_mse(added_fuzzy);
 added_fuzzy_index = this_index(added_fuzzy);
 num_added_fuzzy = length(added_fuzzy);
 added_fuzzy_sort = [];

54

 for k = 1:num_added_fuzzy
 added_fuzzy_sort(k) = find(this_index_sort == this_index(added_fuzzy(k)));
 end

% % Add the expanded fuzzy points to the plots in green squares.
% figure(1)
% hold on
% plot(this_index(added_fuzzy),this_mse(added_fuzzy),'gs','MarkerSize',5,'MarkerFaceColor','g','MarkerEdgeColor','g');
% hold off

% % Overlay the causal point with a large black diamond
% figure(1)
% hold on
% plot(this_index(causal_index(j)),causal_mse(j),'kd','MarkerSize',10,'LineWidth',1.25);
% hold off

 % Now expand the fuzzy set to include the causal point
 added_causal = [];
 added_causal_mse = [];
 cplot = 0;
 if (this_index(causal_index(j)) < this_index(fuzzy(1))) % Must expand on left
 added_causal = (causal_index(j):(fuzzy(1)-1))';
 added_causal_mse = this_mse(added_causal);
 bigger_fuzzy = (causal_index(j):fuzzy(length(fuzzy)))';
 cplot = 1;
 elseif (this_index(causal_index(j)) > this_index(fuzzy(length(fuzzy)))) % Must expand on right
 added_causal = ((fuzzy(length(fuzzy))+1):causal_index(j))';
 added_causal_mse = this_mse(added_causal);
 bigger_fuzzy = (fuzzy(1):causal_index(j))';
 cplot = 1;
 end

% % Overlay the added causal points in solid black diamonds
% if(cplot)
% figure(1)
% hold on
% plot(this_index(added_causal),added_causal_mse,'kd','MarkerSize',5,'MarkerFaceColor','k','MarkerEdgeColor','k');
% hold off
% end

 % Sort the bigger fuzzy information from the most likely alignment
 % to the least likely alignment, based on MSE. Then move the causal
 % alignment point to the first element if it is not there already.
 % The array final_fuzzy_causal_index gives the fuzzy alignments
 % with causal processing.

55

 bigger_fuzzy_mse = this_mse(bigger_fuzzy);
 bigger_fuzzy_index = this_index(bigger_fuzzy);
 [bigger_fuzzy_mse_sort mse_order] = sort(bigger_fuzzy_mse);
 bigger_fuzzy_index_sort = bigger_fuzzy_index(mse_order);
 tlen = length(bigger_fuzzy_index_sort);
 tind = find(bigger_fuzzy_index_sort == this_index(causal_index(j)));
 if (tind ~= 1) % reorder so causal alignment is first
 if (tind ~= tlen)
 bigger_fuzzy_index_sort = cat(1, bigger_fuzzy_index_sort(tind), bigger_fuzzy_index_sort(1:tind-1), ...
 bigger_fuzzy_index_sort(tind+1:tlen));
 bigger_fuzzy_mse_sort = cat(1, bigger_fuzzy_mse_sort(tind), bigger_fuzzy_mse_sort(1:tind-1), ...
 bigger_fuzzy_mse_sort(tind+1:tlen));
 else
 bigger_fuzzy_index_sort = cat(1, bigger_fuzzy_index_sort(tind), bigger_fuzzy_index_sort(1:tind-1));
 bigger_fuzzy_mse_sort = cat(1, bigger_fuzzy_mse_sort(tind), bigger_fuzzy_mse_sort(1:tind-1));
 end
 end
 final_fuzzy_causal_index(1:tlen,j) = bigger_fuzzy_index_sort;
 final_fuzzy_causal_mse(1:tlen,j) = bigger_fuzzy_mse_sort;

 end

 % Assign the fuzzy results for a causal user request
 results_fuzzy = final_fuzzy_causal_index;
 results_fuzzy_mse = final_fuzzy_causal_mse;

end

return;

end

56

FORM NTIA-29 U.S. DEPARTMENT OF COMMERCE
(4-80) NAT’L. TELECOMMUNICATIONS AND INFORMATION ADMINISTRATION

BIBLIOGRAPHIC DATA SHEET

1. PUBLICATION NO.
TM-10-463

2. Government Accession No.

3. Recipient’s Accession No.

4. TITLE AND SUBTITLE

A Full Reference (FR) Method using Causality Processing for Estimating
Variable Video Delays

5. Publication Date
October 2009
6. Performing Organization
NTIA/ITS.T

7. AUTHOR(S)
Stephen Wolf

9. Project/Task/Work Unit No.

3141011

8. PERFORMING ORGANIZATION NAME AND ADDRESS
Institute for Telecommunication Sciences
National Telecommunications & Information Administration
U.S. Department of Commerce
325 Broadway
Boulder, CO 80305

10. Contract/Grant No.

11. Sponsoring Organization Name and Address
National Telecommunications & Information Administration
Herbert C. Hoover Building
14th & Constitution Ave., NW
Washington, DC 20230

12. Type of Report and Period
Covered

14. SUPPLEMENTARY NOTES

15. ABSTRACT
Digital video transmission systems consisting of a video encoder, a digital transmission method (e.g., Internet
Protocol – IP), and a video decoder can produce pauses in the video presentation, after which the video may
continue with or without skipping video frames. This time varying delay of the output (or processed) video frames
can present a challenge for some video quality measurement systems. The reason is that time alignment errors
between the output video sequence and the input (or reference) video sequence may produce measurement errors for
full reference measurements like Peak Signal to Noise Ratio (PSNR) that greatly exceed the perceptual impact of the
time varying video delays. This document presents a Full Reference (FR) method for estimating variable video
delays. The algorithm can optionally execute a sophisticated causality processing algorithm to improve the
robustness of the delay estimates. The delay estimates produced by this algorithm can be utilized by a FR quality
measurement system to remove variable video delay as a calibration step before computing the quality
measurement.

16. Key Words

calibration; causality; delay; dropped frames; Full Reference (FR); pausing; skipping; video quality

17. AVAILABILITY STATEMENT

 UNLIMITED.

18. Security Class. (This report)

Unclassified

20. Number of pages

 68

19. Security Class. (This page)

Unclassified

21. Price:

NTIA FORMAL PUBLICATION SERIES

NTIA MONOGRAPH (MG)

A scholarly, professionally oriented publication dealing with state-of-the-art research or
an authoritative treatment of a broad area. Expected to have long-lasting value.

NTIA SPECIAL PUBLICATION (SP)

Conference proceedings, bibliographies, selected speeches, course and instructional
materials, directories, and major studies mandated by Congress.

NTIA REPORT (TR)

Important contributions to existing knowledge of less breadth than a monograph, such as
results of completed projects and major activities. Subsets of this series include:

 NTIA RESTRICTED REPORT (RR)

Contributions that are limited in distribution because of national security
classification or Departmental constraints.

 NTIA CONTRACTOR REPORT (CR)

Information generated under an NTIA contract or grant, written by the contractor,
and considered an important contribution to existing knowledge.

 JOINT NTIA/OTHER-AGENCY REPORT (JR)

This report receives both local NTIA and other agency review. Both agencies’
logos and report series numbering appear on the cover.

NTIA SOFTWARE & DATA PRODUCTS (SD)

Software such as programs, test data, and sound/video files. This series can be used to
transfer technology to U.S. industry.

NTIA HANDBOOK (HB)
Information pertaining to technical procedures, reference and data guides, and formal
user's manuals that are expected to be pertinent for a long time.

NTIA TECHNICAL MEMORANDUM (TM)

Technical information typically of less breadth than an NTIA Report. The series includes
data, preliminary project results, and information for a specific, limited audience.

For information about NTIA publications, contact the NTIA/ITS Technical Publications Office at
325 Broadway, Boulder, CO, 80305 Tel. (303) 497-3572 or e-mail info@its.bldrdoc.gov.

This report is for sale by the National Technical Information Service, 5285 Port Royal Road,
Springfield, VA 22161,Tel. (800) 553-6847.

	CONTENTS
	1. INTRODUCTION
	2. ALGORITHM DESCRIPTION
	2.1. Stage 1: Compute MSEs Between Processed Frames and Original Frames
	2.2. Stage 2: Compute Initial Set of Rank-Sorted Fuzzy Time Alignments
	2.3. Stage 3: Determine Time Segments that Exhibit “Normal Causality”
	2.4. Stage 4: Fill in Normal Causal Segments from Longest to Shortest
	2.6. Stage 6: Expand Set of Fuzzy Time Alignments from Stage 2

	3. SUMMARY
	4. REFERENCES
	APPENDIX: MATLAB Code

